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Abstract In this paper, we propose the spectral collocation method based on radial basis

functions to solve the fractional Bagley-Torvik equation under uncertainty, in the
fuzzy Caputo’s H-differentiability sense with order (1 < ν < 2). We define the fuzzy
Caputo’s H-differentiability sense with order ν (1 < ν < 2), and employ the colloca-

tion RBF method for upper and lower approximate solutions. The main advantage
of this approach is that the fuzzy fractional Bagley-Torvik equation is reduced to
the problem of solving two systems of linear equations. Determining a good shape
parameter is still an outstanding research topic. To eliminate the effects of the ra-

dial basis function shape parameter, we use thin plate spline radial basis functions
which have no shape parameter, and also we use the variable shape parameter for
Matérn radial basis function which give almost optimal shape parameter. The nu-
merical investigation is presented in this paper shows that excellent accuracy can be

obtained even when few nodes are used in analysis. Efficiency and effectiveness of
the proposed procedure is examined by solving two benchmark problems.

Keywords. The fractional Bagley-Torvik equation, Meshless method, RBF collocation, Thin plate splines,

Fuzzy theory, Fuzzy Caputo’s H-differentiability.
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1. Introduction

Fractional-order differential equations are encountered in many fields in science and
engineering such as viscoelasticity, heat conduction, electrode-electrolyte polarization,
electromagnetic waves, diffusion wave, and control theory. Since, it is too difficult to
obtain the exact solution of fractional differential equation so, one may need a reliable
and efficient numerical scheme for the solution of fractional differential equations.
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Many important works have been reported regarding fractional calculus in the last
few decades. Relating to this field several excellent books have also been written by
different authors representing the scope and various aspects of fractional calculus such
as in [37, 46, 49, 53, 56]. Fractional-order derivatives have been successfully used to
model damping forces with memory effect or to describe state feedback controllers
[9, 10, 49, 59]. The Bagley-Torvik equation with 1/2-order derivative or 3/2-order
derivative describes motion of real physical systems, an immersed plate in a Newtonian
fluid and a gas in a fluid, respectively [9, 10, 49, 52]. The motion of a rigid plate of
mass m and area A connected by a mass less spring of stiffness k, immersed in a
Newtonian fluid, was originally proposed by Bagley and Torvik.

Let µ be the viscosity and ρ be the fluid density. The displacement of the plate u
is described by Bagley-Torvik equation

Au′′(t) +BD3/2u(t) + Cu(t) = f(t), 0 ≤ t ≤ T, (1.1)

with the initial conditions

u(0) = b0, u′(0) = b1, (1.2)

where A = m, B = 2A
√
µρ, C = k, and D3/2 is Caputo-type fractional deriva-

tive. Podlubny [49] gave the analytical solution of the Bagley-Torvik equation with
homogeneous initial conditions by using Green’s function. But, in practice, these
equations can not be evaluated easily for different functions f(t). Ray and Bera [52]
have introduced Adomian decomposition method for the analytical solution of the
Bagley-Torvik equation. Recently, the Eq. (1.1) has been numerically solved by the
generalized Taylor collocation method [17], the Bessel collocation method [58], and the
Haar wavelet operational matrix [51]. J. Cermk and T. Kisela et al. [18] have proved
exact and discretized stability of the Bagley-Torvik equation. Also, there have been
numerous investigations to numerically solve some fractional differential equations,
based on the multi-domain spectral method [19], the modified generalized Laguerre
operational matrix [14], the spline [47], the predictor-corrector approach [22], and the
radial basis function [36], etc.

In recent years, meshless methods have been used in many different areas ranging
from geology, biology, physical and engineering sciences, applied mathematics, com-
puter science, and business studies [27, 29, 30, 61]. Meshless methods use a set of
uniform or random points which are not necessarily interconnected in the form of a
mesh. One class of meshless methods are radial basis functions (RBFs) collocation
methods which use radial functions as the basis functions for the collocation.

The use of meshless methods based on radial basis functions has gained popularity
in science community for a number of reasons. The most prominent characteristics
of these methods are: meshfree character and flexibility in dealing with complex
geometries and easy extension to multi-dimensional problems. A radial basis function
depends upon the separation distances of a subset of trial centres. Sums of RBFs are
typically used to approximate given functions. This approximation process can also
be interpreted as a simple kind of neural network. RBFs are also used as a kernel in
support vector classification.
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The theory of radial basis functions has under gone intensive research and en-
joyed considerable success as a technique for interpolating multivariable data and
functions. RBF approximation method is a generalization of multiquadric (MQ)
method developed by a geologist, Hardy in 1968 and was successfully applied in in-
terpolation of cartographic scattered data [31]. It was not recognized by most of the
academic researchers until Franke [26] published a review paper in the evaluation of
two-dimensional interpolation methods. This was a motivation for Kansa [34, 35] to
develop Hardy’s method to approximate the solutions of elliptic, parabolic and hy-
perbolic PDEs. Kansa’s method was recently extended to solve various ordinary and
partial differential equations [24, 25]. Some examples of popular choices of RBFs are
given in Table 1.

Structural design and analysis plays a vital role for the structural safety. Most of
the structures fail due to the poor design. In the design process the system param-
eters involved such as mass, geometry, material properties, external loads, or initial
conditions are considered as crisp or defined exactly. But, rather than the particular
value we may have only the vague, imprecise and incomplete information about the
variables and parameters being a result of errors in measurement, observations, ex-
periment, applying different operating conditions or it may be maintenance induced
error, etc. which are uncertain in nature. Basically, these uncertainties can be mod-
elled through probabilistic, interval and fuzzy theory.

In probabilistic practice, the variables of uncertain nature are assumed as random
variables with joint probability density functions. If the structural parameters and the
external load are modeled as random variables with known probability density func-
tions, the response of the structure can be predicted using the theory of probability
and stochastic processes which have been studied by Elishakoff [23]. Unfortunately,
probabilistic methods may not able to deliver reliable results at the required precision
without sufficient experimental data. It may be due to the probability density func-
tions involved in it. As such in the recent decades, interval analysis and fuzzy theory
are becoming powerful tools for many real life applications. In these approaches, the
uncertain variables and parameters are represented by interval and fuzzy numbers,
vectors, or matrices.

