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Abstract In this article, we prove the existence of extremal positive solution for the
distributed order fractional hybrid differential equation∫

1

0

b(q)Dq[
x(t)

f(t, x(t))
]dq = g(t, x(t)),

using a fixed point theorem in the Banach algebras. This proof is given in two
cases of the continuous and discontinuous function g, under the generalized
Lipschitz and Caratheodory conditions.
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1. Introduction

In recent years, the hybrid differential equations have attracted much at-
tention to many researchers [7, 9, 10, 12]. For example, Dhage and Laksh-
mikantham established the existence and uniqueness results for the first order
hybrid differential equation [11]

{

d
dt
[ x(t)
f(t,x(t)) ] = g(t, x(t)), t ∈ J,

x(0) = 0,
(1.1)

where J = [0, T ] is bounded in R for some T ∈ R, f ∈ C(J × R,R \ {0}) and
g ∈ C(J × R). Later, Zhao et al. developed the following fractional hybrid
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differential equations involving the Riemann-Liouville differential operators of
order 0 < q < 1 and found the existence and uniqueness results for these type
equations [15, 17]

{

Dq[ x(t)
f(t,x(t)) ] = g(t, x(t)), t ∈ J,

x(0) = 0.
(1.2)

Now, in view of the idea of fractional derivative of distributed order stated
by Caputo [3, 4], we develop a new class of distributed order fractional hy-
brid differential equations (DOFHDEs) with respect to a nonnegative density
function. For this purpose, we prove the existence of maximal and minimal
positive solutions for the DOFHDEs between the given upper and lower solu-
tions on J = [0, T ]. We use two fixed point theorems in order Banach spaces
for establishing our results under two cases of the Caratheodory and discon-
tinuous function g.
In this regard, in Section 2, we recall some basic definition, theorem and fixed
point theorem in the Banach algebras. In section 3, we introduce the dis-
tributed order fractional hybrid differential equation and their properties and
in Section 4, we prove the existence of extremal solutions for DOFHDEs in the
Caratheodory case. In Section 5, we prove the existence of extremal solutions
for DOFHDEs in discontinuous case.

2. Elementary Definitions and Theorems in The Banach Algebras

In this section, we consider the main definitions and theorems. Also, we
recall two important fixed point theorems in Banach algebra which can be
used to prove the existence theorems. First, we introduce a cone in Banach
Algebras in what follows.

Definition 2.1. A non-empty closed set K in a Banach Algebra X is called
a cone with vertex 0, if the following statements hold:

(i): K +K ⊆ K,
(ii): λK ⊆ K for λ ∈ R, λ ≥ 0,
(iii): (−K)

⋂

K = 0, where 0 is the zero element of X,
(iv): a cone K is called to be positive if K ◦ K ⊆ K, where ◦ is a

multiplication composition in X.

Definition 2.2. A cone K is said to be normal if the norm ‖.‖ is semi-
monotone increasing on K, that is, there is a constant N > 0 such that
‖x‖ ≤ N‖y‖ for all x, y ∈ K with x ≤ y. It is known that if the cone K is
normal in X, then every order-bounded set in X is norm-bounded.

The details of cones and their properties can be founded in Heikkila and
Lakshmikantham [13].
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Lemma 2.3. ([7]). Let K be a positive cone in a real Banach algebra X and
let u1, u2, v1, v2 ∈ K be such that u1 ≤ v1 and u2 ≤ v2. Then u1u2 ≤ v1v2.

Definition 2.4. A mapping Q : [a, b] → X is said to be nondecreasing or
monotone increasing if Qx ≤ Qy for all x, y ∈ [a, b] with x ≤ y where the
interval [a, b] is given by

[a, b] = {x ∈ X : a ≤ x ≤ b}.
Theorem 2.5. ([8]). Let K be a cone in a Banach algebra X and let a, b ∈ X

such that a ≤ b. Also, suppose that A,B : [a, b] → K are two nondecreasing
operators such that

(a): A is Lipschitzian with a Lipschitz constant α,
(b): B is completely continuous,
(c): AxBx ∈ [a, b] for each x ∈ [a, b].

