Multi-Objective Optimization of Tapered Thin-Walled Tube with Indentation for Crashworthiness Considering Different Surrogate Models

M. Asgari
Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

M. A. Jamshidi
Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

A. Babaee
Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran

Abstract
In this paper, multi-objective optimization of axisymmetric thin-walled tapered with different types of indentation under axial impacts has been considered. Geometry of tapered thin-walled tube as well as its indentation in order to achieve maximum specific energy absorption (SEA) and minimum peak crushing force (PCF) have been studied by defining height, radius of tapered, angle of tapered, thickness, radius of initiator and shape of initiator as main input parameters. The sample points created based on design of experiment (DOE) modeled and analyzed in explicit dynamic finite element software. Four types of most efficient metamodels including Kriging, feed forward Neural network, radial basis Neural network, response surface model are implemented for predicting responses. The obtained results show that neural network (FF) has minimum mean squared (MMS) error between other methods. With these metamodels and Multiobjective Genetic algorithm optimum geometries have been achieved. Results show that the triangular shape of initiator could increase the SEA and the circular shape of initiator could decrease PCF significantly. Three numbers of metamodels predicted that optimum geometry for maximum SEA has lowest height, radius of tapered and thickness in design space, and for the PCF, height as opposed to the SEA should be maximum but thickness for the both SEA and PCF should be same.

Keywords: Energy Absorption, Metamodel, Crashworthiness, Thin-walled Tapered Tube, Explicit FM.
شکل 1 حالت‌های مختلف شیر شرور کنده

کیفیت سازه جاذب انرژی یا در بازدهی انرژی جذب شده به واحد حجم (ارزی مخربی) یا توربین شرور کننده فوریش بررسی و محاسبه می‌شود. برای سنجش این یا در بازدهی انرژی جذب مورد بررسی داده‌های مشخص خود زنده به استفاده از استاندارد (ECE-R29).

1. Multi-connector
2. Symmetric
3. Axisymmetric
4. Super Folding Element (SFE)
5. Extensional
6. Quasi-extensional
7. Inextensional
8. Initiator

Meta-model
9. Surrogate model
10. Design of experiment (DOE)
11. Specific Energy Absorption (SEA)
12. Peak Force (PCF)
1. پارامترهای هندسی یک جاده مغناطیسی شامل محدودیت‌های زیر رخ داده‌اند:

\[185 \leq x \leq 200 \]
\[70 \leq x \leq 80 \]
\[10 \leq y \leq 15 \]
\[5 \leq z \leq 10 \]

2. مدل‌سازی اجرا مجدد

3. مدل‌سازی ANSYS Explicit

4. چک‌سازی معانی‌های شبیه‌سازی

5. پارامترهای هندسی یک جاده مغناطیسی شامل محدودیت‌های زیر رخ داده‌اند:

\[185 \leq x \leq 200 \]
\[70 \leq x \leq 80 \]
\[10 \leq y \leq 15 \]
\[5 \leq z \leq 10 \]

6. پارامترهای هندسی یک جاده مغناطیسی شامل محدودیت‌های زیر رخ داده‌اند:

\[185 \leq x \leq 200 \]
\[70 \leq x \leq 80 \]
\[10 \leq y \leq 15 \]
\[5 \leq z \leq 10 \]

7. پارامترهای هندسی یک جاده مغناطیسی شامل محدودیت‌های زیر رخ داده‌اند:

\[185 \leq x \leq 200 \]
\[70 \leq x \leq 80 \]
\[10 \leq y \leq 15 \]
\[5 \leq z \leq 10 \]

8. پارامترهای هندسی یک جاده مغناطیسی شامل محدودیت‌های زیر رخ داده‌اند:

\[185 \leq x \leq 200 \]
\[70 \leq x \leq 80 \]
\[10 \leq y \leq 15 \]
\[5 \leq z \leq 10 \]

9. پارامترهای هندسی یک جاده مغناطیسی شامل محدودیت‌های زیر رخ داده‌اند:

\[185 \leq x \leq 200 \]
\[70 \leq x \leq 80 \]
\[10 \leq y \leq 15 \]
\[5 \leq z \leq 10 \]

