Sensitivity Analysis of Hydrodynamic Coefficients for a Submarine by Indirect Method for Evaluation and Optimization of its Maneuverability

D. Mirzaei
Subsea R&D center, Isfahan University of Technology, Isfahan, Iran

M. A. Badri
Subsea R&D center, Isfahan University of Technology, Isfahan, Iran

A. R. Zamani
Subsea R&D center, Isfahan University of Technology, Isfahan, Iran

Abstract
One of the essential subjects, affecting on submarine’s performance is a comprehensive knowledge of its maneuverability and sensitivity to change hydrodynamic parameters. The hydrodynamic parameters are assessable by experiments which are directly related to geometric and environmental parameters. Since these coefficients are the result of the fluid-structure interaction, they have a degree of uncertainty and are not constants. The main objective of this paper is to evaluate the sensitivity of the hydrodynamic coefficient of a submarine to understand its response to uncertainty of these coefficients. In this research, the dependence of hydrodynamic moment to circular maneuverability diameter resulted by rudders was investigated. Furthermore, low sensitivity of drag coefficients against lift coefficients by control surfaces and submarine body were also considered. Increasing of lift coefficient related to maneuverability and decreasing the drag in slowness and stability of submarine are of the other outcomes.

Keywords: sensitivity analysis, Hydrodynamic coefficient, maneuverability, Submarine, Euler-Newton Method

References

1. Sensitivity Analysis (SA)
محاسبه معیار ضرایب هیدرودینامیک یک زیردریایی
علاوه بر ممکن حاصل از نیروهای هیدرودینامیکی پس و پر، ممکن‌های دیگری موموس به چرخش خالص و چرخش از هر گونه احتمال وارد شده است.

\[C_0 \text{ و } C_1 \text{ معرفی می‌شوند.} \]

cos \theta = \frac{1}{2} \rho C_1 p [p]

\[R = \begin{bmatrix} c_{b1} & c_{b2} & c_{b3} \\ c_{s1} & c_{s2} & c_{s3} \end{bmatrix}

\]

\[\eta = R_i \eta_i + R' \eta \]

\[\eta = \left[\begin{array}{c} \eta_1 \\ \eta_2 \end{array} \right]

\]

\[\theta = \left[\begin{array}{c} \theta_1 \\ \theta_2 \end{array} \right]

\]

\[\mathbf{M} = \mathbf{F} - \mathbf{M}_{\text{in}} \]

\[\mathbf{M}_{\text{in}} = \mathbf{M}_{\text{in}}(\alpha, \beta, V) + W_2(\theta_1) + W_3(\theta_1, X_1, X_2) + B_2(V, \dot{X}_1, \dot{X}_2) + M_3(\alpha, \beta, V) + M_4(\alpha, \beta, V) \]

\[\mathbf{F} = \mathbf{F}_x(\alpha, \beta, V) - (W - B) f_2(\theta) + F_c(\alpha, \beta, V) + F_p(\alpha, \beta, V) \]

\[\mathbf{w} = \mathbf{H} \mathbf{v} + \mathbf{w}_n \]

\[\mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \end{bmatrix} \]

\[\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \]

\[\mathbf{w}_n = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \]

\[\mathbf{D}_n = \frac{1}{2} \rho S_H C_{DH}(\alpha, \beta, V) V_H^2 \]

\[\mathbf{M}_H = \mathbf{I} \rho C_P \mathbf{F}_H \]

\[\mathbf{L}_H = \frac{1}{2} \rho S_H C_{DH}(\alpha, \beta, V) V_H^2 \]

\[M_H = \mathbf{I} \rho C_P \mathbf{F}_H \]

\[\mathbf{F} = \mathbf{F}_x(\alpha, \beta, V) - (W - B) f_2(\theta) + F_c(\alpha, \beta, V) + F_p(\alpha, \beta, V) \]

\[\mathbf{w} = \mathbf{H} \mathbf{v} + \mathbf{w}_n \]

\[\mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \end{bmatrix} \]

\[\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \]

\[\mathbf{w}_n = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \]

