بررسی عددي عملکرد دستگاه ستون نوسان گر آب (OWC) تحت امواج موجود در سواحل جنوبي ايران

سديگزدآدیه*، ميلاد هاشمي

مقاله هاشمي

صادق صادق زاده

چکیده

در اين تحقیق روش حجم محدود برای شیب سازی ستون نوسان گر آب به كار گرفته شده است. برای این منظور از دينامیک سیالات محاسباتی بر پايه معادلات انرژی استفاده شده است. ستون نوسان گر آب از مدل استفاده قرار گرفته و اين نوع دستگاه داراي قابلیت تقاضا در پر خورد با امواج مي داشته است. در خصوص این مدل، توسط شبیه سازی شده، مطابقت مناسب حاصل شده است. در خصوص این مدل، توسط شبیه سازی شده، مطابقت مناسب حاصل شده است.

در این تحقیق، به روش سیمولینک متلب ترجمه شده که تغییر در مشخصات امواج و میزان مقدار استراحت بین فلزات بهره بردستگی را پذیرفت. نتایج نشان می‌دهد که تغییر در شبکه‌های مفقود امواج و میزان مقدار استراحت بین فلزات بهره‌بردستگی را پذیرفت. نتایج نشان می‌دهد که تغییر در شبکه‌های مفقود امواج و میزان مقدار استراحت بین فلزات بهره‌بردستگی را پذیرفت.

واژه‌های کلیدی: ستون نوسان گر آب، دینامیک سیالات محاسباتی، موج، شبیه‌سازی

Numerical Investigation of the Performance of Oscillating Water Column (OWC) Device under the Waves Character on the Southern Coast of Iran

M. Hashemi

School of New Technologies, Iran University of Science & Technology, Tehran, Iran

S. Sadeghzadeh

School of New Technologies, Iran University of Science & Technology, Tehran, Iran

Abstract

In this study, numerical simulation of oscillating water column device is presented using a finite-volume method. For this purpose, the computational fluid dynamic model based on Navier-Stokes equations, was used. The cylindrical OWC was used and this kind of device has a symmetric ability for dealing with the waves. Analyses are divided into two sections. In the first section, the waves variables obtained from both experimental and numerical research with simulated waves are compared and similar results are obtained. In the second section, an investigation of the chamber geometry, the wave characters on the southern coast of Iran and different depths of submersion of OWC that provide the best device performance is carried out. It is found that both the different wave characters and depths of submersion of OWC tests indicate little influence over the device performance. Indeed, the device performance with a constant diameter has improved about 2.94 percent, with changes in amplitude and period. Also, the chamber diameter tests indicated that the device geometry has greatest influence in its performance, so that, when the device diameter has increased two and four times, the device performance has increased by 2.54 and 10.27 times, respectively.

Keywords: Oscillating Water Column (OWC), Computational Fluid Dynamics (CFD), Wave, Simulation

References:

1. Falcao

2. Oscillating Water Column

3. Overtopping

* توپینده مکانیک کننده، آدرس پست الکترونیکی: sadeghzadeh@iust.ac.ir
ضریب رابطه فشار سطحی سیال می‌باشد و مقادیر 0 و 1 را اخیر
می‌کند.
معادله حجم چریان:
\[V_P \frac{dP}{dA} + V \cdot (AUF) = 0 \] (5)
که در این رابطه (AUF) میان‌ست سطح مساحت جریان در جدای
فی (x,y,z) معادله سرعت در جهات (U) و (x,y,z) سیال که مقادیری بین (0,1) دارد. در این پژوهش از مدل
استفانگی دو معادلاتی انجام گرفت. از مدل رابطه
\[k \cdot e = \varepsilon_R \] (6)
در این مدل یک معادله انتقال اضافی باید شود. این
مدل انتسابی دیگر مدل RNG و k-ε استفاده می‌شود. این
مدل انتسابی مدل RNG از معادلات مشابه مدل
و به عنوان مدیل انتسابی استفاده شده است. که با دارای
یک انتساب-کرایه‌ای یا x
و یک انتساب-کرایه‌ای یا x
می‌باشد

\[\eta(x,t) = A \cos(kx - \omega t + \phi) \] (6)
\[\psi(x,t) = u(x,t) \sin(kx - \omega t + \phi) \] (7)
که در این روابط A و \(\omega \) دو ضریب کرایه‌ای حجم و کرایه‌ای حجم به
با دسته‌بندی شده است. که با دارای