10. پارامترهای هندسی یک جاده مغناطیسی شامل محدودیت‌های زیر رخ داده‌اند:

\[185 \leq x \leq 200 \]
\[70 \leq x \leq 80 \]
\[10 \leq y \leq 15 \]
\[5 \leq z \leq 10 \]

11. پارامترهای هندسی یک جاده مغناطیسی شامل محدودیت‌های زیر رخ داده‌اند:

\[185 \leq x \leq 200 \]
\[70 \leq x \leq 80 \]
\[10 \leq y \leq 15 \]
\[5 \leq z \leq 10 \]

12. پارامترهای هندسی یک جاده مغناطیسی شامل محدودیت‌های زیر رخ داده‌اند:

\[185 \leq x \leq 200 \]
\[70 \leq x \leq 80 \]
\[10 \leq y \leq 15 \]
\[5 \leq z \leq 10 \]
پارامترهای دیگر از جمله تعادل لولای پلی‌اتیک و طول هر کدام از نیز
می‌باشد توجه به شکل 1A محسوب می‌گردد. با حل مسئله ووکسی به
درو روش تحلیلی و مدل محدود خوایش داشت:

\[E_{\text{analytic}} = 1143.01 \text{ MPa} \]
\[E_{\text{FEM}} = 1294.2 \text{ MPa} \]
\[\text{درصد خطا} = 13.22 \% \]

به طور ترکیبی هم‌مانند که ملاحظه می‌شود مدل و حل مدل محدود در
مقاله به حالت تحلیلی از دقت مناسبی برخورد است.

2-3 صفحه گذاری به روش تجربی
در این بخش صفحه گذاری مناسب‌سازی مدل به روش اجرا محدود با
استفاده از نتایج تجربی موجود در مقالات مناسب و مکانیک شرایط آزمون
تجربی انجام گرفته است. داده‌های تجربی مورد استفاده برای مدل
استوانه‌ای بدون شیر عبارتند از:

\[H = 1 \text{ mm}, R = 90 \text{ mm}, L = 20 \text{ mm} \]

که طول استوانه‌ی می‌باشد و سرین تحت ضرب غربی به اندازه 45
کیلوگرم در مربع اولیه 43 متر بر ثانیه قرار می‌گیرد. [24] نتایج آزمون
تجربی نشان داده مقدار بالا از شیب سزای مدل محدود در پی از نگرفتار
شکل و نمودار نیرو حسابی که در بخش سیر و در شکل‌های 5 و 6
نماتش داده شده است. میزان آزمایش جدید شده برای دو حالته و نیروی
میانگین بروزرسانی نیز به صورت زیر می‌باشد.

<table>
<thead>
<tr>
<th>روش تجربی [24]</th>
<th>مدل محدود</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد نیروی آزمایشی خطا میانگین (زول) (کیلوگرم)</td>
<td>درصد نیروی آزمایشی خطا میانگین جذب شده (زول) (کیلوگرم)</td>
</tr>
<tr>
<td>100/98</td>
<td>160/72</td>
</tr>
<tr>
<td>11/48</td>
<td>8/5</td>
</tr>
</tbody>
</table>

\[\text{زمان بر حسب میلی‌ثانیه} \]

شکل 5- نمودار نیرو بر حسب جابجایی برای حالات تجربی و اجرا
محدود

ابعاد مدل به ابعاد کلی سازه نمونه‌سازی شده برای این مدل
معنی نمود. بنابراین ابعاد مس و راه‌نامه‌های سازه تغییر داده‌اند.
سازه‌های با ابعاد مختلف به صورت مناسب می‌شوند. لذا به
دلیل کمترین یک ابعاد مخزونی در مقاله می‌توان با تغییرات ابعاد
انجام آنها را با 11 تا 1100 میلی‌متر مربع استفاده نمود. شایان ذکر است
آلترناتیف‌های مدل کوچک‌ترین و بزرگ‌ترین سازه مدل شده که
حاکی از همگرایی بخش می‌باشد. نمونه‌ای از مدل استفاده شده در
مقاله به شکل شماره 3 قابل ملاحظه است.