\[\mathbf{D}_n = \frac{1}{2} \rho S_H C_{DH}(\alpha, \beta, V) V_H^2 \]

\[\mathbf{M}_H = \mathbf{I} \rho C_P \mathbf{F}_H \]

\[\mathbf{L}_H = \frac{1}{2} \rho S_H C_{DH}(\alpha, \beta, V) V_H^2 \]

\[M_H = \mathbf{I} \rho C_P \mathbf{F}_H \]

\[\mathbf{F} = \mathbf{F}_x(\alpha, \beta, V) - (W - B) f_2(\theta) + F_c(\alpha, \beta, V) + F_p(\alpha, \beta, V) \]

\[\mathbf{w} = \mathbf{H} \mathbf{v} + \mathbf{w}_n \]

\[\mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 \\ h_4 & h_5 & h_6 \end{bmatrix} \]

\[\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \]

\[\mathbf{w}_n = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \]

\[\mathbf{D}_n = \frac{1}{2} \rho S_H C_{DH}(\alpha, \beta, V) V_H^2 \]

\[\mathbf{M}_H = \mathbf{I} \rho C_P \mathbf{F}_H \]

\[\mathbf{L}_H = \frac{1}{2} \rho S_H C_{DH}(\alpha, \beta, V) V_H^2 \]

\[M_H = \mathbf{I} \rho C_P \mathbf{F}_H \]
روش تحلیل حساسیت

هدف از ساده‌سازی تعویضات پارامترهای خاص بر روی پایه وسیله در چند منظور استفاده می‌باشد. پژوهش کلی حساسیت خروجی به یک مدل طراحی شده، نشان می‌دهد. متقابل
متغیر پایه (متغیر خروجی) و پارامتر ورودی (P)، به مقدار مشخص شده است. مدل‌هایی که با شبیه‌سازی که با اندیس nom مشخص می‌گردند. در هر مورد حساسیت اندازه‌ی پایه به تغییر در
پارامتر با معادله‌ی پیشنهادی س (11) محاسبه شده است:

\[
S = \frac{(R - R_{\text{nom}})}{R_{\text{nom}}} + \frac{(P - P_{\text{nom}})}{P_{\text{nom}}}
\]

(12)

شکل 1: خروجی طراحی

شکل 2: روش دیگر کلی ورودی‌های خروجی

برای شبیه سازی این حسکت، اجرای اندازه‌گیری و پارامتر را برای اندازه‌گیری را در نظر داشته و مقدار آن را با یک شبیه سازی رایه سه بعدی که با رساند و زمان شبیه سازی آزاد را در نظر گرفته و مقدار در منابع حساسیتی دارای یک محدودیتی خاص به تغییر ضرایب مشخصه‌های ورودی از پارامترهای ورودی از پارامترهای خودری طراحی اجرای اندازه‌گیری ورودی وسیله به تغییر در
پارامترهای طراحی، موارز حسکت دارای و پارامترهای زیک زاگ افقط و عمومی استفاده داده شده. این موارز معمولاً تست‌های استانداردی
به روش که کنی را روند زیک وراداریها از پارامترهای همین و ضوابط قابل هفم را برای ارزیابی کارایی مهیا مشابهی می‌باشد.
در موارز حسکت دارایی وسیله به کنار سر و پاینده به تغییر ضرایب مشخصه‌های کارایی استفاده می‌شود. وجود دارد. می‌توان این پارامترها فطر دارای
یک مشخصه قرار گیرد. طراحی طراحی و سیستم تشکیل شده. تأثیر یافته یک مدل. از موارز کشی. سیستم، این پارامترها فطر دارای
کارایی استفاده می‌شود.

 MATLAB

نتایج ارزیابی و در پارامتر کامپیوتری هک هر یک با زبان
نوسنگت نگه داشته و استفاده از MATLAB

1 Sen
2 Advance
به هم‌سازی در ادامه حساسیت هر کدام از ضریب‌های هیدرودینامیکی زیبردیابی بیشتر بوده است. در سه حالتی از گردوک، سرعت و وضعیت نمايش داده شده است. این نمودار در سطح اولان دارای یک نشانگر نسبت به مدل گردوک سرعت بوده و در زمینه زیبردیابی بیشتر نسبت به سرعت و با جلو ناجی می‌باشد.