Further, if cone K is positive and normal, then the operator equation AxBx =
x has a least and a greatest positive solution in [a, b], whenever αM1 < 1, where
M1 = ‖B([a, b])‖ = sup{‖Bx‖ : x ∈ [a, b]}.
Theorem 2.6. ([7]). Let K be a cone in a Banach algebra X and let a, b ∈ X

such that a ≤ b. Also, suppose that A,B : [a, b] → K are two nondecreasing
operators such that

(a): A is completely continuous,
(b): B is totally bounded,
(c): AxBy ∈ [a, b] for each x, y ∈ [a, b].

Further, if cone K is positive and normal, then the operator equation AxBx =
x has a least and a greatest positive solution in [a, b].

3. The Fractional Hybrid Differential Equation of Distributed

Order

Definition 3.1. The distributed order fractional hybrid differential equation
(DOFHDEs), involving the Riemann-Liouville differential operator of order
0 < q < 1 with respect to the nonnegative density function b(q) > 0, is defined
as

{

∫ 1
0 b(q)Dq[ x(t)

f(t,x(t)) ]dq = g(t, x(t)), t ∈ J,
∫ 1
0 b(q)dq = 1,

x(0) = 0.
(3.1)

Moreover, the function t 7→ x
f(t,x) is continuous for each x ∈ R, where J = [0, T ]

is bounded in R for some T ∈ R. Also, f : J×R → R\{0} and g : J×R → R.

Remark 3.2. Suppose that

b(q) = a0δ(q − q0) + a1δ(q − q1) + a2δ(q − q2) + ...+ anδ(q − qn), (3.2)
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which 1 > qn > qn−1 > ... > q0 > 0 and ai for i = 0, 1, 2, ..., n is nonnegative
constant coefficients and δ is the Dirac delta function. For this case, the
DOFHDE (3.1) is

a0D
q0 [

x(t)

f(t, x(t))
] + a1D

q1 [
x(t)

f(t, x(t))
] + ...+ anD

qn [
x(t)

f(t, x(t))
] = g(t, x(t)),

x(0) = 0,

where t ∈ J .

We apply the following lemma from [14] to prove the main existence ex-
tremal solution theorem for the DOFHDE (3.1).

Lemma 3.3. Assume that the function x → x
f(t,x) is increasing in R for t ∈ J ,

then for any h ∈ L1(J,R) and 0 < q < 1, the function x ∈ C(J,R) is a solution
of the DOFHDE (3.1) if and only if x satisfies the following equation

x(t) =
f(t, x(t))

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, x(τ))dτ, (3.3)

such that 0 ≤ τ ≤ t ≤ T and

B(s) =

∫ 1

0
b(q)sqdq. (3.4)

4. Existence of Extremal Solution in The Caratheodory Case

In this section, for the continuous function g on J×R, we prove the existence
of extremal solutions for the DOFHDE (3.1). We need the following definitions
in what follows.

Definition 4.1. A mapping g : J × R → R is said to be Caratheodory if

(i): the map t → g(t, x) is measurable for each x ∈ R,
(ii): the map x → g(t, x) is continuous almost everywhere for t ∈ J .

Definition 4.2. A Caratheodory function g(t, x) is called L1-Caratheodory if
for each number r > 0 and x ∈ R there exists a function hr ∈ L1(J,R) such
that

| g(t, x) |≤ hr(t), t ∈ J, |x| ≤ r.