\[\frac{\partial \phi}{\partial t} + u \frac{\partial \psi}{\partial x} + v \frac{\partial \psi}{\partial y} + w \frac{\partial \psi}{\partial z} - \frac{\lambda}{\rho} \frac{\partial^2 \psi}{\partial x^2} = \frac{1}{\rho} \frac{\partial}{\partial x} (\rho u u) \] (2)
\[\frac{\partial \theta}{\partial t} + u \frac{\partial \theta}{\partial x} + v \frac{\partial \theta}{\partial y} + w \frac{\partial \theta}{\partial z} - \frac{\lambda}{\rho} \frac{\partial^2 \theta}{\partial x^2} = \frac{1}{\rho} \frac{\partial}{\partial x} (\rho \theta u) \] (3)
\[\frac{\partial \theta}{\partial t} + u \frac{\partial \theta}{\partial x} + v \frac{\partial \theta}{\partial y} + w \frac{\partial \theta}{\partial z} - \frac{\lambda}{\rho} \frac{\partial^2 \theta}{\partial x^2} = \frac{1}{\rho} \frac{\partial}{\partial x} (\rho \theta u) \] (4)

شکل 1- شرایط مرزی شبیه‌سازی در اطراف ستون نوسان گر
\(\partial \phi / \partial \delta \) به سیال افتاده‌ای
\(\partial \phi / \partial \delta \) شتاب تقلیل در جهات (Gx, Gy, Gz)
\(\partial \phi / \partial \delta \) و
\(\partial \phi / \partial \delta \) شباهت‌های افزایش (Fx, Fy, Fz)
\(\partial \phi / \partial \delta \) قسمتی از فضای داخل شبکه حاصل از سیال افتاده‌ای
\(\partial \phi / \partial \delta \) و
\(\partial \phi / \partial \delta \) سرعت سیال نسبت به جهت متحرک و در سه جهت می‌باشد.

\[V_P \frac{dP}{dA} + V \cdot (AUF) = 0 \] (5)

\[k \cdot e = \varepsilon_R \] (6)

\[\eta(x,t) = A \cos(kx - \omega t + \phi) \] (6)

\[\psi(x,t) = u(x,t) \sin(kx - \omega t + \phi) \] (7)

\[\frac{\partial \phi}{\partial t} + u \frac{\partial \psi}{\partial x} + v \frac{\partial \psi}{\partial y} + w \frac{\partial \psi}{\partial z} - \frac{\lambda}{\rho} \frac{\partial^2 \psi}{\partial x^2} = \frac{1}{\rho} \frac{\partial}{\partial x} (\rho u u) \] (2)

\[\frac{\partial \theta}{\partial t} + u \frac{\partial \theta}{\partial x} + v \frac{\partial \theta}{\partial y} + w \frac{\partial \theta}{\partial z} - \frac{\lambda}{\rho} \frac{\partial^2 \theta}{\partial x^2} = \frac{1}{\rho} \frac{\partial}{\partial x} (\rho \theta u) \] (3)

\[\frac{\partial \theta}{\partial t} + u \frac{\partial \theta}{\partial x} + v \frac{\partial \theta}{\partial y} + w \frac{\partial \theta}{\partial z} - \frac{\lambda}{\rho} \frac{\partial^2 \theta}{\partial x^2} = \frac{1}{\rho} \frac{\partial}{\partial x} (\rho \theta u) \] (4)

csn مدل

1- مدل آزمایشگاهی

برای کالباسکون مدل از تابی آزمایشگاهی لوپ و همکاران (2009) استفاده شد. فرمول آزمایشگاهی دارای 20 متر طول و 20 سانتی متر عرض و عمق 40 سانتی متر در زمان آزمایش تنظیم شده است.

یک لوله نتیجه ی مقطع دیامتری به عنوان دستگاه سیاه نیومن آب در این آزمایش مورد استفاده قرار گرفت. استفاده شده در فاصله 9 متری از انتهای قرار داده شده در داخل دشت 24 میلی‌متر و ضخامت لوله استفاده 4 ملی‌متر. ارتفاع کل از آن 51 سانتی‌متر و عمق مطلق آن 18 سانتی‌متر می‌باشد. به انتهای لوله باز از طریق اتصال در بالای آن به سمت سرف هر 4 بار است. مدل آزمایشگاهی از حدود فراوانی 1/5 0.15 هرث و ارتفاع موج درون دشتگاه به دقت شده در فرمول گرفته است که در مدل به دست آمد. به همراه دو دستگاه همگرایی می‌باشد.