![شکل 5 - حركت زیبردیابی در سطح افق در طول حركت زیگ زاگ](image)

*شکل 4 - مقدار سرعت خطي در راستاهای x و z در طول نمونه Zیگ زاگ آفی

در شکل 8 نمونه حساسیت دقت تعدادی از نمونه زانی رسانده به ۱۸۰ درجه و زمان شروع واکنش نسبت به آغاز زونه وارد برای همه ضرایب هیدرودینامیکی به مدل برگزاری داده شده است. در حالتی از مدل تابلکس شرایط به مدل از مدل تبلیغاتی حل شده است. با توجه به نتایج گرفته شده از این مشاهده، پیش‌بینی ارایه‌گریها در مقاله دارای نتایج در نهایت حساسیت داشته که عبارت است از ضریب مدل Cx، سپری هیدرودینامیکی در جهت مدل CX مدل هیدرودینامیکی Cx دارای مدل Cx مدل هیدرودینامیکی Cx دارای مدل Cx مدل Hیدرودینامیکی Cx

1. Geometry Information
2. Rotation Matrix
3. Added Mass Matrix
4. Hydrodynamic Forces
5. Controller
در جدول (2) میان بیشینه اندازه حساسیت مشخص‌های حرکت دایره‌ای به پارامترهای هیدرودینامیکی ارائه شده است. این جدول نشان می‌دهد قطع مسر حرکت بیشتر به پارامتر حساسیت دارد و زمان رسیدن به راهی
$m_{b0,0}$ حساسیت بیشتری دارد و زمان نزدیک شدن به مسیر دایره‌ای دارا می‌باشد.

جدول 2- مقایسه حساسیت ضرایب هیدرودینامیکی

<table>
<thead>
<tr>
<th>$S_{p,0}$</th>
<th>$S_{p,m}$</th>
<th>$S_{p,0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.244</td>
<td>0.244</td>
<td>c_y</td>
</tr>
<tr>
<td>0.244</td>
<td>0.244</td>
<td>c_s</td>
</tr>
<tr>
<td>0.244</td>
<td>0.244</td>
<td>c_{er}</td>
</tr>
<tr>
<td>0.244</td>
<td>0.244</td>
<td>$m_{b0,0}$</td>
</tr>
</tbody>
</table>

در نتیجه شبه سازی حرکت در شکل (2) نشان داده شده است.

به‌طور میزان حساسیت مشخص‌های سطح زیرکاکی پارامترهای هیدرودینامیکی از 50 تا 200 درصد مقدار نانو آنها تغییر داده می‌شود. مقادیر حساسیت S بسیار بیشتری دارد و مناسب است. T_{b0} T_{b0} T_{b0} T_{b0} T_{b0} مناسب‌ترین گزین زیرکاکی با علائم‌های ψ, T_{b0} T_{b0} T_{b0} T_{b0} T_{b0} در شکل‌ها نشان داده شده که به‌طور نشانگر پرود و نوسانات زمان رسیدن به اولین مرز زاویه با مقدار جهش زاویه با و مقدار جهش سیر هستند.

جدول 1- مقایسه حساسیت مشخص‌های حرکت دایره‌ای

<table>
<thead>
<tr>
<th>T_{b0} (s)</th>
<th>T_{b0} (s)</th>
<th>D (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.114</td>
<td>0.114</td>
<td>0.114</td>
</tr>
</tbody>
</table>

ضرایب هیدرودینامیکی به‌طور کامل و سطح کنترل بر روی تمامی مشخص‌های ضرایب این گزاره می‌باشد. در جدول (1) میان بیشینه مشخص‌های ضرایب در دامنه تغییر پارامترهای هیدرودینامیکی مربوطه نشان داده شده‌اند. همانطور که از جدول (1) مشاهده است ضرایب هیدرودینامیکی برای بیشترین اثر را مقدار قطع حرکت $m_{b0,0}$ هستند.
دیاگرام زیر مشخصات اطمینان در مانور زیگ زاک افقی:

<table>
<thead>
<tr>
<th>$S'_{(x)}$</th>
<th>$S''_{(x)}$</th>
<th>$S'_{(y)}$</th>
<th>$S''_{(y)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_x</td>
<td>c_x</td>
<td>c_y</td>
<td>c_y</td>
</tr>
<tr>
<td>m_x</td>
<td>m_x</td>
<td>m_y</td>
<td>m_y</td>
</tr>
<tr>
<td>c''_x</td>
<td>c''_x</td>
<td>c''_y</td>
<td>c''_y</td>
</tr>
</tbody>
</table>

اثرات ضرایب هیدرودینامیکی مربوط به جرم اضافه، بنده زیر دریابی و سطوح کنترلی بر روی مشخصات‌های مانور زیگ زاک افقی برسی شده است. در شکل (12) حساسیت ضرایب هیدرودینامیکی و ضرایب هیدرودینامیکی سطوح کنترلی در چهار پارامتر مانور زیگ زاک افقی مقایسه قرار گرفته است. حساسیت‌ها به صورت نمودار می‌شوند.

در جدول 3 مقدار مکانیم ادامه حساسیت هر کام از مشخصات‌های مانور زیگ زاک افقی با تغییرات پارامترهای هیدرودینامیکی بندنه زیر دریابی و سطوح کنترلی نشان داده شده است. همان‌طور که از جدول مشاهده است، نوسانات و زمان رسیدن به اولین مرز با (\(\varphi=15^\circ\)) دارد. همچنین داشتن حساسیت را به ضرایب هیدرودینامیکی m_x^0 و m_y^0 بیشترین اثر را روی مقادیر جهش و پایه زیر دریابی در حرکت زیگ زاک افقی با تثبیت بیشتری ضرایب هیدرودینامیکی m_x^0 و m_y^0 حساسیت دارد.

3-3 مانور زیگ زاک عمودی

مانور زیگ زاک در پتای میدانی توسط سطوح کنترلی روی و استبانیام ایجاد می‌شود. برای انجام این مانور، ابتدا سطوح کنترلی بالابر و پایدار هر اندازه 300 گشتی می‌کند. به محض ابتدا

![شکل 12- مقایسه حساسیت ضرایب هیدرودینامیکی در مانور زیگ زاک افقی](image-url)
محاسبه حساسیت ضریب هیدرودینامیکی در مانور زیگ زاگ عمودی

همچنین زمان رسیدن به اولین مرز حساسیت بیشتری به ضریب هیدرودینامیکی M_{ψ}^d در مقابل سایر ضرایب هیدرودینامیکی دارد. همچنین مقدار جهش زاویه پیچ افزایش یافته به ترتیب به C_x و M_{ψ} در مانور زیگ زاگ عمودی حساسیت می‌دارند.

جدول ۴ - مقادیر پیشین حساسیت در مانور زیگ زاگ عمودی

<table>
<thead>
<tr>
<th>$S_{\psi}^{\frac{M}{\psi}}$</th>
<th>$S_{\phi}^{\frac{M}{\psi}}$</th>
<th>$S_{\theta}^{\frac{M}{\psi}}$</th>
<th>$S_{\alpha}^{\frac{M}{\psi}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>0.15</td>
<td>0.16</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
</tr>
</tbody>
</table>

در این مانور، مشخصه‌های حركت به صورت ψ, ω, θ, α, ϕ, λ, T_ψ, T_θ و T_α نظر گرفته می‌شوند که در نهایت به تشخیص نوسانات و زمان رسیدن به اولین مرز ψ, ω, θ, α, ϕ, λ, T_ψ, T_θ و T_α می‌شود. همچنین مانور بالایی، حذف اثرات از کم ارای‌های هیدرودینامیکی بر مشخصه‌های حركت زیگ زاگ عمدی انجام شده است. برای نمونه یکی از بالابری‌های هیدرودینامیکی از ۲۰۰۰ رابطه مقادیر تابع تغییر داده شده مشخصه‌های حركت اندازه‌گیری گردیده‌اند. تاثیر ضرایب هیدرودینامیکی بدون زیر ورایت بر مقدار ψ, ω, θ, α, ϕ, λ, T_ψ, T_θ و T_α به‌صورت مناسب می‌باشد.