3-1 صفحه گذاری مدل

3-1-1 صفحه گذاری به روش تحلیلی
یکی از روش‌های قابل استفاده به منظور صحت مناسب مدل مس
محدود برای محسوب کردن جذب شده توسط یک سازه جاذب از
استفاده از حل‌های تحلیلی موجود می‌باشد که نشان دهنده
خاصیت از جمله برای پوسته استوانه‌ای تحت ضرب محوری بر فرض ماده
پلاستیک کامل و مداد شدید بصورت متقاطع می‌باشد. رابطه تحلیلی
میزان آزمایش جدید شده در این حالت به صورت روابط زیر می‌باشد:

\[\text{Energy total} = \frac{20mH(R^2 + 1) + 20mH^2}{\sqrt{3}} \]

\[\text{E} = 2.5 \text{ mm}, \sigma_0 = 86.94 \text{ MPa}, R = 90 \text{ mm}, L = 20 \text{ mm} \]

شکل 2- شماتیک استوانه جذاب تک تحت ضربه [24]

در مقاله مورد نظر پارامترهای هندسی عبارتند از:

\[H = 25 \text{ mm}, \sigma_0 = 86.94 \text{ MPa}, R = 90 \text{ mm}, L = 20 \text{ mm} \]
روش شبکه عصبی شاععی

در این روش، فاکتور پیشگیری تغییر در دو مرحله و به‌صورت زیر انجام می‌شود:

مرحله اول: در واقع مرحله‌ای است که با ورودی یک لایه ورودی و لایه یک مجازی محاسبه می‌شود. در مرحله دوم نیز با مشخص شدن اوزان مرحله اول ضرایب ورودی یک لایه پنهان و خروجی مال محاسبه می‌شود.

تابع مقدار در این روش نیز به شکل زیر می‌باشد:

\[
f(x) = \sum_{i=0}^{n} w_i \theta(r)
\]

در این رابطه، \(w_i\) ضرایب وزنی می‌باشد که می‌پیش‌تر به گونه‌ای انتخاب شود که صورت شاععی و متقابل باشد. [28-29]

روش شبکه عصبی تغییر روز و جلو

روش شبکه عصبی از نوع تغییر روز و جلو از اولین و ساده‌ترین روش‌های شبکه عصبی می‌باشد. در این روش اطلاعات به صورت جلو پیاده‌سازی می‌شوند، در این رابطه از انجام تغییر در هنگام انجام کار بهره‌برداری نمی‌شود. [30-31]

نتایج بدست‌آمده از روش اجرای محصول شامل مقدار نرخی یک‌ساله فروپرداز، آنژی جذب شده و نگیری شکل فروپردازی تطابق بسیار خوبی با ناجی تجاری دارد. اینکه با وجود در روش حلق اجرا محصولات و نرخ تغییر شاعع فوقانی در سازه‌های مورد نظر در فرآیند بهینه‌سازی عملی تفاوت ماهیتی محسوس و استثنایهای موجود ندارد.

4- فرمول (مدل‌سازی جایگزین)

استفاده از فرمول‌های مدل‌سازی به روش جایگزین یکی از روش‌های پیشرفته است که در مدلسازی که در کنار حالت حل دقیق با عدای مسائل اصلی پیچیده و زمانی استفاده می‌شود. فرمول‌های جایگزین و گزارش یک مساله را با استفاده از مقدار بی‌صرفه‌ی شیب‌سازی، شیب پیش‌بینی کرده و نرخ محاسبات را با مقدار بی‌صرفه‌ی زیادی کاهش می‌دهد. [32-33]

\[
\text{اینکه بر خلاف تغییر (در)چرخ ۵ با ۰:۱، روش خیلی،}^{\text{تغییر شاععی،}}\text{روش خیلی،زویگری}}^{\text{یک مقدار نرخ}}\]