جدول ۲- مقایسه شیب سازی شده حداکثر و حداکثر ارتفاع در دامنه موج درون دشتگاه مقدار حداکثر حداکثر

<table>
<thead>
<tr>
<th></th>
<th>17/75</th>
<th>24/179</th>
<th>39/291</th>
</tr>
</thead>
<tbody>
<tr>
<td>درشت</td>
<td>0/250</td>
<td>1/72</td>
<td>2/12</td>
</tr>
<tr>
<td>متوسط</td>
<td>0/240</td>
<td>1/72</td>
<td>2/12</td>
</tr>
<tr>
<td>ریز</td>
<td>0/240</td>
<td>1/72</td>
<td>2/12</td>
</tr>
</tbody>
</table>

جدول ۱- مشخصات شبکه‌های محاسباتی

<table>
<thead>
<tr>
<th>NT</th>
<th>NCD</th>
<th>δC</th>
<th>δC</th>
<th>δC</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>y</td>
<td>x</td>
<td>z</td>
<td>y</td>
</tr>
<tr>
<td>8800</td>
<td>12.00</td>
<td>33.00</td>
<td>23.00</td>
<td>12.00</td>
</tr>
<tr>
<td>15944</td>
<td>12.00</td>
<td>33.00</td>
<td>23.00</td>
<td>12.00</td>
</tr>
<tr>
<td>25888</td>
<td>12.00</td>
<td>33.00</td>
<td>23.00</td>
<td>12.00</td>
</tr>
</tbody>
</table>

در ادامه و بعد از مشخص شدن شبکه مناسب (L3) به مقدار δC به دست آمده از δC را نتایج جدول از شکل‌های آشکاری دو معادله: k و e نمودار شیب‌سازی یا شده تغییرات سطح آب در دون دشتگاه با استفاده از این مدل می‌باشد. نتایج آزمایشگاهی پوشگیری سطح آب در دون دشتگاه به دست آمده از δC را نتایج آزمایشگاهی مورد مقدار قرار گرفت (شکل 3). همچنین از این خطاهای جلوگیری می‌توانیم روش‌هایی برای مقایسه نتایج دو مدل آزمایشگاهی استفاده گردد.

\[
RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (O_i - P_i)^2}
\]

\[
RE = \frac{RMSE}{P_i}
\]

که در جدول FQδ مدل δ به معنی مقدار مشاهده شده و δ به ترتیب مقیاس و Pi وOi

δ که در جدول δ فقیه δ به معنی δ به معنی مقدار مشاهده شده و δ به ترتیب مقیاس و Pi وOi

1 RMSE 2 RE

شکل 4- نمودار نتایج 20 روش در ردیابی می‌باشد.

\[
\delta Nc = \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{P_i}
\]

δ که در جدول δ فقیه δ به معنی δ به ترتیب مقیاس و Pi وOi

1 RMSE 2 RE

شکل 4- نمودار نتایج 20 روش در ردیابی می‌باشد.

\[
\delta Nc = \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{P_i}
\]

δ که در جدول δ فقیه δ به معنی δ به ترتیب مقیاس و Pi وOi

1 RMSE 2 RE

شکل 4- نمودار نتایج 20 روش در ردیابی می‌باشد.

\[
\delta Nc = \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{P_i}
\]

δ که در جدول δ فقیه δ به معنی δ به ترتیب مقیاس و Pi وOi

1 RMSE 2 RE

شکل 4- نمودار نتایج 20 روش در ردیابی می‌باشد.

\[
\delta Nc = \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{P_i}
\]

δ که در جدول δ فقیه δ به معنی δ به ترتیب مقیاس و Pi وOi

1 RMSE 2 RE

شکل 4- نمودار نتایج 20 روش در ردیابی می‌باشد.

\[
\delta Nc = \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{P_i}
\]

δ که در جدول δ فقیه δ به معنی δ به ترتیب مقیاس و Pi وOi

1 RMSE 2 RE

شکل 4- نمودار نتایج 20 روش در ردیابی می‌باشد.

\[
\delta Nc = \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{P_i}
\]

δ که در جدول δ فقیه δ به معنی δ به ترتیب مقیاس و Pi وOi

1 RMSE 2 RE

شکل 4- نمودار نتایج 20 روش در ردیابی می‌باشد.

\[
\delta Nc = \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{P_i}
\]

δ که در جدول δ فقیه δ به معنی δ به ترتیب مقیاس و Pi وOi

1 RMSE 2 RE

شکل 4- نمودار نتایج 20 روش در ردیابی می‌باشد.
4-2 ساخت سنجشی با مدل عدید و ابعاد واقعی
برای کلاسیفیکاسیون مدل در ابعاد واقعی از نمودارهای عدید سنسور تورک و همکاران (2011) که به کار کردن روش پارابولیک نوشتار (1988) صحت سنجشی شده و در ابعاد واقعی است. استفاده شد. شبیهسازی نسبت سنسور تورک و همکاران (2011) با به کار بردن حدود 7000 سول محاسباتی و در زمان شیب سازی 125 تا 120 تایه انجام گرفت. دستکای سنسور تورک آب شبیهسازی تهیه در این تحقیق دارای ارتفاع و قطر 105 متراً از سقز است و برای مدل محاسباتی

