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On asymptotic stability of Prabhakar fractional differential systems
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Abstract In this article, we survey the asymptotic stability analysis of fractional differential
systems with the Prabhakar fractional derivatives. We present the stability regions
for these types of fractional differential systems. A brief comparison with the stability

aspects of fractional differential systems in the sense of Riemann-Liouville fractional
derivatives is also given.
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1. Introduction

With the extension of theory of fractional calculus (the integral and derivative of
arbitrary order), the stability analysis of differential system

x′(t) = A x(t), x(0) = x0, A ∈ Rn×n, (1.1)

was developed in the last decades for the following fractional differential system

Dα
t x(t) = A x(t), x(0) = x0, 0 < α ≤ 1, (1.2)

where Dα
t is a fractional differential operator. For the first time in 1996, the sta-

bility of the above system with the Caputo fractional derivatives was surveyed by
Matignon [11]. Later other researchers extended some similar results for the stability
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of fractional differential systems containing the Riemann-Liouville fractional deriva-
tives [15, 16, 19], the Hilfer fractional derivatives [17], distributed order fractional
derivatives [1, 2, 18] and fractional differential equations with time delays [3, 4].

In this paper, we intend to survey the stability analysis of linear differential systems
containing the Prabhakar fractional derivatives. This type of fractional derivative was
introduced by Garra et al. [7] in terms of the generalized Mittag-Leffler function and
can be considered as a generalization of the most popular definitions of fractional
derivatives. See papers [5, 6],[9, 13].

For this purpose, in Section 2 we recall some definitions and lemmas in generalized
fractional calculus. In Section 3, we introduce the linear differential system containing
Prabhakar fractional derivative and discuss about the asymptotic stability analysis
of these types of fractional differential systems. In Section 4, we compare the sta-
bility aspects of Prabhakar fractional differential systems with the Riemann-Liouville
fractional differential systems.

2. Preliminaries

In this section, we recall some definitions and lemmas which are used in the next
sections.

Definition 2.1. [10, 12]. For 0 < α < 1 and f ∈ L1[0, b], 0 < t < b ≤ ∞, the
Riemann-Liouville fractional integral and derivative of the order α are defined as

0+I
α
t f(t) =

1

Γ(α)

∫ t

0

f(τ)(t− τ)α−1dτ, t > 0, 0 < α < 1, (2.1)

0+D
α
t f(t) =

1

Γ(α)

∫ t

0

f(τ)(t− τ)−αdτ, t > 0, 0 < α < 1. (2.2)

Also, for the absolutely continuous function f , the Caputo fractional derivatives of
order α is defined as follows

C
0+D

α
t f(t) = 0+I

1−α
t

d

dt
f(t) =

1

Γ(1− α)

∫ t

0

(t− τ)−α d

dτ
f(τ)dτ. (2.3)

Definition 2.2. For m − 1 < ℜ(µ) < m and function f ∈ L1[0, b], 0 < t < b ≤ ∞,
the Prabhakar fractional integral is defined as follows [7]

(Eγ
ρ,µ,ω,0+f)(t) =

∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ)f(τ)dτ, (2.4)

where Eγ
ρ,µ is the generalized Mittag-Leffler function introduced by Prabhakar in 1971

[14]

Eγ
ρ,µ(z) =

1

Γ(γ)

∞∑
n=0

Γ(γ + n)

n!Γ(ρn+ µ)
zn, ℜ(ρ),ℜ(µ) > 0. (2.5)

Definition 2.3. [7]. For the function f ∈ L1[0, b], the Prabhakar fractional derivative
is defined as

(Dγ
ρ,µ,ω,0+f)(t) =

dn

dtn
E−γ

ρ,n−µ,ω,0+f(t), t > 0, (2.6)
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where m− 1 < ℜ(µ) < m and ρ, µ, ω, γ ∈ C.

Lemma 2.4. [7]. The Laplace transform of Prabhakar fractional derivative for m−
1 < ℜ(µ) < m is given by

L(Dγ
ρ,µ,ω,0+f(t)) = sµ(1− ωs−ρ)γF (s)−

n−1∑
k=0

sk(Dγ
ρ,µ−k,ω,0+f)(0), (2.7)

where F (s) is the Laplace transform of f(t)

F (s) =

∫ ∞

0

e−stf(t)dt. (2.8)

Lemma 2.5. The Laplace transform of generalized Mittag-Leffler function tµ−1Eγ
ρ,µ(ωt

ρ)
is given by [7]