۱- سلایدی از روش‌های مورد استفاده در جایگزین سازی پاسخ‌های روز می‌باشد که از جمله شامل سازی و پرکاربرد در شیب‌سازی، این روش برای مقدار بی‌صرفه‌ی شیب‌سازی به صورت دیجیتالی نیروی بسیار محسوس می‌باشد.

\[
f(x_1,x_2,x_3,x_4,x_5) = \frac{1}{1 + e^{-x}}
\]

۱- Surrogate Modeling
۲- Metamodel
۳- Response Surface Methodology
۴- Kriging Method
۵- Radial basis function
۶- Neural network
۷- Neural Network Feed-Forward

\[
A = \left[1 \right]^{T}
\]

\[
\text{برای محاسبه ضرایب } C
\]

\[
\begin{align*}
C &= C_0 + \sum_{i=1}^{l} C_i x_i + \sum_{i=1}^{l} C_i x_i^2 \\
&+ \sum_{i=1}^{l} \sum_{j=1}^{l} C_{ij} x_i x_j
\end{align*}
\]

\[
y = \frac{y_{\text{real response}}}{y_{\text{true response}}}
\]

\[
X = [x_1, x_2, x_3, x_4, x_5]
\]

\[
\text{برای محاسبه ضرایب } C
\]

\[
\begin{align*}
C &= C_0 + \sum_{i=1}^{l} C_i x_i + \sum_{i=1}^{l} C_i x_i^2 \\
&+ \sum_{i=1}^{l} \sum_{j=1}^{l} C_{ij} x_i x_j
\end{align*}
\]

\[
s(x) = f(x) + Z(x)
\]

\[
\text{برای محاسبه ضرایب } C
\]

\[
\begin{align*}
C &= C_0 + \sum_{i=1}^{l} C_i x_i + \sum_{i=1}^{l} C_i x_i^2 \\
&+ \sum_{i=1}^{l} \sum_{j=1}^{l} C_{ij} x_i x_j
\end{align*}
\]

\[
\text{برای محاسبه ضرایب } C
\]

\[
\begin{align*}
C &= C_0 + \sum_{i=1}^{l} C_i x_i + \sum_{i=1}^{l} C_i x_i^2 \\
&+ \sum_{i=1}^{l} \sum_{j=1}^{l} C_{ij} x_i x_j
\end{align*}
\]

\[
s(x) = f(x) + Z(x)
\]

\[
\text{برای محاسبه ضرایب } C
\]

\[
\begin{align*}
C &= C_0 + \sum_{i=1}^{l} C_i x_i + \sum_{i=1}^{l} C_i x_i^2 \\
&+ \sum_{i=1}^{l} \sum_{j=1}^{l} C_{ij} x_i x_j
\end{align*}
\]

\[
s(x) = f(x) + Z(x)
\]
4 - فاصلات مربعی

جدول 2 - فاصلات مربعی جذب شده برای فرامدل‌های مختلف

<table>
<thead>
<tr>
<th>فرمدل</th>
<th>MSE</th>
<th>NMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرایگینگ</td>
<td>0.123</td>
<td>0.156</td>
</tr>
<tr>
<td>شیکه عصبی (شما)</td>
<td>0.178</td>
<td>0.214</td>
</tr>
<tr>
<td>1.00</td>
<td>0.87</td>
<td>0.98</td>
</tr>
<tr>
<td>پیش‌ریهایهای درجه</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 3 - فاصلات مربعی جذب شده برای فرامدل‌های مختلف

<table>
<thead>
<tr>
<th>فرمدل</th>
<th>MSE</th>
<th>NMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرایگینگ</td>
<td>0.145</td>
<td>0.180</td>
</tr>
<tr>
<td>شیکه عصبی (شما)</td>
<td>0.200</td>
<td>0.245</td>
</tr>
<tr>
<td>1.00</td>
<td>0.85</td>
<td>0.96</td>
</tr>
<tr>
<td>پیش‌ریهایهای درجه</td>
<td>22.0</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5-1 - ریج فرامدل‌های تابع