Interval computations introduced by Moore [42] and various aspects of interval
analysis along with applications are explained by moore [43]. If only incomplete
information is available, it is possible to establish the minimum and maximum favor-
able response of the structures using interval analysis or convex models (Ben-Haim
and Elishakoff [13]; Genzerli and Pantelides [28]). The connection between the fuzzy
analysis and the interval analysis is very well known (Zadeh [64], Moore and Lodwick
[44], Pedrycz and Gomide [48]). Interval analysis and fuzzy analysis were introduced
as an attempt to handle interval uncertainty that appears in many mathematical or
computer models of some deterministic real-world phenomena. The main theoretical
and practical results in the fields of fuzzy analysis and the interval analysis can be
found in several works (Moore [42, 43], Alefeld and Herzberger [5], Kolev [38], Alefed
and Mayer [4], Baker Kearfott and Kreinovich [11], and Nguyen et al. [45]).
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The concept of solution for fractional differential equations with uncertainty was
introduced by Agarwal, Lakshmikantham and Nieto [3]. This concept has been stud-
ied and developed in several papers. Arshad and Lupulescu [8, 7] developed the new
results about fractional differential equations with uncertainty , Agarwal et al. [1, 2]
developed a schauder fixed point theorem and fuzzy fractional integral equations,
Allahviranloo et al. [6] proposed explicit solutions of fractional differential equation
with uncertainty, Salahshour et al. [54, 55] proved existence and uniqueness for fuzzy
fractional differential equation and solved these equations by Laplace transforms, a
modified fractional Euler method was proposed by Mazandarani and Kamyad [41]
for fuzzy fractional differential equations. The concepts of fractional derivatives for
a fuzzy function are based on the notion of Hukuhara derivative (H-derivative) that
the concept of Hukuhara derivative is well known (Hukuhara [32], Banks and Jacobs
[12], Puri and Ralescu [50]).

Most of the literature deals with the different methods for the uncertain fractional
differential equations to obtain the approximate solutions. Not much work has been
made to determine the approximate solution of the fuzzy fractional Bagley-Torvik
equation. Not work has been carried out when uncertainty has been taken into con-
sideration for the fractional differential equation by using the RBF collocation method.
As both fractional and fuzzy plays an important role in the structural modeling and
design for the structural safety (like the fuzzy fractional Bagley-Torvik equation),
hence an attempt has been made to combined the both for a better reliable analysis.

The fundamental aim of this paper is to extend the application of spectral collo-
cation method based on radial basis functions to solve the fractional Bagley-Torvik
equation under uncertainty, in the fuzzy Caputo’s H-differentiability sense with order
(1 < ν < 2). So, in the beginning, we define the fuzzy Caputo’s H-differentiability
sense with order (1 < ν < 2) which is a direct extension of Caputo derivatives with
respect to Hukuhara difference, and then, employing the collocation RBF method
for upper and lower solutions. In this way, the RBF collocation method reduces
the problem of solving the fuzzy fractional Bagley-Torvik equation to two systems of
linear equations. To eliminate the effects of the radial basis function shape parame-
ters, we use thin plate spline radial basis functions which have no shape parameter ,
and also we use the variable shape parameter for Matérn radial basis function which
give almost optimal shape parameter in this work. Numerical results will show the
capabilities and improved efficiency of the RBF collocation method.

The layout of the paper is as follows: In Section 2 we show that how we use
the thin plate spline radial basis functions to approximate the solution and recall
some basic concepts. In Section 3, Caputo H-differentiability is introduced and some
of its properties are considered. We introduce the fuzzy fractional Bagley-Torvik
equation, in section 4. Then we briefly present the collocation RBF method for the
fuzzy fractional Bagley-Torvik equation in next section. The results of numerical
experiments are presented in Section 7. Section 8 is dedicated to a brief conclusion.

2. Preliminaries

In this section, some basic concepts of radial basis functions and fuzzy sets are
presented.
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Table 1. Examples of some popular RBFs, where r = || · || is the
Euclidean norm, and ν ∈ N.

RBF ϕϵ(r)

Gaussian C∞ (GA) e−ϵ2r2

MultiQuadric C∞ (MQ) (1 + ϵ2r2)1/2

Inverse MultiQuadric C∞ (IMQ) (1 + ϵ2r2)−1/2

Thin Plate Spline Cν+1 (TPS) (−1)ν+1r2ν log r

Matérn C6 (M6) e−ϵr(ϵ3r3 + 6ϵ2r2 + 15ϵr + 15)

Matérn C4 (M4) e−ϵr(ϵ2r2 + 3ϵr + 3)

Matérn C2 (M2) e−ϵr(ϵr + 1)

2.1. Radial basis function approximation. In the interpolation of the scattered
data using radial basis functions the approximation of a function u(x) at the centers
X = {x1, . . . , xN}, may be written as a linear combination of N RBFs; usually it
takes the following form:

su,X(x) =
N∑
j=1

αjϕ(x− xj) +

Q∑
k=1

βkpk(x). (2.1)

Here, Q denotes the dimension of the polynomial space πm−1(Rd) , p1, . . . , pQ denote
a basis of πm−1(Rd), x = (x1, x2, . . . , xd), d is the dimension of the problem, α’s and
β’s are coefficients to be determined, ϕ is the RBF. To cope with additional degrees
of freedom, the interpolation conditions

su,X(xj) = u(xj), 1 ≤ j ≤ N, (2.2)

are completed by the additional conditions

N∑
j=1

αjpk(xj) = 0, 1 ≤ k ≤ Q. (2.3)

Solvability of this system is therefore equivalent to solvability of the system(
Aϕ,X P
PT 0

)(
α
β

)
=

(
u |X
0

)
, (2.4)

where Aϕ,X = (ϕ(xj − xk)) ∈ RN×N and P = (pk(xj)) ∈ RN×Q. This last system
is obviously solvable if the coefficient matrix on the left-hand side is invertible. Eq.

(2.1) can be written without the additional polynomial
∑Q

k=1 βkpk(x). In that case, ϕ
must be unconditionally positive definite to guarantee the solvability of the resulting

system (e.g. Gaussian, inverse multiquadrics, or Matérn). However
∑Q

k=1 βkpk(x) is
usually required when ϕ is conditionally positive definite, i.e. when ϕ has a polynomial
growth towards infinity. For instance, suppose ϕ is thin plate splines. Moreover, since
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these functions are globally supported, the interpolation matrix is full and may be
very ill–conditioned for some RBFs.

Although to improve the conditioning of the system of collocation equations Com-
pactly supported RBFs (CSRBFs) have been applied, but the CSRBFs are vanish
beyond a user defined threshold distance σ. Therefore, only the entries in the colloca-
tion matrix corresponding to collocation nodes lying closer than σ to a given CSRBF
center are nonzero, leading to a sparse matrix. In fact, the interest in CSRBFs waned
as it became evident that, in order to obtain a good accuracy, the overlap distance σ
should cover most nodes in the point set, thus resulting in a populated matrix again
[39].