L{tµ−1Eγ
ρ,µ(ωt

ρ); s} =
sγρ−µ

(sρ − ω)γ
, | ω

sρ
| < 1. (2.9)

Also, for ρ, µ, γ, a > 0 the following asymptotic behavior holds [8]

Γ(ρ)Eγ
ρ,µ(a(ρt)

γ) ∼=
1

(1 + a( t
ρ )

γ)µ
, t → ∞. (2.10)

3. Asymptotic Stability Analysis of Linear Autonomous Prabhakar
Fractional Differential Systems

3.1. Main theorem. In this section, we introduce the linear autonomous Prabhakar
fractional differential systems and discuss about the asymptotic stability of systems.
We consider the following fractional system

Dγ
ρ,µ,ω,0+x(t) = A x(t), t > 0, 0 < γ < 1, 0 < ρ < 1, 0 < µ < 1,

Dγ
ρ,µ,ω,0+x(0

+) = x0, (3.1)

where x ∈ Rn, A ∈ Rn×n is matrix, x0 = (x10, x20, · · · , xn0) and γ = (γ1, γ2, · · · , γn)
such that 0 < γ < 1.

Remark 3.1. The system (3.1) is called commensurate order system if γ1 = γ2 =
· · · = γn.

Definition 3.2. The Prabhakar fractional derivatives system (3.1)

i): is stable if for any initial value x0 and t > 0, there exists an ϵ > 0 such that
∥x(t)∥ < ϵ.

ii): is asymptotically stable if at first it is stable and limt→∞ ∥x(t)∥ = 0.

Theorem 3.3. The solution of the linear commensurate order system (3.1) is given
by

x(t) =

∞∑
n=0

tµ+µn−1E1+γn+γ
ρ,µ+µn (ωtρ)Anx0. (3.2)
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Proof. By applying the Laplace transform on the equation (3.1) and using the relation
(2.7), we have

sµ(1− ωs−ρ)γX(s)− x0 = AX(s), (3.3)

which for || A
sµ(1−ωs−ρ)γ || < 1 leads to

X(s) =
x0

sµ(1− ωs−ρ)γ −A

=
x0

sµ(1− ωs−ρ)γ
(I − s−µ(1− ωs−ρ)−γA)−1. (3.4)

Using the inverse Laplace transform and considering relation (2.9), we get the result

x(t) =
∞∑

n=0

tµ+µn−1E1+γn+γ
ρ,µ+µn (ωtρ)Anx0, (3.5)

and proof is completed. �

Theorem 3.4. If all the eigenvalues of A (set λ(A)) satisfy the following condition
for any r > 0

| arg(λ(A))| > µπ

2
− γ(tan−1 ωr−ρ sin(ρπ2 )

1− ωr−ρ cos(ρπ2 )
), (3.6)

then the solution of system (3.1) is asymptotically stable.

Proof. We begin with inequality || A
sµ(1−ωs−ρ)γ || < 1 as a necessary condition of the

solution (3.2). If we set s = reiθ as an arbitrary point in the complex plane, then for
holding this inequality, the argument of absolute value | 1

rµeiµθ(1−r−ρω−µρ)γ
| should be

less than π
2 , which implies that

θ = | arg(λ(A))| > µπ

2
− γ(tan−1 ωr−ρ sin(ρπ2 )

1− ωr−ρ cos(ρπ2 )
). (3.7)

Now, we consider the solution (3.2) and analyze the asymptotic stability of system in
the two cases.

Case 1: Suppose that the matrix A is diagonalizable and J is the Jordan canon-
ical form of the matrix A such that J = P−1AP = diag(λ1, λ2, · · · , λn) where
P is an invertible matrix. In this case, we have

An = (PJP−1)n = PJnP−1 = P (diag(λn
1 , λ

n
2 , · · · , λn

n))P
−1. (3.8)

At this point, if we apply the asymptotic relation (2.10) for solution (3.2) and

consider ωn = tµ+µn−1

(1+ ωtγn+γ

ρ2(γn+γ)
)µ+µn

, then we have

x(t) =

∞∑
n=0

ωnλ
n
i x0 → 0, t → ∞, 1 ≤ i ≤ n, (3.9)
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hence

lim
t→∞

∥
∞∑

n=0

ωndiag(λ
n
1 , λ

n
2 , · · · , λn

n)x0∥ = 0, (3.10)

and consequently

lim
t→∞

∥x(t)∥ = lim
t→∞

∥
∞∑

n=0

ωnA
nx0∥ = lim

t→∞
∥P (

∞∑
n=0

ωnJ
nx0)P

−1∥ = 0. (3.11)

Case 2: Suppose that the matrixA has a Jordan canonical form J = (J1, J2, · · · , Js),
where Ji, 1 ≤ i ≤ s, is shown by

Ji =


λi 1

λi 1
. . .