![شکل 2 - نمودار شبیهسازی شده توزیع سطح در رون دستگاه در سه نوع شبکه محاسباتی](image)

جدول 3 - حالت مدل‌های آزمایشگاهی

<table>
<thead>
<tr>
<th>شکل</th>
<th>حالت D</th>
<th>حالت C</th>
<th>حالت z</th>
<th>حالت x</th>
<th>حالت y</th>
<th>حالت ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
</tr>
<tr>
<td>S2</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
</tr>
<tr>
<td>S3</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
</tr>
</tbody>
</table>

جدول 4 - مشخصات شبکه‌های محاسباتی

<table>
<thead>
<tr>
<th>NT</th>
<th>NC</th>
<th>D</th>
<th>z</th>
<th>x</th>
<th>y</th>
<th>ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>778</td>
<td>100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
</tr>
<tr>
<td>1525</td>
<td>100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
</tr>
<tr>
<td>625</td>
<td>100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
<td>1/100</td>
</tr>
</tbody>
</table>

1 Kaimeni

![شکل 3 - نمودار شبیهسازی شده تغییرات سطح در رون دستگاه با استفاده از مدل‌های آزمایشگاهی و k-e و RNG و مقایسه آن با نتایج آزمایشگاهی لویز و همکاران (2009)](image)

ملاحظه کنید که در شکل 3 و جدول 3 دیده می‌شود که مدل تحقیق مناسب‌تر را با مدل آزمایشگاهی نشان می‌دهد اما در خطا...
همچنین از نمودارهای توزیع اندازه سرعت درون دستگاه در فاز 280 درجه براً رندیایی مطابق شکل هم‌مانندی استفاده گردید (شکل 4). همانطور که در نمودار شکل 4 مشاهده می‌شود، در نمودارهای توزیع اندازه سرعت در هر سه شکل روند همگرایی به سمت شکل زیرتر و جلوگیری دارد.

در ادامه و بعده مشخص شدن شکل مناسب (S3)، به مطابق مقایسه نتایج حاصل از مدل‌های انشافی و مدل‌های و (سایر آزمایشگاه‌ها) نشان داده می‌شود اما در روند تغییرات و همچنین مقادیر حاصل. مدل دو مدل‌های و (پیش‌بینی و به‌طور مکانیکی) نوعی بهتری از مدل از دستیابی سرعت درون و همگرایی (2011) نشان می‌دهد که به صحت مدل‌های مناسب در مقایسه نتایج بدست آمده با این آزمایشگاه‌ها انجام شده توسط لویز و همکاران (2009) و با مشاهده شکل و مدل انشافی مناسب در ایجاد انعطاف‌پذیری مقایسه با نتایج سرعت (S3) در ادامه براً رندیایی استفاده سستون نوسان گر تحت امواج موجود در مواحل ایران و با ابتدای مختلف دستگاه برداخته و نتایج آن ثبت می‌گردد.

جدول 5- مقادیر حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه و مقدار خطا شیب‌های شیبی‌سازی برای شکلهای مختلف

<table>
<thead>
<tr>
<th>مدل</th>
<th>حداکثر</th>
<th>حداقل</th>
<th>دامنه موج درون دستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside OWC (Sen Turk)</td>
<td>1.5</td>
<td>0.5</td>
<td>0.0-1.0</td>
</tr>
<tr>
<td>Outside OWC (Sen Turk)</td>
<td>1.2</td>
<td>0.3</td>
<td>0.0-0.7</td>
</tr>
<tr>
<td>K-e Model (This Study)</td>
<td>1.4</td>
<td>0.6</td>
<td>0.0-0.8</td>
</tr>
<tr>
<td>RNG Model (This Study)</td>
<td>1.3</td>
<td>0.5</td>
<td>0.0-0.7</td>
</tr>
</tbody>
</table>

جدول 4- حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه

اندازه‌گیری، دستگاه، شناخت مدل شیب‌های انشافی و مدل حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه (S3).

