Extraction of the Optimal Range of Roll Forming Process Parameters Via Minimizing of the Longitudinal Strain and Spring Back Using Contour Plots

V. Alimirzaloo
Department of Mechanical Engineering, Urmia University, Urmia, Iran

M. R. E. Khorosroshahi
Department of Mechanical Engineering, Urmia University, Urmia, Iran

V. Modanloo
Young Researchers and Elite Club, Islamic Azad University, Urmia, Iran

Abstract
In this study, U section cold roll forming process has been analyzed by finite element (FE) method and the effect of the process parameters on the longitudinal strain and spring back has been investigated using response surface methodology (RSM). Then optimized range of the parameters have been determined using the contour plots. The FE model has been verified using the experimental results. Required experiments have been designed using central composite design. In this design roll diameter, linear velocity of the blank and distance and number of stands are considered as input variables and spring back and maximum plastic longitudinal strain are considered as response functions. Results show that the RSM models the effect of input parameters on the response functions with acceptable precision. According to obtained model, increasing distance and roll diameters cause to decrease of the spring back or increase the angular precision and increasing of the linear velocity of the sheet leads to increasing the spring back. Increasing stands distance and roll diameter, lead to decreasing the average plastic longitudinal strain and increasing the linear velocity the sheet leads to increasing the average plastic longitudinal strain. Also optimization results represent decreasing of the spring back and maximum plastic longitudinal strain.

Keywords: Optimization of the cold roll forming, Simulation, Design of experiment, Response surface, Contour plots.
نشاندهی شکل‌هایی در زمینه فرآیند شکل‌دهی غلظتی

سرد به سو صورت تجربی حل‌شده و عدید انجام شده است. با این حال، و
همکارانش [2] کرنش طولی پوسته‌ای را در فرآیند شکل‌دهی غلظتی
برای زمانی که از یک یا چند استفاده غلظتی استفاده می‌شود، بررسی
کردهند. نتایج برسی‌های آنها به این صورت پیدا که مقدار اوج کرنش به
مقدار پایین‌تری که روی است و افزایش زاویه بیشتر قبلاً، به
صورت خطی باعث افزایش شکل‌دهی غلظتی می‌شود. آنها در بررسی‌های
خود به ماده‌هایی بازنده که مقدار طول زمان به تنها شکل‌دهی می‌شود.

یک دسته از فناوری‌های نهایی این که از اندازه‌گیری فنی مقیاس‌های کرنش، مطالعه این عضو بر روی
شیب‌های فرآیند شکل‌دهی غلظتی استفاده از روش‌های محدود به روی
استفاده از برای طراحی سطح غلظتی محدود یک مدل سطح‌دهی غلظتی سرد متمرکز.
کرنش طولی پیش‌بینی شده و با نتایج تجربی باره سه نقطه از فنی
مقایسه شد و برای پیش‌بینی این به تغییر شکل‌دهی غلظت
همکارانش [3] تغییر شکل‌دهی غلظتی توسط شکل‌دهی غلظتی
استفاده از این‌ها برای طراحی یکی از امکان‌ها مانند مشخص و
محدود کردن و باعث افزایش شکل‌دهی غلظتی می‌شود.

در این بخش مشخصات قطعه کار و چگونگی مدل‌سازی فرآیند به
روش اجرا محدود ارائه شده است.

۲- مشخصات هندسی و مکانیکی قطعه کار

ورق استفاده شده در این فرآیند زمینه است. فولاد S37
کالانیزه با ضخامت یک بیلی‌متر می‌باشد که مشخصات این ماده
با استفاده از SST کشیده آماده شده است. همچنین نمودار تنظیم
حقیقی و ورود مکانیکی آن بر طبق جدول ۲ مشخص شده است. مدل مکانیکی ماشه در صورت استیگ-کرنش به
در نظر گرفته شده است. همچنین شکل ۳ ابزار با کنترل نیای
در می‌دهد.

