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Abstract In this paper, we deal with the pricing of power options when the dynamics of the
risky underling asset follows the double stochastic volatility with double jump model.

We prove efficiency of our considered model by fast Fourier transform method, Monte

Carlo simulation and numerical results using power call options i.e. Monte Carlo
simulation and numerical results show that the fast Fourier transform is correct.
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1. Introduction

Option pricing is a very important concept in financial economics and has been
widely used among the traders and practitioners. A number of papers paid atten-
tion to the option pricing models. Many number of them raised to the Black-Scholes
model. As known in the Black-Scholes model the volatility rate is assumed to be
constant. But more observation of volatility of traded option valuations has exposed
that this assumption is not coincides with reality.
A lot of literatures are proposed option pricing models with stochastic volatility mod-
els, jump-diffusion models, Markov-modulated jump-diffusion models and regime-
switching models [6, 7, 8, 9].
After 1978, the most realistic and efficient model is presented by Heston. In this
model the volatility and the underling asset price include a diffusion process which
are correlated.
Then Christoffersen proposed the additional stochastic process (as the second volatil-
ity). So he developed the Heston model with his concerns and made the asset pricing
more realistic [2].
Recently, it has been more attention paid to add more jumps and more stochastic
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volatilities which yields further randomization of the volatility rate and made the
models more efficient.
In this paper, we introduce a model in which the stock price follows the double sto-
chastic volatility with double jump. We also study power options with payoffs which
depend on the price of the risky underlying asset raised to power m > 0.
For an investor, using a power option is more useful than an ordinary option [5].
For this reason in this paper we investigate power option pricing under the double
stochastic volatility with double jump. In fact we drive the characteristic function
and get the option pricing via fast Fourier transform and show our analytic method
efficiency by Monte Carlo simulation and numerical results.
This paper is organized as follows. In section 2, we present notations and a model
in which the stock price follows the double stochastic volatility with double jump. In
section 3, we investigate the characteristic function. Power option pricing using the
Fast Fourier Transform is driven in section 4. Numerical results are given in section
5. The paper is concluded in section 6.

2. The model

Let (Ω,F , P ) be a probability space where {Ft}t is the filtration generated by the
Brownian motion and the jump process at time t, 0 ≤ t ≤ T and Q is a risk neutral
probability. The underling asset price St at time t is given by

dSt = (r − λµJ)Stdt+

√
V

(1)
t StdW̃

(1)
t +

√
V

(2)
t StdW̃

(3)
t + JStdÑt, (2.1)

dV
(1)
t = k1(θ1 − V (1)

t )dt+ σv1

√
V

(1)
t dW̃

(2)
t + ZdÑt,

dV
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√
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t ,

dW̃
(1)
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dW̃
(3)
t dW̃

(4)
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where r is the interest rate,

√
V

(i)
t , i = 1, 2 is a volatility process, θi, i = 1, 2 is

the long-run average of Vt, Nt represents a Poisson under the risk neutral measure
with jump intensity λ, ki, i = 1, 2 is the rate of mean reversion, σvi , i = 1, 2 is the
volatility of volatility, Z is a stochastic process which has exponential distribution
with parameter µv, (1 + J)|Z has log normal distribution with mean µs + ρJZ and
variance σ2

s in which

µJ =
exp{µs +

σ2
s

2 }
1− ρJµv

− 1,

and W̃
(i)
t and W̃

(i+1)
t , i = 1, 3 are two correlated Brownian motions under Q which

Cov(dW̃
(1)
t , dW̃

(2)
t ) = ρ1dt and Cov(dW̃

(3)
t , dW̃

(4)
t ) = ρ2dt (ρ1 and ρ2 are constants).
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3. Deriving the characteristic function

By Duffie, Gatheral and Zhu we drive the characteristic function [3, 4]. The log
stock price and volatility processes of our considered model is

logSt = rdt− λµJdt−
1

2
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where

log(1 + J) ∼ Normal(log(1 + µJ)− σ2
s

2
, σ2
s).

Denote by Hlog(ST )(u) the characteristic function of the log stock price. So we have

Hlog(ST )(u) = EQ [exp{iulog(ST )}]
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So from (3.2) and (3.3) we have
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So
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dÑt}],

when

s1 = −(
−iu

2
+
iuρ1k1

σv1
+

(iu)2(1− ρ2
1)

2
),

s3 = −(
−iu

2
+
iuρ2k2

σv2
+

(iu)2(1− ρ2
2)

2
),

s2 =
iuρ1

σv1
,

s4 =
iuρ2

σv2
.