Also, a Caratheodory function g(t, x) is called L1
X-Caratheodory if for each

x ∈ R there exists a function h ∈ L1(J,R) such that

| g(t, x) |≤ h(t), t ∈ J.
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Definition 4.3. A function a ∈ C(J,R) is called a lower solution of the
DOFHDE (3.1) defined on J if

∫ 1

0
b(q)Dq[

a(t)

f(t, a(t))
]dq ≤ g(t, a(t)), t ∈ J,

∫ 1

0
b(q)dq = 1, (4.1)

Similarly, a function a ∈ C(J,R) is called a upper solution of the DOFHDE
(3.1) defined on J if

∫ 1

0
b(q)Dq[

a(t)

f(t, a(t))
]dq ≥ g(t, a(t)), t ∈ J,

∫ 1

0
b(q)dq = 1. (4.2)

We consider the certain monotonicity conditions in what follows:

(A1): f : J ×R → R
+ − {0}, g : J × R → R

+.
(A2): There exists a constant L > 0 such that

| f(t, x)− f(t, y) |≤ L | x− y |,
for all t ∈ J and x, y ∈ R.

(A3): The DOFHDE (3.1) has a lower solution a and an upper solution
b defined on J with a ≤ b.

(A4): The function x → x
f(t,x) is increasing in the interval [mint∈J a(t),

maxt∈J b(t)] almost everywhere for t ∈ J .
(A5): The functions f(t, x) and g(t, x) are nondecreasing in x almost

everywhere for t ∈ J .
(A6): There exists a function k ∈ L1(J,R) such that g(t, b(t)) ≤ k(t) ≤

k∗ where a real positive number k∗ is upper bound of the function k(t)
for t ∈ J .

We consider that hypotheses (A6) holds in particular if g is L1-Caratheodory
and f is continuous on J ×R. Our main existence theorem for extremal solu-
tions of the DOFHDE (3.1) in this section is given by the following theorem.

Theorem 4.4. Assume that hypotheses (A1)-(A6) hold. Moreover, if

LM

π
‖k‖L1 < 1, M > 0, (4.3)

then the DOFHDE (3.1) has a minimal and a maximal positive solution defined
on J = [0, T ].

Proof: We set X = C(J,R) as a Banach algebra. By Lemma 3.3, the
DOFHDE (3.1) is equivalent to equation

x(t) =
f(t, x(t))

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, x(τ))dτ (4.4)

Define operators A : X −→ X and B : X −→ X by

Ax(t) = f(t, x(t)), t ∈ J, (4.5)
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and

Bx(t) =
1

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, x(τ))dτ, t ∈ J, (4.6)

thus, from the equation (3.3), we obtain the operator equation as follows:

Ax(t)Bx(t) = x(t), t ∈ J. (4.7)

We equip the space C(J,R) by cone K given by

K = {x ∈ C(J,R) : x(t) ≥ 0,∀t ∈ J}, (4.8)

when the cone K is positive and normal in C(J,R). Then the interval [a, b] is a
norm-bounded set inX. Also, by hypotheses (A1) we have A,B : [a, b] → K. If
operators A and B satisfy all the conditions of Theorem 2.5, then the operator
equation (4.7) has a solution in S. To see this, let x, y ∈ X which by hypothesis
(A1) we have

|Ax(t)−Ay(t)| = |f(t, x(t))−f(t, y(t))| ≤ L|x(t)−y(t)| ≤ L‖x−y‖, t ∈ J,

and if for all x, y ∈ X take a supremum over t, then we have

‖Ax−Ay‖ ≤ L‖x− y‖. (4.9)

Therefore, A is a Lipschitz operator on X with the Lipschitz constant L >

0, and the condition (a) from Theorem 2.5 is held. Now, for checking the
condition (b) from this theorem, let {xn} be a sequence in S such that

lim
n→∞

xn = x, (4.10)

with x ∈ S. Now,

lim
n→∞

Bxn(t) = lim
n→∞

1

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}(g(τ, xn(τ)) + ǫ)dτ

=
1

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ} lim

n→∞
(g(τ, xn(τ)) + ǫ)dτ

=
1

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}(g(τ, x(τ)) + ǫ)dτ

= Bx(t).