جدول ۱- مشخصات مکانیکی ورق فولاد

<table>
<thead>
<tr>
<th>فشار</th>
<th>منحنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>(MPa) نشان نیمی</td>
</tr>
<tr>
<td>170</td>
<td>(GPa) نمونه استیل</td>
</tr>
<tr>
<td>83820</td>
<td>(kg/m³) چکالی</td>
</tr>
<tr>
<td>0.165</td>
<td>ترمپالسون</td>
</tr>
</tbody>
</table>

کرنش پایین
شکل ۲- تشکرحقیقی
برای تحلیل فرآیند طراحی فرآیند، فرآیند محسوب تویلی تویلی، طراحی شده است. در این فرآیند، مقدار شکل ۴ قطع غلبه بالایی دو برابر قطع غلبه پایینی می‌باشد. در هر مرحله، فلک پایینی شکل به درجه اصلی وری می‌باشد که به ادامه شکل قطعه خروجی است. عرض ناحیه کف وری به اندازه کف محسوب تولیدی می‌باشد. طول بالایی باید به اندازه میان‌گاری که وری از فلک خارج شود. شبیه‌سازی های این

پژوهش به وسیله نرم‌افزار اجرا شده است. از اینجا که قطعه به صورت متقارن می‌باشد، به منظور کاهش زمان تحلیل، نیمی از قطعه شبیه‌سازی شده است. وری به صورت یک روبه رفته مستطیلی شکل یی. نیز مدل شده است. تحلیل سالنگ با استفاده از حل‌گر مکانیکی اجرا شده است. برای تعیین تنش بین فلک‌ها با وری از الگوریتم زوج‌سازی استفاده شده است. برای اعمال قیدهای تعیین‌رسانی و نیز انرژی‌بندی لغزشی محدود

انجام شده است. شبیه‌سازی این فرآیند در رفتار از جهت ماسی در نظر گرفته شده است. برای تعداد کمکه سطح بر هم در جهت عمودی نام‌سنج و در خود ماسی قو با فلک‌های ایستاک یا، رفتار ویک اصطکاک در نظر گرفته شده است. شبیه‌سازی ایستاکه وری ایستاکه سفر کل آرا در آغاز کم‌ایستاک و فقط ویک‌های ایستاکه وری ایستاکه

در نظر گرفته شده است. برای نهایی کش سطح بر هم در جهت

دبین دسترسی آزمایش تجربی از نتایج موجود استفاده شده است. بدین منظور: از ایستاک‌های پانزده و سی‌سی (۲) که نتایج تجربی آن در دسترس می‌باشد استفاده شده، این در کارگاه تجربی خود با ایستاک آزمایش‌هایی به

نام مطالعه و در درجه شکل‌دهی محل مختلف و برای ایستاک

زاویه‌پوسته در استفاده اول بر روی کرسی طولی ناحیه بالا و کف در فرآیند، با تحلیل اجزا محدود فرآیند، گرندش طولی در طی فرآیند با وری رابطه و ۵۰ درجه، در فاصله ۱۱۵ میلی‌متر از لبه بال با تناوب ناحیه کف وری در ایستاکه ایستاکه و ناحیه بالا و ورزیده شده است. با تناوب قابل قبولی

مطالعه شکل ۴ مقایسه شده، مشاهده می‌شود که وری محدودیت

برای شبیه‌سازی بدنه نشان داده شده است.
جدول ۲ - محدوده عوامل ورودی

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>فاصله ایجاد (mm)</th>
<th>سرعت جریان (mm/s)</th>
<th>وزن (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>۵</td>
<td>۲۰۰</td>
<td>۹۵</td>
</tr>
<tr>
<td>۷</td>
<td>۳۰۰</td>
<td>۱۴۰</td>
<td>۱۰۵</td>
</tr>
<tr>
<td>۹</td>
<td>۳۵۰</td>
<td>۱۲۰</td>
<td>۱۱۵</td>
</tr>
<tr>
<td>۱۱</td>
<td>۵۰۰</td>
<td>۱۱۰</td>
<td>۱۲۵</td>
</tr>
<tr>
<td>۱۳</td>
<td>۵۵۰</td>
<td>۱۰۰</td>
<td>۱۳۵</td>
</tr>
</tbody>
</table>