شکل ۱۵ - مقادیر ψ, ω, θ, α, ϕ, λ, T_ψ, T_θ و T_α در طول حركت زیگ زاگ عمودی

در این مانور، مشخصه‌های حركت به صورت ψ, ω, θ, α, ϕ, λ, T_ψ, T_θ و T_α نظر گرفته می‌شوند که در نهایت به تشخیص نوسانات و زمان

ψ, ω, θ, α, ϕ, λ, T_ψ, T_θ و T_α می‌شود. همچنین مانور بالایی، حذف اثرات از کم ارای‌های هیدرودینامیکی بر مشخصه‌های حركت زیگ زاگ عمدی انجام شده است. برای نمونه یکی از بالابری‌های هیدرودینامیکی از ۲۰۰۰ رابطه مقادیر تابع تغییر داده شده مشخصه‌های حركت اندازه‌گیری گردیده‌اند. تاثیر ضرایب هیدرودینامیکی بدون زیر ورایت بر مقدار ψ, ω, θ, α, ϕ, λ, T_ψ, T_θ و T_α به‌صورت مناسب می‌باشد.

شکل ۱۶ - مقادیر سرعت در راستای ψ و ω حركة زیگ زاگ عمودی

در این مانور، مشخصه‌های حركت به صورت ψ, ω, θ, α, ϕ, λ, T_ψ, T_θ و T_α نظر گرفته می‌شوند که در نهایت به تشخیص نوسانات و زمان

ψ, ω, θ, α, ϕ, λ, T_ψ, T_θ و T_α می‌شود. همچنین مانور بالایی، حذف اثرات از کم ارای‌های هیدرودینامیکی بر مشخصه‌های حركت زیگ زاگ عمدی انجام شده است. برای نمونه یکی از بالابری‌های هیدرودینامیکی از ۲۰۰۰ رابطه مقادیر تابع تغییر داده شده مشخصه‌های حركت اندازه‌گیری گردیده‌اند. تاثیر ضرایب هیدرودینامیکی بدون زیر ورایت بر مقدار ψ, ω, θ, α, ϕ, λ, T_ψ, T_θ و T_α به‌صورت مناسب می‌باشد.
(deg) زاویه دریفت
(deg) زاویه سطح کنترل
(deg) زاویه حمله سطح کنترل
(PrA) زاویه حمله و ورودی سطح کنترل
(rad/s) بردار سرعت زاویه ای
(S) پروده حرکت
(S) زمان رسیدن

\[\begin{align*}
\beta & \equiv \text{دوران زیردیپا جوی محور} \times X \\
\delta_{\kappa} & \equiv \text{ضربی براییی هیدرودینامیکی در جهت} \\
\alpha & \equiv \text{ضربی براییی هیدرودینامیکی در جهت} \\
2 \beta & \equiv \text{ضربی براییی هیدرودینامیکی در جهت} \\
\delta & \equiv \text{ضربی براییی هیدرودینامیکی در جهت} \\
\delta_{\kappa} & \equiv \text{ضربی براییی هیدرودینامیکی در جهت} \\
\theta & \equiv \text{ضربی براییی هیدرودینامیکی در جهت} \\
\gamma & \equiv \text{ضربی براییی هیدرودینامیکی در جهت} \\
\delta_{\kappa} & \equiv \text{ضربی براییی هیدرودینامیکی در جهت} \\
\phi & \equiv \text{ضربی براییی هیدرودینامیکی در اثر تغییر} \\
\chi & \equiv \text{ضربی براییی هیدرودینامیکی در اثر تغییر} \\
\end{align*} \]

- مراجع