جدول 3- مقایسه نتایج حاصل از مدل‌های مناسب و (سایر آزمایشگاه‌ها) نشان داده می‌شود اما در روند تغییرات و همچنین مقادیر حاصل. مدل دو مدل‌های و (پیش‌بینی و به‌طور مکانیکی) نوعی بهتری از مدل از دستیابی سرعت درون و همگرایی (2011) نشان می‌دهد که به صحت مدل‌های مناسب در مقایسه نتایج بدست آمده با این آزمایشگاه‌ها انجام شده توسط لویز و همکاران (2009) و با مشاهده شکل و مدل انشافی مناسب در ایجاد انعطاف‌پذیری مقایسه با نتایج سرعت (S3) در ادامه براً رندیایی استفاده سستون نوسان گر تحت امواج موجود در مواحل ایران و با ابتدای مختلف دستگاه برداخته و نتایج آن ثبت می‌گردد.

جدول 5- مقادیر حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه و مقدار خطا شیب‌های شیبی‌سازی برای شکلهای مختلف

<table>
<thead>
<tr>
<th>مدل</th>
<th>حداکثر</th>
<th>حداقل</th>
<th>دامنه موج درون دستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside OWC (Sen Turk)</td>
<td>1.5</td>
<td>0.5</td>
<td>0.0-1.0</td>
</tr>
<tr>
<td>Outside OWC (Sen Turk)</td>
<td>1.2</td>
<td>0.3</td>
<td>0.0-0.7</td>
</tr>
<tr>
<td>K-e Model (This Study)</td>
<td>1.4</td>
<td>0.6</td>
<td>0.0-0.8</td>
</tr>
<tr>
<td>RNG Model (This Study)</td>
<td>1.3</td>
<td>0.5</td>
<td>0.0-0.7</td>
</tr>
</tbody>
</table>

جدول 4- حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه

اندازه‌گیری، دستگاه، شناخت مدل شیب‌های انشافی و مدل حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه (S3).

جدول 3- مقایسه نتایج حاصل از مدل‌های مناسب و (سایر آزمایشگاه‌ها) نشان داده می‌شود اما در روند تغییرات و همچنین مقادیر حاصل. مدل دو مدل‌های و (پیش‌بینی و به‌طور مکانیکی) نوعی بهتری از مدل از دستیابی سرعت درون و همگرایی (2011) نشان می‌دهد که به صحت مدل‌های مناسب در مقایسه نتایج بدست آمده با این آزمایشگاه‌ها انجام شده توسط لویز و همکاران (2009) و با مشاهده شکل و مدل انشافی مناسب در ایجاد انعطاف‌پذیری مقایسه با نتایج سرعت (S3) در ادامه براً رندیایی استفاده سستون نوسان گر تحت امواج موجود در مواحل ایران و با ابتدای مختلف دستگاه برداخته و نتایج آن ثبت می‌گردد.

جدول 5- مقادیر حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه و مقدار خطا شیب‌های شیبی‌سازی برای شکلهای مختلف

<table>
<thead>
<tr>
<th>مدل</th>
<th>حداکثر</th>
<th>حداقل</th>
<th>دامنه موج درون دستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside OWC (Sen Turk)</td>
<td>1.5</td>
<td>0.5</td>
<td>0.0-1.0</td>
</tr>
<tr>
<td>Outside OWC (Sen Turk)</td>
<td>1.2</td>
<td>0.3</td>
<td>0.0-0.7</td>
</tr>
<tr>
<td>K-e Model (This Study)</td>
<td>1.4</td>
<td>0.6</td>
<td>0.0-0.8</td>
</tr>
<tr>
<td>RNG Model (This Study)</td>
<td>1.3</td>
<td>0.5</td>
<td>0.0-0.7</td>
</tr>
</tbody>
</table>

جدول 4- حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه

اندازه‌گیری، دستگاه، شناخت مدل شیب‌های انشافی و مدل حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه (S3).

جدول 3- مقایسه نتایج حاصل از مدل‌های مناسب و (سایر آزمایشگاه‌ها) نشان داده می‌شود اما در روند تغییرات و همچنین مقادیر حاصل. مدل دو مدل‌های و (پیش‌بینی و به‌طور مکانیکی) نوعی بهتری از مدل از دستیابی سرعت درون و همگرایی (2011) نشان می‌دهد که به صحت مدل‌های مناسب در مقایسه نتایج بدست آمده با این آزمایشگاه‌ها انجام شده توسط لویز و همکاران (2009) و با مشاهده شکل و مدل انشافی مناسب در ایجاد انعطاف‌پذیری مقایسه با نتایج سرعت (S3) در ادامه براً رندیایی استفاده سستون نوسان گر تحت امواج موجود در مواحل ایران و با ابتدای مختلف دستگاه برداخته و نتایج آن ثبت می‌گردد.