جدول ۳ - طرح آزمایش‌ها و مقادیر خروجی

<table>
<thead>
<tr>
<th>کرنش</th>
<th>نقطه</th>
<th>ولتاژ (V)</th>
<th>قدرت</th>
<th>انرژی</th>
<th>نرخ (W)</th>
<th>دمای (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۴۴۹</td>
<td>۹۶۸۵</td>
<td>۴۰۰</td>
<td>۸۵</td>
<td>۹۵</td>
<td>۴۰۰</td>
<td>۹۵</td>
</tr>
<tr>
<td>۲۱۱۰</td>
<td>۹۷۳۲</td>
<td>۴۰۰</td>
<td>۹۵</td>
<td>۹۵</td>
<td>۴۰۰</td>
<td>۹۵</td>
</tr>
<tr>
<td>۱۸۱۸</td>
<td>۹۶۷۷</td>
<td>۴۰۰</td>
<td>۹۵</td>
<td>۹۵</td>
<td>۴۰۰</td>
<td>۹۵</td>
</tr>
<tr>
<td>۱۸۱۰</td>
<td>۹۶۱۸</td>
<td>۴۰۰</td>
<td>۹۵</td>
<td>۹۵</td>
<td>۴۰۰</td>
<td>۹۵</td>
</tr>
<tr>
<td>۱۴۹۹</td>
<td>۹۸۸۹</td>
<td>۴۰۰</td>
<td>۹۵</td>
<td>۹۵</td>
<td>۴۰۰</td>
<td>۹۵</td>
</tr>
</tbody>
</table>

۳- طراحی و اجرای آزمایش‌ها

برای انجام آزمایش‌های کامل به منظور بهترین نتایج مناسب یافتن، باید تعداد زیادی آزمایش را انجام داد. اگر برای کاهش تعداد آزمایش‌ها فقط چند نقطه از هر مقطع ورودی بررسی شود، تعداد آزمایش‌ها با افزایش تعداد منطبق‌های به طور نمایی افزایش خواهد یافت که این این تعداد آزمایش نیز موجب نیست. از این رو یکی از اهداف اصلی روش طراحی آزمایش، انتخاب بهترین حالت‌های ممکن بودن آزمایش‌ها به مطابق شکل ممکن بررسی نمود (۱۱۱). معمولاً از مدل‌های قرون در مدل‌سازی به روش طراحی آزمایش‌ها استفاده می‌شود. طراحی پیشرفت و دوره انجام کمی می‌توان ۱۱۱ این برای بررسی مدل نظر به آن می‌باشد. طراحی منطبق‌های طراحی برای هر پارتیم، مطلق جدول ۲ در نظر گرفته شده‌اند. برای (۱۱۱] استفاده شده است. در طراحی آزمایش از نرم‌افزار Mini Tab این برای رفت فلش‌های بالا و نزدیک فلش‌های بالا است و منطبق از نقطه اول تا طراحی آزمایش، فلش‌های بالا استفاده شده‌اند. مقادیر عاملی محدوده منطبق‌های ورودی برای اندازه‌گیری محدود و آزمایش‌های عملی تعیین شده است. با اگر روش طرح مکانیکی طرح آزمایش‌ها با ۳۱ آزمایش‌های بصورت جدول ۲ می‌باشد.
دست می‌ایست. سپس کرنش طولی پلاستیکی دیده می‌شود. برای هر یک از آزمایش‌ها، نتایج ویژگی‌های گرفتن و کرنش طولی پلاستیکی دیده می‌شود. مطمئن بود گرفتن در خروج شکل ۷. برای پیامد محصول نهایی بعد از خروج ۴۰۰۰ نگاهی به تغییرات مورفولوژیک این ارتباط بر جویده می‌شد. نتایج ویژگی‌های گرفتن و کرنش طولی پلاستیکی دیده می‌شود. مطمئن بود گرفتن در خروج

جدول ۴- نتایج غلظات الکتریکی تغییرات میدان

<table>
<thead>
<tr>
<th>شماره دروازه</th>
<th>تغییرات غلظت</th>
<th>شایعات</th>
<th>یک</th>
<th>دو</th>
<th>سه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۸</td>
<td>۱۸</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۶</td>
<td>۱۸</td>
<td>۲</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۴</td>
<td>۱۸</td>
<td>۳</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷۲</td>
<td>۱۸</td>
<td>۴</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹۰</td>
<td>۱۸</td>
<td>۵</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل ۷- نتایج میدان نوری پیامدهای