In a similar representation as (2.1), for any linear partial differential operator L,
Lu may be approximated by [20]

Lu(x) ≃
N∑
j=1

αjLϕ(x− xj) +

Q∑
k=1

βkLpk(x). (2.5)

At first, we use the thin plate spline RBFs. The reason is that it has been shown
by Franke [26], that MQ and thin plate spline give the most accurate results for
scattered data approximations. Furthermore, the accuracy of the MQ method de-
pends on a shape parameter and as yet there is no mathematical theory about how to
choose its optimal value. Hence, most applications of the MQ use experimental tun-
ing parameters or expensive optimization techniques to evaluate the optimum shape
parameter [16]. While the thin plate spline method gives good agreement without re-
quiring such additional parameters and is based on sound mathematical theory [15].

ϕ(x) = (−1)
k+1∥x∥2k2 log ∥x∥2, k ∈ N, from Rd to R that generates thin plate spline

RBFs is conditionally positive definite of order m = k + 1, [62]. Since ϕ is C2k−1

continuous, a higher-order thin plate spline must be used, for higher-order partial dif-
ferential operators. To avoid problems at x = 0 (since log(0) = −∞), we implement

ϕ(x) = (−1)
3∥x∥32 log ∥x∥

∥x∥2
2 for k = 2. Also, we use the Matérn RBFs. Further-

more, we use the variable shape parameter to choose optimal shape parameter [21].
the Matérn RBFs are unconditionally positive definite, so Eq. (2.1) can be written

without the additional polynomial
∑Q

k=1 βkpk(x).

Definition 2.1. The points X = {x1, . . . , xN} ⊆ Rd with N ≥ Q = dimπm(Rd) are
called πm(Rd)-unisolvent if the zero polynomial is the only polynomial from πm(Rd)
that vanishes on all of them.

Theorem 2.2. Suppose that ϕ is conditionally positive definite of order m and X is
a πm−1(Rd)–unisolvent set of centers. Then the system (2.4) is uniquely solvable.

Proof. [62]. �

The numerical solution of the fuzzy fractional Bagley-Torvik equation by RBF
method is based on a scattered data interpolation problem which was reviewed in
this section.
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2.2. Basic concepts of fuzzy set theory.

Definition 2.3. A fuzzy number u is a fuzzy subset of the real line with a normal,
convex and upper semi-continuous membership function of bounded support. The
family of fuzzy numbers will be denoted by E. An arbitrary fuzzy number is rep-
resented by an ordered pair of functions [u(α), u(α)], 0 ≤ α ≤ 1, that satisfies the
following requirements:

• u(α) is a bounded left continuous nondecreasing function over [0, 1], with respect
to any α.

• u(α) is a bounded right continuous nonincreasing function over [0, 1], with re-
spect to any α.

• u(α) ≤ u(α), 0 ≤ α ≤ 1.

The α-level set

[u]α =

{
{x ∈ R : u(x) ≥ α}, 0 < α ≤ 1,
cl(supp u(x)), α = 0,

is a closed bounded interval, denoted [u]α = [uα, uα], where supp u(x) = {x ∈ R :
u(x) ≥ 0} is the support of the u(x) and cl(supp u(x)) is its clusure.

A crisp number u is simply represented by u = (u(α), u(α)), 0 ≤ α ≤ 1, we recall
that for a < b < c which a, b, c ∈ R, the triangular fuzzy number u = (a, b, c) deter-
mined by a, b, c is given such that u(α) = a + (b − a)α and u(α) = c − (c − b)α are
the end points of the α–level sets. For all α ∈ [0, 1] for arbitrary u = (u(α), u(α)),
v = (v(α), v(α)) and k > 0 we define addition u ⊕ v and scalar multiplication by
Kaleva [33].

• Addition:

u⊕ v = (u(α) + v(α), u(α) + v(α)).

• Scalar multiplication:

k ⊙ u =

{
(ku(α), ku(α)), k ≥ 0,
(ku(α), ku(α)), k < 0,

if k = −1 then k ⊙ u = −u.

Definition 2.4. For arbitrary numbers u = (u(α), u(α)) and v = (v(α), v(α)),

D(u, v) = max{ sup
0≤α≤1

|u(α)− v(α)|, sup
0≤α≤1

|u(α)− v(α)|},

is the distance between u and v.

Definition 2.5. Let u, v ∈ E. If there exists w ∈ E such that u = v + w, then w is
called the H-difference of u and v, and it is denoted by u⊖ v.

Definition 2.6. Let f : (a, b) −→ E and x0 ∈ (a, b). We say that f is strongly
generalized differentiable on x0, if there exists an element f ′(x0) ∈ E, such that
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(i) for all h > 0 sufficiently small, there exist f(x0+h)⊖f(x0), f(x0)⊖f(x0−h)
and the limits (in the metric D)

lim
h↘0

f(x0 + h)⊖ f(x0)

h
= lim

h↘0

f(x0)⊖ f(x0 − h)

h
= f ′(x0),

or

(ii) for all h > 0 sufficiently small, there exist f(x0)⊖f(x0+h), f(x0−h)⊖f(x0)
and the limits

lim
h↘0

f(x0)⊖ f(x0 + h)

−h
= lim

h↘0

f(x0 − h)⊖ f(x0)

−h
= f ′(x0),

(h and −h at denominators mean 1
h⊙ and − 1

h⊙, respectively).

Theorem 2.7. Let f(x) : [a,∞) −→ E be a fuzzy valued function demonstrated
by (fα(x), fα(x)). For any fixed α ∈ [0, 1], consider fα(x) and fα(x) are Riemann-
integrable on [a, b] for every b ≥ a, and assume there are two positive functions Mα(x)

and Mα(x) such that
∫ b

a
|fα(x)|dx ≤ Mα(x) and

∫ b

a
|fα(x)|dx ≤ Mα(x) for every

b ≥ a. Then, f(x) is improper fuzzy Riemann-integrable on [a,∞) and the improper
fuzzy Riemann-integral is a fuzzy number. Furthermore, we have[∫ ∞

a

|f(x)|dx
]α

=

[∫ ∞

a

fα(x)dx,

∫ ∞

a

fα(x)dx

]
.

Proof. [63]. �

3. Fuzzy Caputo-type fractional differentiability

The fuzzy fractional differentiability of order 1 < ν < 2, particularly Caputo type,
is investigated in this section. Some basic definitions and theorems are presented and
introduced the necessary notation, which will be used in the rest of paper. See, for
example, [3, 41, 54].

At first, some notations are presented which are put to use throughout the remain-
ing sections:

• LE[a, b] is the set of all fuzzy-valued measurable functions f on [a, b].
• CE[a, b] is the space of fuzzy-valued functions which are continuous on [a, b].
The next step is to describe the fuzzy Riemann-Liouville integral of fuzzy-valued

function as

Definition 3.1. Let f(x) ∈ CE[0, b]∩LE[0, b]. The fuzzy Riemann-Liouville integral
of the fuzzy valued function f(x) is described as follows:

J νf(x) =
1

Γ(ν)

∫ x

0

f(t)

(x− t)1−ν
dt, x, ν ∈ (0,∞),

where J ν is the Riemann-Liouville integral operator of order ν, and Γ(ν) is the famous
Gamma function.