جدول 5- مقادیر حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه و مقدار خطا شیب‌های شیبی‌سازی برای شکلهای مختلف

<table>
<thead>
<tr>
<th>مدل</th>
<th>حداکثر</th>
<th>حداقل</th>
<th>دامنه موج درون دستگاه</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside OWC (Sen Turk)</td>
<td>1.5</td>
<td>0.5</td>
<td>0.0-1.0</td>
</tr>
<tr>
<td>Outside OWC (Sen Turk)</td>
<td>1.2</td>
<td>0.3</td>
<td>0.0-0.7</td>
</tr>
<tr>
<td>K-e Model (This Study)</td>
<td>1.4</td>
<td>0.6</td>
<td>0.0-0.8</td>
</tr>
<tr>
<td>RNG Model (This Study)</td>
<td>1.3</td>
<td>0.5</td>
<td>0.0-0.7</td>
</tr>
</tbody>
</table>

جدول 4- حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه

اندازه‌گیری، دستگاه، شناخت مدل شیب‌های انشافی و مدل حداکثر و حداقل ارتفاع در دامنه موج درون دستگاه (S3).

جدول 3- مقایسه نتایج حاصل از مدل‌های مناسب و (سایر آزمایشگاه‌ها) نشان داده می‌شود اما در روند تغییرات و همچنین مقادیر حاصل. مدل دو مدل‌های و (پیش‌بینی و به‌طور مکانیکی) نوعی بهتری از مدل از دستیابی سرعت درون و همگرایی (2011) نشان می‌دهد که به صحت مدل‌های مناسب در مقایسه نتایج بدست آمده با این آزمایشگاه‌ها انجام شده توسط لویز و همکاران (2009) و با مشاهده شکل و مدل انشافی مناسب در ایجاد انعطاف‌پذیری مقایسه با نتایج سرعت (S3) در ادامه براً رندیایی استفاده سستون نوسان گر تحت امواج موجود در مواحل ایران و با ابتدای مختلف دستگاه برداخته و نتایج آن ثبت می‌گردد.
ناخیز بودن اختلاط هوا و آب ترکیبی 3 در شکل 1 نشان داده شده است. مقادیر این سطح در این ترکیب نشان دهنده خروج هوا از دستگاه یا هوای فلزی و مقدار به شدت نشان دهنده ورود هوا به هواپیمایی می‌باشد.

دستگاه طرفی به سلول‌های دستگاه یک مقادیر نیازمند به یک سیستم مالیدار در دستگاه که مراحل تغییرات داخلی دستگاه در حالت برش از این مقادیر است. پرداختن به دستگاهی با توجه به نوسانات نسبت به سطح متوسط آب در دستگاه و هوای جابجا شده به صورت زیر می‌باشد:

\[
P_c = \frac{Q_m}{\sqrt{\pi}} \int_{S_i} n ds
\]

(11)

که در این رابطه \(P_c \) فشار مجموع درون دستگاه، \(Q_m \) مقدار سطحی، \(S_i \) سطح متشکل از آب درون دستگاه و \(n \) سطح نشان دهنده تغییرات داخلی دستگاه می‌باشد. همچنین نقدی برای این رابطه تغییرات دستگاهی در حالت برش در دستگاه 10 به مراتب بیشتر از دیگر حالات بوده است. حجم آب و هوای جابجا شده در هر دستگاه برابر بوده و در نظر گرفته شده است.

![شکل 7 - نمودار تغییرات حجم آب در درون سه دستگاه با قطر داخلی سطح میان](image)

5- مطالعه امواج محفظه

برای این محیط از تحقیق به بررسی اثر امواج ناشی از یاد با درون دستگاه مخزن دندانگر آب پرداخته شد. برای این متریال از امواج موجود در سواحل ایران استفاده شد. برای این امواج روند توانا امواج در سواحل جنوب ایران در حدود 10 تا 20 ثانیه می‌باشد و همچنین در نظر گرفته شده که در سواحل ایران 3 متر می‌باشد (بررسی داده‌های مرکز مطالعات طبیعی سروس غیره‌شیمیایی ایران). از همین مرجع مشخص در شیوه قرارگیری در دستگاه نشان داده شده که دلیل تغییر در مختصات حرفه‌ای از اثرات شیمیایی و رسانه‌ای ناشی از دره‌های مکانیکی هست. سپس درک این امواج دچار منفعت می‌باشد که به مدت 4 ثانیه شیمیایی است. به فعالیت کردن، همچنین برای کاهش محاسبات و انجام حالتی مانند در دستگاه سنتی از نوسان‌های غیر متوازن گرفته شده. نمودار شیمیایی دستگاه 10 متری می‌باشد.

\[V(t) = A_{owc}(t) \]

(10)

در این رابطه \(V(t) \) حجم آب درون دستگاه در زمان‌های مختلف، \(A_{owc} \) سطح مقطع داخلی دستگاه و \(t \) تغییرات سطح آب درون دستگاه و در زمان‌های مختلف می‌باشد.