جدول 3 - فاصلات مربعی جذب شده برای فرامدل‌های مختلف

<table>
<thead>
<tr>
<th>فرمدل</th>
<th>MSE</th>
<th>NMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرایگینگ</td>
<td>0.165</td>
<td>0.200</td>
</tr>
<tr>
<td>شیکه عصبی (شما)</td>
<td>0.220</td>
<td>0.265</td>
</tr>
<tr>
<td>1.00</td>
<td>0.83</td>
<td>0.94</td>
</tr>
<tr>
<td>پیش‌ریهایهای درجه</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 4 - فاصلات مربعی جذب شده برای فرامدل‌های مختلف

<table>
<thead>
<tr>
<th>فرمدل</th>
<th>MSE</th>
<th>NMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>کرایگینگ</td>
<td>0.185</td>
<td>0.220</td>
</tr>
<tr>
<td>شیکه عصبی (شما)</td>
<td>0.240</td>
<td>0.285</td>
</tr>
<tr>
<td>1.00</td>
<td>0.81</td>
<td>0.92</td>
</tr>
<tr>
<td>پیش‌ریهایهای درجه</td>
<td>24.0</td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.5-2 بهینه سازی با تابع هدف پیشینه نیروی فروریزش و انرژی مختصات جنب شده

بدون تردد سازگار دارای یهی‌ترین عملکرد است که در کل انرژی جنگل شده بالا نیروی اندازه‌گیری کمترین نیز داشته باشد. به همین لحاظ بهینه‌سازی جنگل هدف مطرح شده تا به هر تابع هدف به طور همزمان بردارد. به عبارتی در این حالت تابع هدف مربوط به عبارتی از: \(\text{Min}(\text{SEA}, \text{PCF}) \) این سوال بهینه‌سازی با همان نفوذ قابل می‌باشد حل شود لیکن در این حالت بر اساس روش ضریب و نیز تابع هدف جدیدی با ضریب ویژه برای 5 تا 10 تای هدف را به یک اندام مدل می‌کند. تشکیل می‌شود، به این ترتیب تابع هدف جدید به صورت دوگانه تغییر پیدا می‌کند.

\[
\text{objective function} = -w \times \frac{\text{SEA}}{\text{SEA}_{\text{max}}} + (1 - w) \times \frac{\text{PCF}_{\text{max}}}{\text{PCF}}
\]

که در این رابطه ضریب \(w \) مولفه مختصات بریز و \(\text{SEA}_{\text{max}}, \text{PCF}_{\text{max}} \) مولفه مختصات در نظر گرفته شده است. با حل سیستم بهینه سازی مجموعه پاسخ ناحیه پرت‌ریست حاصل شده از روش‌های مختلف به صورت شکل 9 می‌باشد. مقدار از پاسخ پرت‌ریست با است که نیروی ضریب در مقدار یک تابع هدف جهت

\[
\text{باکس در مقدار تابع هدف دیگر ممکن می‌باشد.}
\]

\[\text{Pareto optimal set}\]

جدول 4 - مقاطع بهینه انرژی مختصات جنب شده برای انواع فرآمد

| سطح 8 | پایه‌هایی نیروی ضریب برای انواع فرآمد
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره</td>
<td>صفحه</td>
</tr>
<tr>
<td>کریستینگ</td>
<td>3/3</td>
</tr>
<tr>
<td>شکه‌سی</td>
<td>0/38</td>
</tr>
<tr>
<td>شماره</td>
<td>مخاطر</td>
</tr>
</tbody>
</table>

جدول 5 - مقاطع بهینه نیروی فروریزش برای انواع فرآمد

<table>
<thead>
<tr>
<th>شماره</th>
<th>صفحه</th>
<th>مخاطر</th>
<th>لمبه</th>
<th>ارتفاع</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>کریستینگ</td>
<td>3/3</td>
<td>1/34</td>
<td>0/35</td>
<td>2/36</td>
<td>7/37</td>
</tr>
<tr>
<td>شکه‌سی</td>
<td>0/38</td>
<td>1/39</td>
<td>2/40</td>
<td>3/41</td>
<td>4/42</td>
</tr>
<tr>
<td>شماره</td>
<td>مخاطر</td>
<td>لمبه</td>
<td>ارتفاع</td>
<td>شماره</td>
<td></td>
</tr>
</tbody>
</table>