Theorem 3.2. Let f(x) ∈ CE[0, b]∩LE[0, b] be a fuzzy valued function. The Riemann-
Liouville integral of the f(x), based on its α-level representation can be expressed as
follows:

[J νf(x)]
α
=

[
J νfα(x), J νfα(x)

]
, 0 ≤ α ≤ 1,
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where

J νfα(x) =
1

Γ(ν)

∫ x

0

fα(t)

(x− t)1−ν
dt, x, ν ∈ (0,∞),

J νfα(x) =
1

Γ(ν)

∫ x

0

fα(t)

(x− t)1−ν
dt, x, ν ∈ (0,∞),

Proof. The proof of the theorem can be found in [55]. �

Now, we define Caputos fuzzy differentiable of fuzzy-valued function as

Definition 3.3. Let f(x) ∈ CE[0, b] ∩ LE[0, b] be a fuzzy valued function. Then f is
said to be Caputo’s fuzzy differentiable at x when

Dνf(x) = J 2−νD2f(x) =
1

Γ(2− ν)

∫ x

0

f ′′(t)

(x− t)ν−1
dt,

where 1 < ν < 2.

Definition 3.4. Let f(x) ∈ CE[0, b] ∩ LE[0, b], Φ(x) =
1

Γ(2− ν)

∫ x

0

f(t)

(x− t)ν−1
dt,

G(x0) = limh↘0
Φ(x0 + h)⊖ Φ(x0)

h
= limh↘0

Φ(x0)⊖ Φ(x0 − h)

h
, and H(x0) =

limh↘0
Φ(x0)⊖ Φ(x0 + h)

−h
= limh↘0

Φ(x0 − h)⊖ Φ(x0)

−h
. f(x) is the Caputo-type

fuzzy fractional differentiable function of order 1 < ν < 2 at x0 ∈ (0, b), if there exists
an element Dνf(x) ∈ CE such that for all 0 ≤ α ≤ 1 and for h > 0 sufficiently near
zero, either.

(a) Dνf(x0) = limh↘0
G(x0 + h)⊖G(x0)

h
= limh↘0

G(x0)⊖G(x0 − h)

h
.

(b) Dνf(x0) = limh↘0
G(x0)⊖G(x0 + h)

−h
= limh↘0

G(x0 − h)⊖G(x0)

−h
.

(c) Dνf(x0) = limh↘0
H(x0 + h)⊖H(x0)

h
= limh↘0

H(x0)⊖H(x0 − h)

h
.

(d) Dνf(x0) = limh↘0
H(x0)⊖H(x0 + h)

−h
= limh↘0

H(x0 − h)⊖H(x0)

−h
.

In this paper, Definition 3.4(a, c) and 3.4(b, d) will be referred to as the Caputo-
type fuzzy differentiable of the first type (i) and the Caputo-type fuzzy differentiable
of the second type (ii), respectively.

Theorem 3.5. Let f(x) ∈ CE[0, b] ∩ LE[0, b] be a fuzzy valued function. [f(x)]
α
=[

fα(x), fα(x)
]
, 0 ≤ α ≤ 1 and x0 ∈ (0, b). Then

(a) If G(x) is a Caputo-type fuzzy fractional differentiable function in the first
type, then

[Dνf(x0)]
α
=

[
Dνfα(x0),D

νfα(x0)
]
, 1 < ν < 2.

(b) If G(x) is a Caputo-type fuzzy fractional differentiable function in the second
type, then

[Dνf(x0)]
α
=

[
Dνfα(x0),D

νfα(x0)
]
, 1 < ν < 2.
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(c) If H(x) is a Caputo-type fuzzy fractional differentiable function in the first
type, then

[Dνf(x0)]
α
=

[
Dνfα(x0),D

νfα(x0)
]
, 1 < ν < 2.

(d) If H(x) is a Caputo-type fuzzy fractional differentiable function in the second
type, then

[Dνf(x0)]
α
=

[
Dνfα(x0),D

νfα(x0)
]
, 1 < ν < 2.

where

Dνfα(x0) =

[
1

Γ(2− ν)

∫ x

0

fα′′(t)

(x− t)ν−1
dt

]
x=x0

,

Dνfα(x0) =

[
1

Γ(2− ν)

∫ x

0

fα
′′
(t)

(x− t)ν−1
dt

]
x=x0

.

Proof. It is easy to prove using Definition 3.4 and Theorem 3.2. �

4. Fuzzy fractional Bagley-Torvik equation

Torvik and Bagley [10] derived a fractional differential equation of degree 3/2 for
the description of the motion of an immersed plate in a Newtonian fluid [60]. The
motion of a rigid plate of mass m and area A connected by a mass less spring of
stiffness k, immersed in a Newtonian fluid, was originally introduced by Bagley and
Torvik. A rigid plate of massm immersed into an infinite Newtonian fluid as displayed
in the Figure 1 . The plate is held at a fixed point by means of a spring of stiffness k.
It is supposed that the motions of spring do not influence the motion of the fluid and
that the area A of the plate is very large, such that the stress-velocity relationship is
valid on both sides of the plate.

Let µ be the viscosity and ρ be the fluid density. The displacement of the plate u
is described by

Aũ′′(t)⊕BD3/2ũ(t)⊕ Cũ(t) = f̃(t), 0 ≤ t ≤ T, (4.1)

with the initial conditions

ũ(0) = b̃0, ũ′(0) = b̃1, (4.2)

where b̃0, b̃1 are the triangular fuzzy number and D3/2 is Caputo-type fractional
derivative.

If f̃(t) is a crisp function, then the solutions of Eq. (4.1) are crisp too. However,

if f̃(t) is a fuzzy function, these equations may only possess fuzzy solutions. In
this paper, the fuzzy fractional Bagley-Torvik equation is discussed. Introducing the

parametric forms of f̃(t) and ũ(t), we have the parametric form of the fuzzy fractional
Bagley-Torvik equation as follows[

f(t;α), f(t;α)
]
=[

Au′′(t;α) +BD3/2u(t;α) + Cu(t;α), Au′′(t;α) +BD3/2u(t;α) + Cu(t;α)
]

(4.3)
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Figure 1. Rigid plate of mass m immersed into a Newtonian fluid
[51, 60].

where 0 ≤ α ≤ 1, f̃(t) =
[
f(t;α), f(t;α)

]
is a predetermined data function, and

ũ(t) = [u(t;α), u(t;α)] is the solution that will be determined.