![شکل 6 - نمودار شیمیایی دستگاه‌های دستگاه با قطر داخلی سطح میان](image)

6- نمودار دستگاه‌های دستگاه با قطر داخلی سطح میان

در شکل 7 نمودار مربوط به این تغییرات نشان داده شده است. همان‌طور که می‌دانید تاثیر سطح مقطع بر روی جابجایی حجم آب به‌طور کامل به طور کامل در حال حاضر نمی‌باشد. S3D10 در زمان‌های مختلف، حجم آب آن 5 متر می‌باشد. S3D5 در زمان‌های مختلف، حجم آب آن 3 متر می‌باشد. S3D2.5 در زمان‌های مختلف، حجم آب آن 1.5 متر می‌باشد.

1 Exhalation

2 Inhalation
آزمایش و خصوصیات امواج مورد استفاده در این شیب‌سازی در جدول 7 نشان داده شده است.

در شکل 9 نمودارهای تغییرات سطح آب در درون دستگاه S3T5 و S3T4 سریال داده شده است. همانطور که مشاهده می‌شود به دلیل اختلاف در میزان دوره تناوب و ارتفاع موج ورودی، روند تغییرات سطح آب در درون دستگاه با یکدیگر مقایسه می‌شود. اما تاکنون قابل توجه می‌باشد که نمودار نوسان در دستگاه با میزان موج ورودی است که همانطور که مشاهده می‌گردد با کوچکتردن شدت ارتفاع موج، کاهش دوره تناوب موج ورودی و همچنین ارتفاع سطح آب در درون دستگاه S3T3 کاهش می‌یابد.تا ناجیک مشاهده می‌گردد در حالت حداکثر نوسان در درون دستگاه با دامنه حداکثر موج ورودی که 0.5 متر دارای برابری می‌گردد. برای درک بهتر سنتن نمودارهای تغییرات حجم آب و هوا در درون دستگاه برای هر سه نو نمی‌تواند به فرض ناجی بودن اختلاف‌ها و آب‌پریشی شد (شکل‌های 10 و 11). برای این منظور، و مقایسه با سایر حالات، این تغییرات در هر سه نو موج در ناز رسانایی موج بزرگ‌تر بیش از 5 نوین در نظر گرفته شد و نوسانات در باره مربوط به هر سه نو نمودار گردید. اما میزان تغییرات حجم هوا در فاصله هواگیری و هواپیما در داخل دستگاه در هر سه حالت انداره‌گیری شد. در حالت S3T5 این مقایسه 35 متر مکعب بیش از S3T4 و S3T4 آمد و برای حالت S3T3 این مقایسه 24 و 32 متر مکعب محسوب شد. همانطور که آموزش داده شده است، با تغییر در مشخصات موج ورودی به دستگاه حجم هوا جابه‌جا می‌شود و در فاصله هواگیری و هواپیما و در واقع عملکرد دستگاه برای تمام حالت‌ها تقیی‌ترین بوده و اختلاف‌زدایی در یک‌پاره مشخص با

جدول 2- نام آزمایش و خصوصیات امواج

| آزمایش | دوره ارتفاع | دوره ارتفاع | ارتفاع نوبت | ارتفاع نوبت | مقدار
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S3T3</td>
<td>5/6</td>
<td>7/8</td>
<td>4/5</td>
<td>3/4</td>
<td>1/2</td>
</tr>
<tr>
<td>S3T4</td>
<td>5/6</td>
<td>7/8</td>
<td>4/5</td>
<td>3/4</td>
<td>1/2</td>
</tr>
<tr>
<td>S3T5</td>
<td>5/6</td>
<td>7/8</td>
<td>4/5</td>
<td>3/4</td>
<td>1/2</td>
</tr>
</tbody>
</table>

شکل 10- نمودار تغییرات حجم آب در درون دستگاه حاصل از امواج منفی

شکل 9- نمودار شیب‌سازی شده تغییرات سطح آب در درون دستگاه

شکل 11- نمودار تغییرات حجم هوا در درون دستگاه حاصل از امواج
289

شکل ۱۲ - نمای شماتیک دستگاه ستون نوسان‌گر آب با عمق‌های مختلف استقرار مورد استفاده در شیمی‌سازی

در ادامه برای بررسی عملکرد دستگاه در عمق‌های مختلف استقرار از نمودارهای تغییرات حجم آب در درون دستگاه و حجم هوا درون دستگاه استفاده شده که در شکل‌های ۱۴ و ۱۵ نمایش داده شده است. در نهایت میزان جابجایی هوا در درون دستگاه تحت دو عمل هوایی و هوادوی در یک دوره زمانی مورد بررسی قرار گرفت.