This shows that B is pointwise continuous on J . It can be shown as in the
following part that the sequence {Bxn} is an equicontinuous set in C(J,R).
So the convergence Bxn → Bx is uniform. As a result, B is continuous on
C(J,R). In next stage, we shall show that B is a compact operator on S. To
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see this we shall show that B(S) is a uniformly bounded and eqicontinuous
set in X. Let x ∈ S, then by hypothesis (A2) for all t ∈ J we have

|Bx(t)| =

∣

∣

∣

∣

1

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, x(τ))dτ

∣

∣

∣

∣

≤ 1

π

∫ t

0

∣

∣

∣

∣

L{ℑ{ 1

B(re−iπ)
}; t− τ}

∣

∣

∣

∣

|k(τ)| dτ. (4.11)

If we set s = t − τ such that 0 ≤ τ ≤ t ≤ T , then by the existence Laplace
transform theorem [6], there exist a constant M ′ > 0 such that for a constant
c that s > c,

∣

∣

∣

∣

ℑ{ 1

B(re−iπ)
}
∣

∣

∣

∣

≤ M ′ecr. (4.12)

Hence, we find an upper bound for the integral of (4.11)

∣

∣

∣

∣

L{ℑ{ 1

B(re−iπ)
}; t− τ}

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0
e−srℑ{ 1

B(re−iπ)
}dr

∣

∣

∣

∣

≤
∫ ∞

0
e−sr

∣

∣

∣

∣

ℑ{ 1

B(re−iπ)
}
∣

∣

∣

∣

dr

≤
∫ ∞

0
M ′e(c−s)rdr ≤ M ′

|s− c| ≤ M, (4.13)

such that

M = sup
0≤τ≤t≤T

M ′

|t− τ − c| . (4.14)

Finally, with respect to the inequality (4.11) we obtain

|Bx(t)| ≤ M ‖k‖L1

π
,

which by applying supremum over t, we get for all x ∈ S

‖Bx‖ ≤ M

π
‖k‖L1 . (4.15)

Thus, B is uniformly bounded on S. In this stage, we show that B(S) is an
equicontinuous set in X. Let t1, t2 ∈ J , with t1 < t2. In this sense we have for
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all x ∈ S

|Bx(t1)−Bx(t2)| = | 1
π

∫ t1

0
L{ℑ{ 1

B(re−iπ)
}; t1 − τ}g(τ, x(τ))dτ

− 1

π

∫ t2

0
L{ℑ{ 1

B(re−iπ)
}; t2 − τ}g(τ, x(τ))dτ |

≤ | 1
π

∫ t1

0
L{ℑ{ 1

B(re−iπ)
}; t1 − τ}g(τ, x(τ))dτ

− 1

π

∫ t1

0
L{ℑ{ 1

B(re−iπ)
}; t2 − τ}g(τ, x(τ))dτ |

+ | 1
π

∫ t1

0
L{ℑ{ 1

B(re−iπ)
}; t2 − τ}g(τ, x(τ))dτ

− 1

π

∫ t2

0
L{ℑ{ 1

B(re−iπ)
}; t2 − τ}g(τ, x(τ))dτ |.

(4.16)

If we set s1 = t1− τ and s2 = t2− τ , then by Laplace transform definition and
equation (4-19), for s1 > c and s2 > c we can write

∣

∣

∣

∣

L{ℑ{ 1

B(re−iπ)
}; s1} − L{ℑ{ 1

B(re−iπ)
}; s2}

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

0
e−s1rℑ{ 1

B(re−iπ)
})dr −

∫ ∞

0
e−s2rℑ{ 1

B(re−iπ)
}dr

∣

∣

∣

∣

≤
∫ ∞

0

∣

∣e−s1r − e−s2r
∣

∣

∣

∣

∣

∣

ℑ{ 1

B(re−iπ)
}
∣

∣

∣

∣

dr

≤ M ′
∫ ∞

0
(e(c−s1)r − e(c−s2)r)dr = M ′(

1

s1 − c
− 1

s2 − c
). (4.17)