5. Application of collocation method to fuzzy fractional
Bagley-Torvik equation using RBFs

In this section, a meshfree method namely, the RBF collocation method is presented
to fuzzy fractional Bagley-Torvik equation. Consider the fuzzy fractional Bagley-
Torvik equation (4.3) with A = B = C = 1, and the initial conditions{

u(0;α) = b0(α), u′(0;α) = b1(α),

u(0;α) = b0(α), u′(0;α) = b1(α),
(5.1)

Buckly-Feuring method of solution is to fuzzify the crisp solution to obtain a fuzzy
function, and then check to see if it satisfies the differential equation with fuzzy
initial conditions. In this paper, we proposed the collocation method for solving
fuzzy fractional differential equation. This method is to seek approximate solutions
as 

uN (t;α) =
N∑
j=0

λj(α)φj(t),

uN (t;α) =

N∑
j=0

λj(α)φj(t),

(5.2)
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where ϕk(t) are radial basis function. Now, the aim is to compute the coefficients
λj(α) and λj(α) in (5.2) using collocation method.
Because we use thin plate spline radial basis functions, assuming that there are a
total of (N − 3) interpolation points, u(t;α) and u(t;α) can be approximated by

uN (t;α) ≃
N−3∑
j=1

λj(α)φj(t) +
(
λN−2(α)t

2
)
+
(
λN−1(α)t

)
+ λN (α),

uN (t;α) ≃
N−3∑
j=1

λj(α)φj(t) +
(
λN−2(α)t

2
)
+
(
λN−1(α)t

)
+ λN (α).

(5.3)

To determine the interpolation coefficients
(
λ1(α), λ2(α), . . . , λN−1(α), λN (α)

)
and(

λ1(α), λ2(α), . . . , λN−1(α), λN (α)
)
, the collocation method is used by applying Eq.

(5.3) at every point ti, i = 1, 2, . . . , N − 3. Thus, we have
uN (ti;α) ≃

N−3∑
j=1

λj(α)φj(ti) +
(
λN−2(α)t

2
i

)
+

(
λN−1(α)ti

)
+ λN (α),

uN (ti;α) ≃
N−3∑
j=1

λj(α)φj(ti) +
(
λN−2(α)t

2
i

)
+

(
λN−1(α)ti

)
+ λN (α).

(5.4)

The additional conditions due to Eq. (2.3) are written as

N−3∑
j=1

λj(α)t
2
j =

N−3∑
j=1

λj(α)tj =

N−3∑
j=1

λj(α) = 0,

N−3∑
j=1

λj(α)t
2
j =

N−3∑
j=1

λj(α)tj =
N−3∑
j=1

λj(α) = 0.

(5.5)

Writing Eq. (5.4) together with Eq. (5.5) in a matrix form, we have{
[U ] = A [Λ] ,[
U
]
= A

[
Λ
]
,

(5.6)

where [U ] =
[
u1(α) · · · uN−3(α) 0 0 0

]T
, [Λ] = [λ1(α) · · · λN (α)]

T
,
[
U
]
= [u1(α) · · ·

uN−3(α) 0 0 0]T ,
[
Λ
]
=

[
λ1(α) · · · λN (α)

]T
, and A is given by

A =



φ11 · · · φ1(N−3) t21 t1 1
...

. . .
...

...
...

...
φ(N−3)1 · · · φ(N−3)(N−3) t2N−3 tN−3 1

x2
1 · · · x2

N−3 0 0 0
x1 · · · xN−3 0 0 0
1 · · · 1 0 0 0


N×N

. (5.7)

Now, substituting approximation (5.4) in Eq. (4.1) for all points except the initial
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point ti, i = 2, 3, . . . , N − 3, and the initial conditions (4.2). we get the following
systems of linear equation in a matrix form{

B [Λ] = [F ] ,

B
[
Λ
]
=

[
F
]
,

(5.8)

where

B = ∇2Ad +D3/2Ad +Ad +Ab +∇Ab +Ae,

A = Ad +Ab +Ae, where

Ad = [aij , for (2 ≤ i ≤ N − 3, 1 ≤ j ≤ N) and 0, elsewhere] ,

Ab = [aij , for (i = 1, 1 ≤ j ≤ N) and 0, elsewhere] ,

Ae = [aij , for (N − 2 ≤ i ≤ N, 1 ≤ j ≤ N) and 0, elsewhere] ,

[F ] =
[
b0(α) + b1(α), f(t2;α), . . . , f(tN−3;α), 0, 0, 0

]T
,[

F
]
=

[
b0(α) + b1(α), f(t2;α), . . . , f(tN−3;α), 0, 0, 0

]T
.

(5.9)

The parameters λ1(α) · · · λN (α) and λ1(α) · · · λN (α) are obtained by solving the
systems of linear equation (5.8). These parameters yield the fuzzy approximate solu-
tion [u(t;α), u(t;α)].

Remark 5.1. Finding a closed form analytic expression for the fractional derivative
of a radial basis function can be challenging. We are often bound to having to rep-
resent functions as Taylor series expansions before applying the fractional derivative
operator term by term. Here we derive these series expansions for the Caputo frac-
tional derivative of the thin plate spline and Matérn radial function and truncate the
infinite sum once the terms are smaller in magnitude than machine precision.

It should also be noted that we can applied the boundary conditions instead of the
initial conditions. We will use this condition in example 3 in section 7. Also, we use
Matérn radial functions instead of the thin plate spline radial function. In this case,
we use Eqs. (5.2) instead of Eqs. (5.3), and also additional conditions (5.5) don’t
need anymore.
When we use the Matérn radial functions, we have to choose an optimal shape pa-
rameter.

6. Choosing the shape parameter and the variable shape parameter
(VSP) strategy

Meshless methods which are based on radial basis functions (RBFs) contain a free
shape parameter that plays an important role for the accuracy and condition number
of the coefficient matrix of the method. Most authors use the trial and error method
for obtaining a good shape parameter that results in best accuracy. The simplest
strategy that is named trial and error, is to perform Matlab program with varying
shape parameters and then to pick the best one that has the least error. Relating to
choosing a good shape parameter several excellent articles have also been written by
different authors such as in [21].
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In this section, we express the variable shape parameter strategy. The VSP strategy
considers a different value of the shape parameter at each center. Applying the VSP
strategy the coefficient matrix of the linear system of algebra equations will be non-
symmetric. In the following using some VSP strategies based on ideas presented in
[57].

1) Exponentially strategy
Kansa introduced the VPS to the following form:

ϵj =

ϵ2min

(
ϵ2max

ϵ2min

) j − 1

N − 1


1
2

, j = 1, 2, . . . , N.