From [10] (Feynman-kac theorem) we have
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di =
√
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4. Power option pricing using the Fast Fourier Transform

Under the risk neutral measure Q, the valuation of the m-th power call option with
strike K and maturity T is as follows

c(t, ST ) = e−r(T−t)EQ
[
(SmT −Km)+|Ft

]
, (4.1)

where r is the constant interest rate and (SmT − Km)+ = max{SmT − Km, 0}. Let
t = 0, Xt = lnSt and k = lnK. We derive the power call option pricing (4.1) as a
function of the log strike K rather than the terminal log asset price XT as bellow.

c(T, k) = e−rT
∫ ∞
k

(emXT − emk)qT (XT )dXT , (4.2)

where qT (XT ) is the density function of XT . Note that c(T, k) converges to S0 when
k tends to −∞. Carr and Madan [1] presented a modified call price function

C(T, k) = eαkc(T, k), for α > 0. (4.3)

The Fourier transform of C(T, k) is defined by

ψT (u) =

∫ +∞

−∞
eiukC(T, k)dk. (4.4)

From (4.2),(4.3) and (4.4) we have

ψT (u) =

∫ +∞

−∞
eiukeαke−rT

∫ ∞
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−∞
e−rT qT (XT )
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−∞
(emXT+αk − e(α+m)k)eiukdkdXT

=
me−rTHST (u− (α+m)i)

(α+ iu)(m+ α+ iu)
.

Then the inverse transform of ψT (u) is as follows

C(T, k) =
1

2π

∫ +∞

−∞
e−iukψT (u)du. (4.5)

So

c(T, k) =
e−αk

2π

∫ +∞

−∞
e−iukψT (u)du. (4.6)

By applying the Trapezoil method in (4.6) we have

c(T, k) ≈ e−αk

π

N∑
j=1

e−iujkψT (uj)4,

where 4 denotes the integration steps, a = N4 and uj = 4(j − 1).
The FFT returns N values of k and for a regular spacing size of η where N is a power
of 2, the value for k is

kv = −b+ η(v − 1), for v = 1, 2, ..., N, (4.7)
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where b = Nη
2 .

Equation (4.7) gives us N log strike values at regular intervals of width η, ranging
from −b to b.
Finally, setting η4 = 2π

N , we get

c(kv) ≈
e−αkv

π

N∑
j=1

e−iη4(j−1)(v−1)eibujψT (uj)4,

with Simpsons method weightings, the price of power call option is as follows.

c(T, k) =
e−αkv

π

N∑
j=1

e−i
2π
N (j−1)(v−1)eibujψT (uj)

4
3

(3 + (−1)j − δj−1),

where δn is the kronecher delta function that is 1 for n = 0 and 0 otherwise.

5. Numerical results

In this section, we present and compare numerical results for power call option
using the FFT method and the Monte Carlo simulation.
For our FFT method, we take N = 212, a = 600 and α = 0.75. The parameters
are considered as follows r = 0.05, q = 0.06, k1 = 0.9, θ1 = 0.1, σv1 = 0.1, ρ1 =

−0.5, v
(1)
0 = 0.6, k2 = 1.2, θ2 = 0.15, σv2 = 0.2, ρ2 = −0.5, v

(2)
0 = 0.7, λJ = 0.22, µs =

0.22, σs = 0.25, ρJ = −0.4, µv = 0.05, S0 = 100 where m, k, T are different. The
numerical results are shown in Table 1. In addition, we take N = 100, 000 simulations

Table 1. Power call option prices: FFT, Monte Carlo.

T K m FFT Monte Carlo difference
0.5 90 1 31.4618 33.0014 1.5396

2 1.1501× 104 1.2024× 104 0.0523× 104

3 4.3620× 106 4.3575× 106 −0.0045× 106

4 2.3358× 109 2.1054× 109 −0.2304× 109

0.5 95 1 29.5257 31.2533 1.7275
2 1.1143× 104 1.1816× 104 0.0673× 104

3 4.3123× 106 4.5088× 106 0.1965× 106

4 2.3296× 109 2.0554× 109 −0.2742× 109

to price the power call option using the Monte Carlo simulation.
So numerical results proved that FFT approach is correct and more efficient than
Monte Carlo simulation.

6. Conclusion

In this paper we drived the characteristic function and got the power option pricing
by FFT. In the sequel, the efficiency of our analytic method by Monte Carlo simulation
and numerical results is shown.
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