مطلق شرایط به این شکل ارائه شده است. برای هر یک از آزمایش‌ها، نتایج ویژگی‌های گرفتن و کرنش طولی پلاستیکی دیده می‌شود. مطمئن بود گرفتن در خروج

شکل ۷- کرنش طولی پلاستیکی بر حسب مسافت طی شده آزمایش

شکل ۷- نتایج میدان نوری پیامدهای

مطلق شرایط به این شکل ارائه شده است. برای هر یک از آزمایش‌ها، نتایج ویژگی‌های گرفتن و کرنش طولی پلاستیکی دیده می‌شود. مطمئن بود گرفتن در خروج

شکل ۷- کرنش طولی پلاستیکی بر حسب مسافت طی شده آزمایش

شکل ۷- نتایج میدان نوری پیامدهای

مطلق شرایط به این شکل ارائه شده است. برای هر یک از آزمایش‌ها، نتایج ویژگی‌های گرفتن و کرنش طولی پلاستیکی دیده می‌شود. مطمئن بود گرفتن در خروج

شکل ۷- کرنش طولی پلاستیکی بر حسب مسافت طی شده آزمایش

شکل ۷- نتایج میدان نوری پیامدهای

مطلق شرایط به این شکل ارائه شده است. برای هر یک از آزمایش‌ها، نتایج ویژگی‌های گرفتن و کرنش طولی پلاستیکی دیده می‌شود. مطمئن بود گرفتن در خروج

شکل ۷- کرنش طولی پلاستیکی بر حسب مسافت طی شده آزمایش

شکل ۷- نتایج میدان نوری پیامدهای

مطلق شرایط به این شکل ارائه شده است. برای هر یک از آزمایش‌ها، نتایج ویژگی‌های گرفتن و کرنش طولی پلاستیکی دیده می‌شود. مطمئن بود گرفتن در خروج

شکل ۷- کرنش طولی پلاستیکی بر حسب مسافت طی شده آزمایش

شکل ۷- نتایج میدان نوری پیامدهای

مطلق شرایط به این شکل ارائه شده است. برای هر یک از آزمایش‌ها، نتایج ویژگی‌های گرفتن و کرنش طولی پلاستیکی دیده می‌شود. مطمئن بود گرفتن در خروج

شکل ۷- کرنش طولی پلاستیکی بر حسب مسافت طی شده آزمایش

شکل ۷- نتایج میدان نوری پیامدهای

مطلق شرایط به این شکل ارائه شده است. برای هر یک از آزمایش‌ها، نتایج ویژگی‌های گرفتن و کرنش طولی پلاستیکی دیده می‌شود. مطمئن بود گرفتن در خروج

شکل ۷- کرنش طولی پلاستیکی بر حسب مسافت طی شده آزمایش

شکل ۷- نتایج میدان نوری پیامدهای
 بهینه‌سازی به روش نمودارهای گیزی‌وری

جهت جمع آوری داده‌ها از طریق اندازه‌گیری میزان پارامترها یافته، مدل رقابتی طوبیت بر روی داده‌های سطحی مورد بررسی قرار گرفته و محدوده بهینه پارامترها به‌دست می‌آید.

بله

5- روش دوم

بهینه‌سازی به روش نمودارهای گیزی‌وری

منشور از پیش‌بینی پایین‌کننده یکی از نکات مهم در حل مسائل است که سطح‌های محاسباتی یکی از این ابزارهای اصلی در حل مسائل است. به‌طور کلی، این روش به‌عنوان یکی از روش‌های تجربی به‌شمار می‌رود که در بسیاری از پیش‌بینی‌ها به‌کار می‌رود.

y = \beta_0 + \sum \beta_i x_i + \epsilon

در این روش، پایین‌کننده یکی از ابزارهای اصلی در حل مسائل است. به‌طور کلی، این روش به‌عنوان یکی از روش‌های تجربی به‌شمار می‌رود که در بسیاری از پیش‌بینی‌ها به‌کار می‌رود.

7- آثار

به‌طور کلی، این روش به‌عنوان یکی از روش‌های تجربی به‌شمار می‌رود که در بسیاری از پیش‌بینی‌ها به‌کار می‌رود.