The above VSP strategy was introduced for radial basis function MQ.
2) Linearly strategy

Other possible procedure is as follows:

ϵj = ϵmin +

(
ϵmax − ϵmin

N − 1

)
j, j = 0, 1, 2, . . . , N − 1.

This procedure is introduced in [57] and is named a linearly variable shape
parameter.

3) Randomly strategy
Another VSP strategy that named a randomly variable shape parameter is
[57]

ϵj = ϵmin + (ϵmax − ϵmin)× rand(1, N), j = 0, 1, 2, . . . , N − 1.

In which ϵmin < ϵmax are arbitrary non-negative real numbers. The function rand is
a Matlab command that returns N uniformly distributed pseudo-random numbers
on the unit interval.
We will apply randomly variable shape parameter for our examples in next section,
because most researchers believe that randomly strategy is the best.

7. Numerical Results

The aim of this section is to demonstrate the RBF method described earlier for
the solution of the fuzzy fractional Bagley-Torvik equation under the Caputo-type
fuzzy fractional derivatives. For this purpose, we use three examples to illustrate the
performance of this method. The first and second examples are the fuzzy fractional
Bagley-Torvik equations with the non-homogeneous and homogeneous initial condi-
tions, respectively, and third example is the fuzzy fractional Bagley-Torvik equation
with the homogeneous boundary conditions. All these results illustrated in some ta-
bles and figures have been carried out in Matlab on a laptop with a 2.6 GHz Intel
Core i5 processor. Two types of norms are used to measure the error of approximation.
The L∞ and the RMS are described below:

L∞ = max |u (Xi)− ũ (Xi)| ,
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Table 2. Max and RMS errors, CPU Time, and condition number (CN)
for lower and upper solutions on t ∈ [0, 10] using TPS with N = 5 in
example 7.1.

Errors for u(t;α) Errors for u(t;α)

α CPU(s) CN RMS Max Error RMS Max Error

0.0 0.01 4.68× 10+08 6.98× 10−14 1.69× 10−13 1.39× 10−13 3.37× 10−13

0.1 0.01 4.68× 10+08 4.93× 10−14 1.26× 10−13 1.25× 10−13 3.02× 10−13

0.2 0.01 4.68× 10+08 6.61× 10−14 1.12× 10−13 1.16× 10−13 1.76× 10−13

0.3 0.01 4.68× 10+08 5.68× 10−14 1.48× 10−13 1.40× 10−13 3.66× 10−13

0.4 0.01 4.68× 10+08 2.75× 10−14 4.62× 10−14 1.34× 10−13 2.18× 10−13

0.5 0.01 4.68× 10+08 2.27× 10−14 5.06× 10−14 1.15× 10−13 1.65× 10−13

0.6 0.01 4.68× 10+08 1.28× 10−14 1.95× 10−14 8.52× 10−14 1.28× 10−13

0.7 0.01 4.68× 10+08 2.46× 10−15 3.69× 10−15 1.26× 10−13 1.99× 10−13

0.8 0.01 4.68× 10+08 2.21× 10−14 3.13× 10−14 9.88× 10−14 1.37× 10−13

0.9 0.01 4.68× 10+08 3.23× 10−14 4.62× 10−14 9.09× 10−14 2.71× 10−13

1.0 0.01 4.68× 10+08 6.98× 10−14 1.69× 10−13 6.98× 10−14 1.69× 10−13

RMS =

√√√√ 1

N

N∑
i=1

|u (Xi)− ũ (Xi)|2,

where u (x) is the exact solution, ũ (x) is the approximate solution and N is the total
number of evaluation points. A uniform distribution containing (0 : 0.01 : T ) nodes
in the domain is used to evaluate the L∞ and the RMS error norms in all examples.
We use two thin plate spline (TPS) and Matérn (M6) basis functions in all examples.
Also, the stability is studied by evaluating the condition number (CN) obtained by
using the Matlab command cond.

Example 7.1. Consider the fuzzy fractional Bagley-Torvik equation (4.1) with A =
B = C = 1 and{

f(t;α) =
(
α3 + α− 1

)
(t+ 1) ,

f(t;α) =
(
2− α2

)
(t+ 1) .

The initial condition is given by{
u(0;α) = u′(0;α) =

(
α3 + α− 1

)
,

u(0;α) = u′(0;α) =
(
2− α2

)
,

and the exact solution [17] is{
u(t;α) =

(
α3 + α− 1

)
(t+ 1) ,

u(t;α) =
(
2− α2

)
(t+ 1) .
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Table 3. Max and RMS errors, CPU Time, and condition number (CN)
for lower and upper solutions on t ∈ [0, 10] using M6 with randomly vari-
able shape parameter (ϵmin = 0.00001, ϵmax = 0.0001) and N = 5 in
example 7.1.

Errors for u(t;α) Errors for u(t;α)

α CPU(s) CN RMS Max Error RMS Max Error

0.0 0.02 2.77× 10+17 6.00× 10−08 1.95× 10−07 1.20× 10−07 3.90× 10−07

0.1 0.02 1.81× 10+17 3.50× 10−08 1.19× 10−07 4.96× 10−07 7.64× 10−07

0.2 0.02 1.37× 10+17 7.79× 10−08 1.46× 10−07 1.15× 10−07 2.64× 10−07

0.3 0.02 2.04× 10+17 4.40× 10−08 1.01× 10−07 1.54× 10−07 3.18× 10−07

0.4 0.02 1.20× 10+17 8.67× 10−08 1.45× 10−07 2.08× 10−07 3.64× 10−07

0.5 0.02 3.45× 10+17 3.12× 10−08 8.00× 10−08 1.03× 10−07 2.25× 10−07

0.6 0.02 4.32× 10+17 1.34× 10−08 3.35× 10−08 9.23× 10−08 2.90× 10−07

0.7 0.02 1.25× 10+17 5.41× 10−09 9.05× 10−09 9.82× 10−08 3.18× 10−07

0.8 0.02 2.59× 10+17 3.18× 10−08 5.74× 10−08 1.48× 10−07 2.48× 10−07

0.9 0.02 3.42× 10+17 9.71× 10−08 1.79× 10−07 9.45× 10−08 2.00× 10−07

1.0 0.02 1.13× 10+18 1.01× 10−07 1.86× 10−07 1.01× 10−07 1.86× 10−07

Table 4. Max and RMS errors, CPU Time, and condition number (CN)
for lower and upper solutions on t ∈ [0, 10] using TPS with N = 5 in
example 7.2.