Therefore, we have
∣

∣

∣

∣

1

π

∫ t1

0
(L{ℑ{ 1

B(re−iπ)
}; s1} − L{ℑ{ 1

B(re−iπ)
}; s2})g(τ, x(τ))dτ

∣

∣

∣

∣

≤ k∗

π

∫ t1

0
M ′(

1

t1 − τ − c
− 1

t2 − τ − c
)dτ

=
M ′k∗

π
ln(

(c+ t1 − t2)(c− t1)

c(c− t2)
). (4.18)
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Also, by equation (4.13) we have
∣

∣

∣

∣

1

π

∫ t1

t2

L{ℑ{ 1

B(re−iπ)
}; t2 − τ}g(τ, x(τ))dτ

∣

∣

∣

∣

≤ k∗

π

∫ t1

t2

M ′

t2 − τ − c
dτ

=
M ′k∗

π
ln(

c

c+ t1 − t2
). (4.19)

Finally, with respect to (4.16), (4.18) and (4.19) we obtain

|Bx(t1)−Bx(t2)| ≤ M ′k∗

π
(ln(

(c + t1 − t2)(c− t1)

c(c − t2)
) + ln(

c

c+ t1 − t2
))

=
M ′k∗

π
ln(

c− t1

c− t2
). (4.20)

Hence, for ǫ > 0, there exists δ > 0 such that if |t1 − t2| < δ, then for all
t1, t2 ∈ J and all x ∈ S we have

|Bx(t1)−Bx(t2)| < ǫ, (4.21)

which implies that B(S) is an equicontinuous set in X and according to the
Arzela-Ascoli theorem, B is compact. Therefore B is continuous and compact
operator on S into X and B is a completely continuous operator on S and the
condition (b) from the Theorem 2.5 is held. Also, hypotheses (A5) implies that
the operators A and B are nondecreasing on [a, b]. To see this, we consider
x, y ∈ [a, b] with x ≤ y. Therefore by hypotheses (A5), for all t ∈ J we get

Ax(t) = f(t, x(t)) ≤ f(t, y(t)) = Ay(t),

similarly, we obtain

Bx(t) =
1

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, x(τ))dτ

=≤ 1

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, y(τ))dτ

= By(t),

thus, the operator A and B are nondecreasing on [a, b]. By Lemma 2.3 and in
view of hypothesis (A5) we have

a(t) ≤ f(t, a(t))

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, x(τ))dτ

≤ f(t, x(t))

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, x(τ))dτ

≤ f(t, b(t))

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, x(τ))dτ

≤ b(t).
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Then, for all t ∈ J and x ∈ [a, b] we obtain a(t) ≤ Ax(t)Bx(t) ≤ b(t). There-
fore, for all x ∈ [a, b] we have AxBx ∈ [a, b]. Also, we notice that the bound
(4.13) and hypotheses A6 yields that

M1 = ‖B([a, b])‖ = sup{‖Bx‖ : x ∈ [a, b]}
= sup{sup

t∈J
|Bx(t)| : x ∈ [a, b]}

≤ sup
t∈J

{ 1
π

∫ t

0

∣

∣

∣

∣

L{ℑ{ 1

B(re−iπ)
}; t− τ}

∣

∣

∣

∣

|k(τ)| dτ}

≤ M

π
‖k‖L1 ,

such that the condition (4.3) implies that

αM1 ≤ LM

π
‖k‖L1 < 1.

Finally, all the conditions of Theorem 2.5 are satisfied and hence the operator
equation AxBx = x has a least and a greatest positive solution in [a, b]. As a
result, the DOFHDE (3.1) has a minimal and a maximal positive solution in
[a, b] defined on J and the proof is completed.