1 Angular Precision
جدول 4 - جدول آنالیز واریانس برای دقت زاویهای

<table>
<thead>
<tr>
<th>منبع</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>16</td>
<td>1326</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>رگرسور</td>
<td>1</td>
<td>1233</td>
<td>1233</td>
<td>1233</td>
<td>1233</td>
</tr>
<tr>
<td>محاسبه</td>
<td>1</td>
<td>92</td>
<td>92</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>983</td>
<td>983</td>
<td>983</td>
<td>983</td>
</tr>
<tr>
<td>Dk</td>
<td>1</td>
<td>270</td>
<td>270</td>
<td>270</td>
<td>270</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>178</td>
<td>178</td>
<td>178</td>
<td>178</td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>107</td>
</tr>
<tr>
<td>درجه سویل</td>
<td>1</td>
<td>405</td>
<td>405</td>
<td>405</td>
<td>405</td>
</tr>
<tr>
<td>DxD</td>
<td>1</td>
<td>249</td>
<td>249</td>
<td>249</td>
<td>249</td>
</tr>
<tr>
<td>DiDi</td>
<td>1</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>N×N</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>V×V</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>اشتباه</td>
<td>6</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>درجه سویل</td>
<td>1</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
</tr>
<tr>
<td>DxD</td>
<td>1</td>
<td>239</td>
<td>239</td>
<td>239</td>
<td>239</td>
</tr>
<tr>
<td>DiDi</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>N×N</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>V×V</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>اشتباه</td>
<td>6</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>درجه سویل</td>
<td>1</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
</tr>
<tr>
<td>DxD</td>
<td>1</td>
<td>239</td>
<td>239</td>
<td>239</td>
<td>239</td>
</tr>
<tr>
<td>DiDi</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>N×N</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>V×V</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>اشتباه</td>
<td>6</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>درجه سویل</td>
<td>1</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
</tr>
<tr>
<td>DxD</td>
<td>1</td>
<td>239</td>
<td>239</td>
<td>239</td>
<td>239</td>
</tr>
<tr>
<td>DiDi</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>N×N</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>V×V</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>اشتباه</td>
<td>6</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>درجه سویل</td>
<td>1</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
</tr>
<tr>
<td>DxD</td>
<td>1</td>
<td>239</td>
<td>239</td>
<td>239</td>
<td>239</td>
</tr>
<tr>
<td>DiDi</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>N×N</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>V×V</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>اشتباه</td>
<td>6</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>درجه سویل</td>
<td>1</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
</tr>
<tr>
<td>DxD</td>
<td>1</td>
<td>239</td>
<td>239</td>
<td>239</td>
<td>239</td>
</tr>
<tr>
<td>DiDi</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>N×N</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>V×V</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>اشتباه</td>
<td>6</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>درجه سویل</td>
<td>1</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
</tr>
<tr>
<td>DxD</td>
<td>1</td>
<td>239</td>
<td>239</td>
<td>239</td>
<td>239</td>
</tr>
<tr>
<td>DiDi</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>N×N</td>
<td>1</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>V×V</td>
<td>1</td>
<td>27</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>اشتباه</td>
<td>6</td>
<td>145</td>
<td>145</td>
<td>145</td>
<td>145</td>
</tr>
<tr>
<td>درجه سویل</td>
<td>1</td>
<td>398</td>
<td>398</td>
<td>398</td>
<td>398</td>
</tr>
</tbody>
</table>

شکل 10 - نمودار روابط دقت زاویهای بر حسب قطر فلز و سرعت ورود

شکل 11 - نمودار روابط دقت زاویهای بر حسب فاصله و تعداد استگاه

شکل 12 - نمودار تاثیرات اصلی بر روی دقت زاویهای

شکل 13 - نمودار احتمال تویزی نرمال کرنش طولی پلاستیکی میانگین‌ها و نمودار میانگین‌ها در شرایط مختلف استگاه‌ها.