Errors for u(t;α) Errors for u(t;α)

α CPU(s) CN RMS Max Error RMS Max Error

0.0 0.02 4.68× 10+08 0.00× 10+00 0.00× 10+00 5.49× 10−13 1.53× 10−12

0.1 0.02 4.68× 10+08 3.21× 10−14 1.03× 10−13 7.80× 10−13 1.96× 10−12

0.2 0.02 4.68× 10+08 6.43× 10−14 2.06× 10−13 6.64× 10−13 1.14× 10−12

0.3 0.02 4.68× 10+08 1.13× 10−13 3.23× 10−13 1.26× 10−12 3.47× 10−12

0.4 0.02 4.68× 10+08 1.28× 10−13 4.12× 10−13 5.14× 10−13 1.65× 10−12

0.5 0.02 4.68× 10+08 1.37× 10−13 3.84× 10−13 5.03× 10−13 7.10× 10−13

0.6 0.02 4.68× 10+08 2.26× 10−13 6.47× 10−13 3.36× 10−13 1.25× 10−12

0.7 0.02 4.68× 10+08 1.68× 10−13 6.25× 10−13 6.83× 10−13 2.44× 10−12

0.8 0.02 4.68× 10+08 2.57× 10−13 8.24× 10−13 4.53× 10−13 1.29× 10−12

0.9 0.02 4.68× 10+08 3.23× 10−13 5.68× 10−13 2.60× 10−13 9.52× 10−13

1.0 0.02 4.68× 10+08 2.75× 10−13 7.67× 10−13 2.75× 10−13 7.67× 10−13
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Table 5. Max and RMS errors, CPU Time, and condition number (CN)
for lower and upper solutions on t ∈ [0, 10] using M6 with randomly vari-
able shape parameter (ϵmin = 0.001, ϵmax = 0.01) and N = 5 in example
7.2.

Errors for u(t;α) Errors for u(t;α)

α CPU(s) CN RMS Max Error RMS Max Error

0.0 0.02 7.16× 10+13 0.00× 10−00 0.00× 10−00 2.08× 10−03 2.09× 10−03

0.1 0.02 4.92× 10+13 6.92× 10−04 6.93× 10−04 3.60× 10−02 3.61× 10−02

0.2 0.02 1.61× 10+14 1.75× 10−03 1.75× 10−03 3.01× 10−03 3.06× 10−03

0.3 0.02 4.73× 10+13 1.51× 10−02 1.51× 10−02 2.38× 10−02 2.38× 10−02

0.4 0.02 3.68× 10+14 3.57× 10−03 3.57× 10−03 1.43× 10−02 1.43× 10−02

0.5 0.02 2.12× 10+15 1.39× 10−04 1.39× 10−04 2.33× 10−04 2.33× 10−04

0.6 0.02 1.03× 10+13 2.02× 10−03 2.02× 10−03 9.11× 10−03 9.13× 10−03

0.7 0.02 3.76× 10+14 5.11× 10−02 5.11× 10−02 3.46× 10−03 3.57× 10−03

0.8 0.02 7.40× 10+15 2.63× 10−05 2.68× 10−05 2.11× 10−04 2.12× 10−04

0.9 0.02 1.83× 10+14 5.12× 10−03 5.12× 10−03 1.48× 10−03 1.48× 10−03

1.0 0.02 1.87× 10+15 1.59× 10−06 3.73× 10−06 1.59× 10−06 3.73× 10−06

Table 6. Max and RMS errors, CPU Time, and condition number (CN)
for lower and upper solutions on t ∈ [0, 1] using TPS with N = 5 in

example 7.3.

Errors for u(t;α) Errors for u(t;α)

α CPU(s) CN RMS Max Error RMS Max Error

0.0 0.01 2.06× 10+03 0.00× 10+00 0.00× 10+00 3.50× 10−15 6.34× 10−15

0.1 0.01 2.06× 10+03 1.75× 10−16 2.97× 10−16 2.71× 10−15 4.25× 10−15

0.2 0.01 2.06× 10+03 3.49× 10−16 5.93× 10−16 3.44× 10−15 6.04× 10−15

0.3 0.01 2.06× 10+03 6.06× 10−16 1.06× 10−15 2.72× 10−15 4.84× 10−15

0.4 0.01 2.06× 10+03 6.98× 10−16 1.19× 10−16 2.79× 10−15 4.75× 10−15

0.5 0.01 2.06× 10+03 8.75× 10−16 1.58× 10−15 2.35× 10−15 4.09× 10−15

0.6 0.01 2.06× 10+03 1.21× 10−15 2.13× 10−15 2.46× 10−15 3.83× 10−15

0.7 0.01 2.06× 10+03 1.23× 10−15 1.91× 10−15 2.84× 10−15 5.29× 10−15

0.8 0.01 2.06× 10+03 1.40× 10−15 2.37× 10−15 2.42× 10−15 4.25× 10−15

0.9 0.01 2.06× 10+03 1.72× 10−15 3.02× 10−15 2.43× 10−15 4.21× 10−15

1.0 0.01 2.06× 10+03 1.75× 10−15 3.17× 10−15 1.75× 10−15 3.17× 10−15
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Table 7. Max and RMS errors, CPU Time, and condition number (CN)
for lower and upper solutions on t ∈ [0, 1] using M6 with randomly variable
shape parameter (ϵmin = 0.001, ϵmax = 0.01) and N = 5 in example 7.3.

Errors for u(t;α) Errors for u(t;α)

α CPU(s) CN RMS Max Error RMS Max Error

0.0 0.02 9.57× 10+16 0.00× 10+00 0.00× 10+00 5.46× 10−05 5.46× 10−05

0.1 0.02 7.99× 10+16 1.75× 10−06 1.75× 10−06 4.83× 10−05 4.83× 10−05

0.2 0.02 1.34× 10+17 8.04× 10−06 8.04× 10−06 5.89× 10−05 5.89× 10−05

0.3 0.02 8.06× 10+16 3.53× 10−06 3.53× 10−06 2.56× 10−05 2.56× 10−05

0.4 0.02 1.89× 10+17 1.08× 10−05 1.08× 10−05 4.33× 10−05 4.33× 10−05

0.5 0.02 9.47× 10+16 5.29× 10−05 5.29× 10−05 1.25× 10−04 1.25× 10−04

0.6 0.02 1.02× 10+17 1.02× 10−05 1.02× 10−05 5.00× 10−05 5.00× 10−05

0.7 0.02 8.35× 10+16 3.45× 10−05 3.45× 10−05 6.77× 10−05 6.77× 10−05

0.8 0.02 7.71× 10+16 4.26× 10−05 4.26× 10−05 2.53× 10−04 2.53× 10−04

0.9 0.02 1.04× 10+17 9.19× 10−06 9.19× 10−06 2.14× 10−05 2.14× 10−05

1.0 0.02 6.84× 10+16 6.37× 10−05 6.37× 10−05 6.37× 10−05 6.37× 10−05

Figure 2. The approximate solution for example 7.1 on t ∈ [0, 10]
using TPS (N = 5)
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Figure 3. The analytical solution for example 7.1 on t ∈ [0, 10]
using TPS (N = 5)