5. Existence of Extremal Solution in Discontinuous Case

In this section, for the discontinuous function g on J × R, we prove the
existence of extremal solutions for DOFHDE (3.1). We need the following
definitions in what follows.

Definition 5.1. A mapping β : J × R → R is said to be Chandrabhan if

(i): t → g(t, x) is measurable for each x ∈ R,
(ii): x → g(t, x) is nondecreasing almost everywhere for t ∈ J .

Definition 5.2. A Chandrabhan function g(t, x) is called L1-Chandrabhan if
for each number r > 0, there exists a function hr ∈ L1(J,R) such that

|g(t, x)| ≤ hr(t), t ∈ J,

with |x| ≤ r for all x ∈ R .
Also, a Chandrabhan function g(t, x) is called L1

X-Chandrabhan if there exists
a function h ∈ L1(J,R) such that

|g(t, x)| ≤ h(t), t ∈ J,

for all x ∈ R.

We consider the following hypotheses in the sequel:

(B1): The function g is Chandrabhan.
(B2): The function f is continuous on J ×R.
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Now, we prove the existence theorem for extremal solutions of the DOFHDE
(3.1) in this section.

Theorem 5.3. Assume that the hypotheses (A1)-(A6) and (B1)-(B2) hold.
Then DOFHDE (3.1) has a minimal and a maximal positive solution on J .

Proof: According to Lemma 3.3, the DOFHDE (3.1) is equivalent to equa-
tion (3.3). We set X = C(J,R) as a Banach algebra and define an order
relation ≤ by the cone given by

K = {x ∈ C(J,R) : x(t) ≥ 0,∀t ∈ J}.

Define operators A : X −→ X andB : X −→ X by (4.5) and (4.6) respectively.
Thus, from the equation (3.3), we obtain the operator equation as follows:

Ax(t)Bx(t) = x(t), t ∈ J. (5.1)

The cone K is positive and normal in C(J,R). Then the interval [a, b] is a
norm-bounded set in Banach algebra X and there exists a constant r > 0 such
that ‖x‖ ≤ r for all x ∈ [a, b]. Therefore by hypotheses (B2), f is continuous
on compact J × [−r, r] and it has a maximum. Also, by hypothesis (A1) we
have A,B : [a, b] → K. If operators A and B satisfy all the conditions of
Theorem 2.6, then the operator equation (5.1) has a solution in S. To see this,
first we show that A is completely continuous on [a, b]. For any subset S of
[a, b] we get

‖A(S)‖P = sup{‖Ax‖ : x ∈ S}
= sup{sup

t∈J
|f(t, x(t))| : x ∈ S}

≤ sup{sup
t∈J

|f(t, x)| : x ∈ [−r, r]}

≤ M,

such that M = maxx∈[−r,r] |f(t, x)| for all t ∈ J . Thus, A(S) is a uniformly
bounded subset on X.
Since, the function f(t, x) is continuous on compact J × [−r, r], hence it is
uniformly continuous on J × [−r, r]. Thus, for any t1, t2 ∈ [0, T ] as t1 → t2,
we obtain

|f(t1, x)− f(t2, x)| → 0, x ∈ [−r, r].

Also, for any x, y ∈ [−r, r] as x → y, we get

|f(t1, x)− f(t1, y)| → 0, t ∈ [0, T ].
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Therefore, t1 → t2 yields that

|Ax(t1)−Ax(t2)| = |f(t1, x(t1))− f(t2, x(t2))|
≤ |f(t1, x(t1))− f(t2, x(t1))|+ |f(t2, x(t1))− f(t2, x(t2))|
→ 0.

Then, A(S) is an equi-continuous set inX and by the Arzela-Ascoli theorem, A
is a completely continuous operator on [a, b]. Now, we show that the operator
B is totally bounded on [a, b]. To see this, for any subset S of [a, b] we show
that B(S) is uniformly bounded and equi-continuous set in X. Suppose that
y ∈ B(S). Therefore, for some x ∈ S we have

y(t) =
1

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, x(τ))dτ, t ∈ J.