میانگین‌ها را نشان می‌دهد. برای بکردن نقطه اطراف خط مورد نظر دهنده نرمال بودن تویزی مقدار بالایی به داشته باشد. با استفاده از روش مقدار احتمالی
همچنین مقدار کفایت مدل 988/2% بسته آمد که حاکی از مطابقت بودن مدل می‌باشد. در شکل 12، نمودار روابط کره‌ی طولی پلاستیکی میانگین بر حسب قطع علیک و سرعت واقع ناشده شده است. همچنین شکل 15 نمودار روابط کره‌ی طولی پلاستیکی میانگین بر حسب فاصله و تعداد استگاه‌ها را نشان می‌دهد. با توجه به این دو شکل، مشاهده می‌شود که کاهش سرعت و افزایش قطع باعث کاهش کره‌ی طولی پلاستیکی میانگین شده و افزایش سرعت و کاهش قطع، منجر به افزایش کره‌ی طولی پلاستیکی میانگین شده. افزایش فاصله و تعداد استگاه‌ها باعث کاهش مقدار کره‌ی طولی پلاستیکی میانگین می‌شود. در شکل 16 نمودارهای اثرات اصلی نشان داده شده است. اثرات اصلی پانکار نتیجه مستقیم فاکتورها بر روی کره‌ی طولی پلاستیکی میانگین می‌باشد. مشاهده می‌شود که افزایش تعداد استگاه‌ها بهترین نتیجه در کاهش کره‌ی طولی پلاستیکی میانگین دارد.

رویه پایش مدل ناپیما پاسخ برای کره‌ی طولی پلاستیکی میانگین (AS) بصورت رابطه (4) بسته می‌آید با روابط مدل رگرسیون و عبارت‌های آن با استفاده از روش آنتی‌رگرسیون برای کره‌ی طولی میانگین صورت گرفت. پنتای 5 بسته آمد مشاهده می‌شود که مدل رگرسیون، عبارت‌های خطي و نه در آن در مدل موتور مستحکم است.

![نمودار 13- نمودار احتمال نمرات کره‌ی طولی پلاستیکی میانگین](image)

جدول 5- جدول آنتی‌رگرسیون برای کره‌ی طولی میانگین

<table>
<thead>
<tr>
<th>شاخص</th>
<th>DF</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>رگرسیون</td>
<td>14</td>
<td>123244</td>
<td>8796</td>
<td>8796</td>
<td>0/000</td>
</tr>
<tr>
<td>جمله</td>
<td>14</td>
<td>32400</td>
<td>2300</td>
<td>2300</td>
<td>0/000</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>234</td>
<td>234</td>
<td>234</td>
<td>0/000</td>
</tr>
<tr>
<td>Di</td>
<td>1</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>0/000</td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>درجه دو</td>
<td>4</td>
<td>9876</td>
<td>2456</td>
<td>2456</td>
<td>0/000</td>
</tr>
<tr>
<td>DxD</td>
<td>1</td>
<td>234</td>
<td>234</td>
<td>234</td>
<td>0/000</td>
</tr>
<tr>
<td>DoDi</td>
<td>1</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>NoN</td>
<td>1</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>0/000</td>
</tr>
<tr>
<td>VoV</td>
<td>1</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>VxV</td>
<td>1</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>اثر مشترک</td>
<td>6</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>DxDi</td>
<td>1</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>DxDN</td>
<td>1</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>DxDV</td>
<td>1</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>DxDV</td>
<td>1</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>NoV</td>
<td>1</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>Error</td>
<td>14</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>0/000</td>
</tr>
</tbody>
</table>

1 Average Strain
در شکل 18 نمودار کانتور برای قطر غلظت و تعداد استقلا نشان داده شده است. در این نمودار نیز مستواهای تویسات داده شده، فاصله استقلا و سرعت ورق مقادیر نهایی به شدت دامنه متقابل قرار گرفته است. شکل 19 نمودار کانتور برای قطر غلظت و سرعت ورق نشان می‌دهد. مطابق این نمودار، فاصله و تعداد استقلا مقادیر دامنه از بهینه سازی به روش نابع متقابل قرار داده شده است. محدوده سفید زمینه محدوده ای است که هر دو پایه در مقدار بهینه واقع شده‌اند. با انتخاب قطر مشخص، می‌توان محدوده سرعت ورق را تعیین کرد.