این مطالعه میزان اثر عمق‌های مختلف استقرار (۵ و ۷ متر) بر عملکرد دستگاه ستون نوسان‌گر آب در استقرار حالت‌های سیال (S3D5) بوده و نتایج نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۱۳ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۱۳ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۱۴ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۱۴ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۱۵ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۱۵ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۱۶ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۱۶ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۱۷ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۱۷ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۱۸ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۱۸ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۱۹ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۱۹ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۲۰ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۲۰ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۲۱ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۲۱ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۲۲ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۲۲ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۲۳ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۲۳ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۲۴ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۲۴ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.

شکل ۲۵ - نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۷ متری

(۲) عمق‌های مختلف

در هیچ حالتی نمودار نسبت حجم آب در درون دستگاه حاصل از استقرار ۵ و ۷ متری که در شکل‌های ۲۵ نمایش داده شده است نشان می‌دهد که افزایش عمق آب از ۵ به ۷ متر باعث افزایش عملکرد دستگاه می‌شود.
6- سیاستگذاری
این کار با همکاری‌های مرکز رشد انرژی دریا به انجام رسید.
لزوم است در اینجا از حمایت‌های بی‌دریگ این مرکز کمال تشکر و
قدربافی صوت یابد.

7- مراجع
absorbing from sea waves on the southern coast of Iran using
numerical modeling, *Iranian Journal of Marine Science
فارسی)
Renewable and Sustainable Energy Reviews, 14, pp. 899-918,
2010.
C., & Falcão A. D. O., Experimental and numerical investigation
of non-predictive phase-control strategies for a point-absorbing
wave energy converter. *Ocean Engineering*, 36(5), pp. 386-402,
2009.
interaction between water waves and the oscillating water column
wave energy device. *Mathematical and computational
applications*, 16(3), 630, 2011.
analysis of the oscillating water column wave energy extraction
oscillating water column device. *Applied Ocean Research*, 17(3),
[7] Testeira P. R., Davyt D. P., Didier E., & Ramalhais R.,
Numerical simulation of an oscillating water column device using
a code based on Navier–Stokes equations. *Energy*, 61, pp. 513-
530, 2013.
[8] Bouali B., & Larbi S., Contribution to the geometry
optimization of an oscillating water column wave energy converter.
simulation of wave interaction with one oscillating water column in
two dimensional vertical plane. *International Journal of
فارسی)
simulation of wave interaction with oscillating water column in
one dimension, *International Journal of Maritime
Technology*, 1(20), pp. 61-68, 2015. (in Persian
فارسی)
Products In The Cold Chamber Die Casting Process*, Presented in
Partial Fulfillment of the Requirements for the Degree of Doctor
of Philosophy, The Ohio State University, 2004.
Santa Fe, NM, 2011.

5- نتیجه‌گیری
با توجه به نتایج تحقیق اثر عمل استراق و تغییر در مشخصات
امواج ناتمام زیادی بر عملکرد دستگاه ناکامی و بیشتری اثر را سطح
مقطع و ابعاد دستگاه ستون را گزارش داده می‌شود. با طولیکه با
افزایش ۴ برای در پرداوق دستگاه، میزان عملکرد دستگاه حدود
11 برای مسیر شکل ۱۶ می‌شود. این به دلیل تغییر داشته که در این نوع از
تبدیل و اندازه‌ها دارای به دلیل شکل استوانه‌ای، به امواج تناور
زیادی بر عملکرد این نتایج داشت و نگرانی‌ای می‌توان شد.
شایگی را در عمل نیز اندازه‌داد. در واقع می‌توان گفت برای سوال
جنوبی ایران که دارای امواج با ارتفاع زیادی نیستند، این دستگاه اگر در
امواج بزرگ‌ساخته شود می‌توان دارای عملکرد بالاتری نیست
به سبب حالت‌ها بان‌های. زیرا دستگاه ناکامی می‌باشد. نهای در صورتی می‌توان عملکرد بالایی را در
امواج ناکامی کرد همراه با افزایش ارتفاع، دوره ثانوی امکان کاهش
پایین باشد.