Figure 4. The absolute error of lower solution for example 7.1 on
t ∈ [0, 10] using TPS (N = 5)
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Figure 5. The absolute error of upper solution for example 7.1 on
t ∈ [0, 10] using TPS (N = 5)

RMS and Maximum errors (accuracy), CPU time (efficiency), and condition num-
ber (stability) of our method are reported in Tables 2 and 3 for lower and upper
solutions using TPS and M6 basis functions, respectively. Figures 2 and 3 show the
profiles of the approximate solution (with 5 collocation points) and the analytical
solution using TPS basis function on t ∈ [0, 10], respectively. From these tables and
figures, it is clearly seen that the RBF collocation approximation and the analyt-
ical solution are in good agreement. Figures 4 and 5 represent the absolute error
graphs of the lower and upper solutions for our scheme using TPS basis function,
respectively. Also, we report the profiles of the exact solution, the approximate so-
lution, and error of lower and upper solutions, in Figure 6, using M6 basis function
with α = 0.5. In this figure, we use the randomly variable shape parameter with
ϵmin = 0.00001 and ϵmax = 0.0001. From this study we can note a quite uniform
behavior: on the one hand, efficiency (CPU time) of the two basis functions (TPS vs
M6) is almost similar, with usually a slight advantage for the TPS basis function, but
on the other hand we observe a significant reduction of accuracy and stability for the
M6 function compared to the TPS one.

Example 7.2. In this example, consider the fuzzy fractional Bagley-Torvik equation
(4.1) with A = B = C = 1 and

f(t;α) = 2α+ αt2 +
4α√
π

√
t,

f(t;α) = 2 (2− α) + (2− α) t2 +
4 (2− α)√

π

√
t.
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Figure 6. The analytical solution, approximate solution, and error
of lower and upper solutions for example 7.1 on t ∈ [0, 10] using M6
with α = 0.5 (N = 5)
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The initial condition is given by{
u(0;α) = u′(0;α) = (α− 1) ,

u(0;α) = u′(0;α) = (1− α) ,

and the exact solution [14] is{
u(t;α) = αt2,

u(t;α) = (2− α) t2.

In Tables 4 and 5, L∞ and RMS error norms, CPU time, and condition number of
coefficient matrix using TPS and M6 basis functions are given, respectively. Figures
7 and 8, with α = 0.1 and α = 0.9, show the profiles of the exact solution, the
approximate solution, and error of lower and upper solutions for our method using
TPS function, respectively. Also, we report the profiles of the exact solution, the
approximate solution, and error of lower and upper solutions, in Figure 9, using M6
basis function with α = 0.5. In this figure, we use the randomly variable shape
parameter with ϵmin = 0.001 and ϵmax = 0.01. From these tables and figures, it is



CMDE Vol. 6, No. 2, 2018, pp. 186-214 207

Figure 7. The analytical solution, approximate solution, and error
of lower and upper solutions for example 7.2 on t ∈ [0, 10] using TPS
with α = 0.1 (N = 5)
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clearly seen that the RBF collocation approximation and the analytical solution are
in good agreement.

Example 7.3. In this example, consider the fuzzy fractional Bagley-Torvik equation
(4.1) with A = 0, B = C = 1, and

f(t;α) = αt2 − αt+
4α√
π

√
t,

f(t;α) = (2− α) t2 − (2− α) t+
4 (2− α)√

π

√
t.

The boundary conditions is given by{
u(0;α) = u(1;α) = (α− 1) ,

u(0;α) = u(1;α) = (1− α) ,

and the exact solution [40] is{
u(t;α) = αt2 − αt,

u(t;α) = (2− α) t2 − (2− α) t.
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Figure 8. The analytical solution, approximate solution, and error
of lower and upper solutions for example 7.2 on t ∈ [0, 10] using TPS
with α = 0.9 (N = 5)
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In Tables 6 and 7, L∞ and RMS error norms, CPU time, and condition number of
coefficient matrix using TPS and M6 basis functions are given, respectively. Figures 10
and 11, with α = 0.5, show the profiles of the exact solution, the approximate solution,
and error of lower and upper solutions for our method using TPS and M6 basis
functions, respectively. In Figure 11, we use the randomly variable shape parameter
with ϵmin = 0.001 and ϵmax = 0.01. From these results, we can deduce considerations
similar to those explained at two previous examples.

8. Conclusions

In this paper, we proposed the spectral collocation method based on radial basis
functions to solve the fractional Bagley-Torvik equation under uncertainty, in the
fuzzy Caputo’s H-differentiability sense with order (1 < ν < 2). We defined the fuzzy
Caputo’s H-differentiability sense with order (1 < ν < 2) which is a direct exten-
sion of Caputo derivatives with respect to Hukuhara difference, and then, employed
the collocation RBF method for upper and lower solutions. The main advantage of
this approach is that the fuzzy fractional Bagley-Torvik equation was reduced to the
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Figure 9. The analytical solution, approximate solution, and error
of lower and upper solutions for example 7.2 on t ∈ [0, 10] using M6
with α = 0.5 (N = 5)
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problem of solving two systems of linear equations. In many meshfree methods, ra-
dial basis functions with shape parameter have been used. Determining a good shape
parameter is still an outstanding research topic. To eliminate the effects of the ra-
dial basis function shape parameters, we used thin plate spline radial basis functions
which have no shape parameters in our scheme. Also, we used Matérn radial function
instead of the thin plate spline radial function. In this case, we applied randomly
variable shape parameter for our examples. The numerical investigation presented
in this paper shows that excellent accuracy can be obtained even when few nodes
are used in analysis. In contrast, many more nodes are needed to achieve relatively
good accuracy in other methods. Numerical examples are included to demonstrate
the validity and applicability of the technique, and are performed on a computer us-
ing a code written in Matlab. Illustrative examples with the satisfactory results are
used to demonstrate the application of this method. It is seen from the numerical
examples that this method is very attractive and contributed to the excellent agree-
ment between approximate and exact values in the numerical example. The method
can be implemented for solving partial and ordinary differential equations in higher
dimensions.
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Figure 10. The analytical solution, approximate solution, and error
of lower and upper solutions for example 7.3 on t ∈ [0, 1] using TPS
with α = 0.5 (N = 5)
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Figure 11. The analytical solution, approximate solution, and error
of lower and upper solutions for example 7.3 on t ∈ [0, 1] using M6
with α = 0.5 (N = 5)
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