. . .

λi 1
λi


ni×ni

, λi ∈ C, (3.12)

and
∑s

i=1 ni = n. In this case, we have

An = (PJP−1)n = PJnP−1 = P (diag(Jn
1 , J

n
2 , · · · , Jn

h ))P
−1, (3.13)

and for the solution (3.2), we obtain

∞∑
n=0

ωnJ
n
i x0 =

∞∑
n=0

ωn


λn
i D1

nλ
n−1
i · · · Dni−1

n λn−ni−1
i

0 λn
i

. . .
...

...
. . .

. . . D1
nλ

n−1
i

0 · · · 0 λn
i

x0,

(3.14)

the matrix (3.14), can be written as

∞∑
n=0

ωnJ
n
i x0 =

∞∑
n=0

ωn (ast)ni×ni
x0, (3.15)

where (ast)ni×ni
, has the following form

ast =

ni−s∑
m=0

Dm
n λn−m

i , s = 1, 2, · · · , ni, t = s, s+ 1, · · · , ni, (3.16)

Substituting (3.16) into (3.15), we obtain

∞∑
n=0

ωnJ
n
i x0 =

∞∑
n=0

ni−s∑
m=0

ωn

(
1

m!
(
∂

∂λi
)mλn

i

)
ni×ni

x0. (3.17)

where Dj
k, 1 ≤ j ≤ ni, are the binomial coefficients such that

Dj
k =

(
k
j

)
=

{ k!
j!(k−j)! 0 ≤ j ≤ k,

0 etc.
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If we consider the non-zero element of the above matrix

1

(j − 1)!

{
(
∂

∂λ
)j−1

∞∑
n=0

ωnλi

}
, 1 ≤ j ≤ ni, 1 ≤ i ≤ s,

and use the asymptotic behavior (2.10) once again, then we have

1

(j − 1)!
(
∂

∂λi
)j−1

∞∑
n=0

ωnλ
n
i =

∞∑
n=0

(n− j + 2) · · · (n− 1)n

(j − 1)!
ωnλ

n−j+1
i , (3.18)

which implies that

| 1

(j − 1)!
(
∂

∂λ
)j−1

∞∑
n=0

ωnλ
n
i | → 0, 1 ≤ j ≤ ni, t → ∞, (3.19)

and consequently

lim
t→∞

∥x(t)∥ = lim
t→∞

∥
∞∑

n=0

ωnA
nx0∥ = lim

t→∞
∥P (

∞∑
n=0

ωnJ
nx0)P

−1∥ = 0. (3.20)

�

3.2. Asymptotic stability region. The asymptotic stability regions of system (3.1)
for different values of parameters ρ, µ, γ can be plotted by the relation (4.1). We plot
these regions in blue for parameters ω = 1, µ = 0.5, 0.75, 0.95, 1 and ρ = γ = 0.5. See
Figure 1.

4. Comparison with Riemann-Liouville fractional differential systems

It is obvious that for γ = 0, the Prabhakar fractional integral (2.4) coincides with
the Riemann-Liouville fractional integral of order µ (2.1). In this case, the stability
region of fractional systems with the Riemann-Liouville fractional derivative can be
plotted by the following condition

| arg(λ(A))| > µπ

2
. (4.1)

This region has been shown for 0 < µ < 1 in Figure 2. The difference between two
regions of the Prabhakar and Riemann-Liouville fractional derivatives is considered as

term γ(tan−1 ωr−ρ sin( ρπ
2 )

1−ωr−ρ cos( ρπ
2 ) ). The graph of this difference has been plotted in Figure

3.

Remark 4.1. The shaded region in Figure 3 shows that the fractional differential
systems with the Riemann-Liouville and Prabhakar derivatives have not the same
stability status for order 0 < µ < 1. It means that, for a determined parameter µ, the
fractional differential system with the Riemann-Liouville derivative is asymptotically
stable, but the associated fractional differential system with the Prabhakar derivative
is unstable.
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Figure 1. The asymptotic stability regions of system (3.1) for pa-
rameters µ = 0.5, 0.75, 0.95, 1 and ρ = γ = 0.5.
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Figure 2. The Stability region of the fractional differential system
with Riemann-Liouville derivative of order 0 < µ < 1.

Figure 3. The difference region between the fractional differential
systems with the Riemann-Liouville and Prabhakar derivatives of
order 0 < µ < 1.
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