By hypothesis (A6) and the bound (4.13) we obtain

|y(t)| =

∣

∣

∣

∣

1

π

∫ t

0
L{ℑ{ 1

B(re−iπ)
}; t− τ}g(τ, x(τ))dτ

∣

∣

∣

∣

≤ 1

π

∫ t

0

∣

∣

∣

∣

L{ℑ{ 1

B(re−iπ)
}; t− τ}

∣

∣

∣

∣

|k(τ)| dτ

≤ M‖k‖L1

π
,

and taking a supremum over t yields that

‖y‖ ≤ M‖k‖L1

π
. (5.2)

which shows that B(S) is a uniformly bounded set in X. Thus by similar way
to the proof of Theorem 4.4 and using equations (4.16), (4.17), (4.18), (4.19)
and hypothesis (A6), we have for t1, t2 ∈ J

|y(t1)− y(t2)| = | 1
π

∫ t1

0
L{ℑ{ 1

B(re−iπ)
}; t1 − τ}g(τ, x(τ))dτ

− 1

π

∫ t2

0
L{ℑ{ 1

B(re−iπ)
}; t2 − τ}g(τ, x(τ))dτ |

≤ M ′k∗

π
ln(

c− t1

c− t2
). (5.3)

Hence, for ǫ > 0, there exists δ > 0 such that if |t1 − t2| < δ, then for all
t1, t2 ∈ J and all y ∈ B(S) we have

|y(t1)− y(t2)| < ǫ, (5.4)

which implies that B(S) is an equicontinuous set in X and according to the
Arzela-Ascoli theorem, B is totally bounded. Also, similar to proof of Theorem
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Figure 1. The Solution of FDE (6.1) for α = 0.5, 0.75, 0.95.

4.4 it is easy to show that AxBy ∈ [a, b] for each x, y ∈ [a, b]. Finally, all
the conditions of Theorem 2.6 are satisfied and hence the operator equation
AxBx = x has a least and a greatest positive solution in [a, b]. As a result,
the DOFHDE (3.1) has a minimal and a maximal positive solution in [a, b]
defined on J and the proof is completed.

6. Numerical Examples

In this section, as showing the constructive theorems and lemmas in previous
sections, we state the following examples.

Example 6.1. We consider the following initial value problem in the frac-
tional Riemann-Liouville derivative on [0, 1]

Dα
t x

1

2 (t) + x
1

2 (t) = t+
2√
π
t
1

2 , x(0) = 0, (6.1)

which we set f(t, x(t)) = x
1

2 (t) and g(t, x(t)) = t + 2√
π
t
1

2 . Now, we consider

the approximated solution of (6.1) by the shifted Legendre polynomials x(t) =
∑n

i=0 ciPi(x) and use the following relation for the fractional derivative of x(t)

Dα
t x(t) =

n
∑

i=⌈α⌉

i
∑

k=⌈α⌉
cib

(α)
i,k x

k−α, (6.2)

b
(α)
i,k =

(−1)k+i(i+ k)!

k!(i − k)!Γ(k + 1− α)
, (6.3)

where ⌈α⌉ is the largest integer less than or equal to α. If we collocate the
equation (6.1) at n points on [0, 1], then we can get the solution with respect
to n unknown coefficients ci, i = 1, 2, · · · , n. We show this for n = 10 in Figure
1 for different values of α. For more details of this method see for example
[1, 16].
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Figure 2. The Solution of FDE (6.4) for α = 0.25, 0.5, 0.75.

Example 6.2. For following initial value problem in the fractional Riemann-
Liouville derivative on [0, 1]

Dα
t x(t) = cos2 x(t), x(0) = 0, (6.4)

we apply the the Legendre collocation method expressed in Example 6.1 for
n = 5. The approximated solution has been shown in Figure 2.
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