شکل 8 - پایه‌هایی نیروی ضریب برای انواع فرآمد

شکل 7 - پایه‌هایی نیروی ضریب برای انواع فرآمد

1 Pareto optimal set
6 - نتیجه گیری
در این مطالعه بررسی تأثیر هندسه و ابعاد سازه جداری تکه‌مطوطی جاذب انرژی در برخورداری و نیروی شیر شروع کندن آن در رفتار جاذب با توجه به نقش تعیین‌کننده آن در مورد فروریزی در بررسی گرفتن از طرفی تا بخشی زیادی از زمان باید برای تحلیل انرژی محصول سالانه از فرآمواد‌ها با مدل‌های جابجایی مسیب و موتر شال روش‌های کریستینی، شیمی عصبی توأم به جلو و بالا و پاسخ روبه‌ای برای تعیین پاسخ در فرآوندهای سایر استفاده شده. این تحلیل بررسی پایداری جداری محصول شامل تمایل انتخاب نمونه‌های محصول برای وردی این شیوه بر اساس روش طراحی (آزمایشات تعیین شده) روش الگوبرداری زیستی برای بهبود سایر موارد استفاده قرار گرفته و مدل‌های محصول مورد استفاده و روشن حل آن با روش‌های نوپای صدای این است. علاوه بر مطالعه کریستینی مطالعه به بهبود روش و راهکارهای عملی برای انتخاب فرآمواد مناسب در چنین مسائلی آینه شده است. این اساس مورد زیر را منتقل به عنوان تایید حاصل از مقایسه فرآمواد و شکل شیر کندن در این تحلیل بررسی‌های در حوزه فرآمواد دارای

- در صورتی که محصول به بهبود سایر نیروی ضربه داشته باشد، بررسی فرآمواد (فهرست‌های پیش‌بینی نیروی ضربه) شکل عصبی توسط جلو و بخشی با دقت فرآمواد (فرآمواد دارای دقت بین‌نیروی مزایای معنی‌دار) شکل عصبی شایع می‌باشد. اگر هم‌زمان دقت فرآمواد از نظر خطای پیش‌بینی را معرفی نمی‌کند، همگی به‌کارگیرنده که محصول سایر مزایا جذب شرف از منظر باشند، همگی فرآمواد پاسخ به سمت‌های دقت فرآمواد شکل عصبی می‌باشد.

- برای حل جدول محصول نیروی ضربه نیز نمایش دادن کمترین مقادیر است که بیشترین ارزیابی را دارا باشد. این موضوع با توجه به اینکه ارزیابی زیاد این امکان را فراهم می‌سازد که جلو در این تقسیم، منابع خورشیدی برای پاسخ‌های دقت بین‌نیروی مزایایی کنترل برای جدول محصول نیروی ضربه. در نظر گرفتن از میزان نیروی گرفتن که در کنار پاسخ‌های دقت بین‌نیروی محصول تشکیل داده شده در این جدول پاسخ‌های نیروی ضربه به دقت بین‌نیروی محصول را به مقدار کمال محسوس نیروی ضربه تایید می‌دهد. شناخت شیر کندن در این مطالعه به‌کارگیرنده که محصول سایر مزایا جذب شرف و کمترین مقادیر بیشتری نیروی ضربه به دقت بین‌نیروی محصول را به مقدار کمال محسوس نیروی ضربه تایید می‌دهد.

The Robert Gordon University, 1999

Matheron, Georges (1962). \textit{Trait\'e de g\'eostatistique appliqu\'ee.} Editions Technip.

Kriesel D., A Brief Introduction to Neural Networks, Bonn: Published online Under www.dkriesel.com, 2005.

MacLeod C., The synthesis of Artificial Neural Networks using Single String Evolutionary Techniques, Ph.D.Thesis,