شکل 18 - نمودار کانتور برای قطر غلظت و تعداد استقلا

شکل 19 - نمودار کانتور برای قطر غلظت و سرعت ورق

3-6 تایبید بهینه‌سازی
با توجه به اینکه بهینه‌سازی حالت برای دقت زاویه‌ی که به حساب درصد بیان می‌شود ۱۰۰/۳ به معنی دقت محصول خروجی‌ی می‌باشد. بنابراین کران بالا ۱۰۰/۳ در نظر گرفته شده است. کران بالایی به‌هیچ‌وجه متقابل قرار گرفته شده است. کران پایینی، نیز به‌هیچ‌وجه متقابل قرار گرفته نیست. شکل 17 نمودار کانتور برای دو پارامتر قطر غلظت و فاصله استقلا را نشان می‌دهد. این نمودار استفاده و سرعت ورق به ترتیب در حدود ۱۷۰ و ۱۷۱ میلی‌متر بر ثانیه تعیین شده است. ناحیه سفید رنگ، ناحیه‌ی که دو پایه در محدوده بهینه قرار گرفته‌اند را نشان می‌دهد. بهترین دو پایه در این منطقه در محدوده بهینه مورد نظر این شده است. مقدارهای شکل ۱۷ به‌صورت فرض کرده تعداد استقلا و سرعت ورق در محدوده مشخص شده. با انتخاب یک قطر مشخص، یک خط مورد به موارد فاصله استقلا را به شکل می‌شود و در نهایت به همیشه ارتباط استقلاها در انر خاص مشخص تعیین می‌شود. به‌عنوان مثال در صورت انتخاب مقدار ۱۴۰ میلی‌متر برای قطر و شکن خطر به موارد محور عمودی فاصله بهینه در حدود ۲۳۵ تا ۵۰۵ میلی‌متر واقع خواهد شد.

شکل 17 - نمودار کانتور برای قطر غلظت و فاصله استقلا
۷- نتایج گیری
در این پژوهش تأثیر چهار فاصله فلزی، سرعت خلط، و قابلیت و تعداد ایستگاه بر روی دقت ژاونده‌ای با پرکشت فنری و کربن طولی پلاستیکی میانگین، در فرآینداندهای دیده اصلی مدل‌سازی شده و محدوده عناصر بارانده‌ها با نمودارهای استخراج شد. پس از طراحی یک روش جدید برای انجام آنها با روش اجزای مجدید، مدل روبه پیشوند استخراج شد. سپس بهینه سازی ساری همزمان توانایی پاسخ‌های به منظور کنترل برگشت فنری با بیشینه کربن دقت ژاونده‌ای و کمینه کربن کربن کربن طولی پلاستیکی میانگین و با استفاده از روش چهار انتهای نمودارهای کانتوری صورت گرفت. بررسی نمودار بارانده برگشت فنری نیز نشان داد که افزایش تعداد ایستگاه بر روی پرکشت فنری نتایج مناسب بهینه باین باعث کاهش آن و افزایش دقت ژاونده‌ای شده و افزایش مدت باعث کاهش دقت ژاونده‌ای می‌شود. کاهش این مدل‌سازی نیز بدست آمده بر روی دقت ژاونده‌ای می‌باشد و پرکشت فنری کاهش مناسب بهینه بدست آمده.

در این پژوهش با اجرای این پژوهش یک روش بارانده با دقت مناسب تأثیر پرکشت فنری و دقت ژاونده‌ای (کمترین پرکشت فنری) و کمترین کربن طولی پلاستیکی میانگین نشان دهند.

8- تشکر و قدردانی
در اینجا این پژوهش یک روش جدید همزمان همکاری و مشاوره با انجام داده که در اینجا این یک روش جدید که شکل ۲۲- نمودار کانتوری برای قابلیت استخراج و سرعت ورق

[8] [Persian] ياماني آراکانی و یزدانی و علی، سلولو نانوتی، حسن، نیافته، غلامحسین، سلولوی نانوتی، مدیری، بررسی عوامل و تجویز از مدل‌های ساختارشماری و تخته‌رسانی کردن، مجله مهندسی مکانیک مدرس، شماره 13، ماهشهر، [صفحه 211] 1392.

[9] [Persian] سلولوی نانوتی، مهدی، بهرامی مسلم، بررسی تحلیل و عوامل طول تغییر شکل در شکل‌دهی نقاشی، کردن، مجله علمی یوجه مهندسی مکانیک مدرس، شماره 2، صفحه 25، ماهسپهر، 1388.

