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Abstract This study develops and analyzes preconditioned Krylov subspace methods for solv-
ing discretization of the time-independent space-fractional models. First we apply
a shifted Grnwald formulas to obtain a stable finite difference approximation to

fractional advection-diffusion equations. Then, we apply two preconditioned iter-
ative methods, namely, the preconditioned generalized minimal residual (precon-
ditioned GMRES) method and the preconditioned conjugate gradient for normal
residual(preconditioned CGN) method, to solve the corresponding discritized sys-

tems. We make comparisons between the preconditioners commonly used in the
parallelization of the preconditioned Krylov subspace methods. The results suggest
that preconditioning technique is a promising candidate for solving large-scale linear
systems arising from fractional models.
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1. Introduction

Recent studies show that fractional advection-diffusion equations provide more ad-
equate and accurate description of the movement of solute in an aquifer than the
traditional second-order advectiondiffusion equations do [2, 3]. Fractional advection-
diffusion equations are closely related to a continuous time random walk approach,
which allows descriptions of particle motions with long-range correlations and is ap-
propriate for the description of subsurface solute transport. The most significant
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difference of fractional advection-diffusion equations from their integer analogue is
that they generate numerical approximations with full coefficient matrices, which of-
ten cause extra numerical difficulties. This is in addition to the common numerical
difficulties with their integer analogue. To put the present work in context, we begin
by discussing some of the key numerical methods that have been proposed to solve var-
ious fractional partial differential equations (FPDEs). In recent years much progress
has been made on the development of numerical methods for fractional advection-
diffusion equations. For instance, in [10, 9] a shifted Grnwald formulas was used to
obtain a stable finite difference approximation to fractional advection-diffusion equa-
tions. Numerical solution for boundary value problem of fractional order has been
addressed in [12]. A method for solving space-time fractional differential equations is
introduced in [5].

However, the most significant obstacle in the numerical methods for fractional
partial differential equations is that these methods generate discrete systems with
full coefficient matrices. Consequently O(N3) account of computations and O(N2)
account of storage are required to solve a problem of size N .

Meerschaert and Tadjeran [9], showed that discretisation of the fractional deriva-
tives using standard (non-shifted) Grnwald formulas led to unstable methods when
the fractional order. To overcome this, they proposed a method utilising with shifted
Grnwald formulas, which they showed to be stable, and first order accurate in space.

In more recent times, a number of authors have addressed the issue of high compu-
tational expense associated with the solution of FPDEs. Several different approaches
have been explored, with many papers employing a mixture of these approaches in
various fascinating ways. Krylov subspace methods have been a popular approach,
owing to their ability to solve linear systems and compute matrix functions without
the need to operate directly on dense matrices. Yang et al. [21, 22, 23] and Burrage
et al. [4] used Krylov subspace methods for computing matrix functions to solve frac-
tional Laplacian equations. Moroney and Yang [11] and Wang and Wang [20] used
Krylov subspace methods to solve the two-sided space-fractional diffusion equation
in one dimension, with the former authors considering nonlinear problems and the
latter authors considering linear problems with an advection term.

Preconditioning has been a common theme in many of these papers, since it is well
known that Krylov subspace methods generally require an effective preconditioner in
order to perform satisfactorily. Yang et al. [21, 22, 23] developed preconditioners
based on eigenvalue deflation. Burrage et al. [4] considered both algebraic multigrid
and incomplete LU preconditioning. Moroney and Yang [11] developed a banded
preconditioner. A numerical treatment of sparse indefinite systems of linear equations
is given in [13].

In this paper we develop and apply preconditioned methods based on Krylov sub-
spaces on linear systems arising from discretized time-independent space-fractional
convection-diffusion to obtain the accurate and efficient solution of fractional advection-
equations.

The rest of this paper is organized as follows. In Section 2 we present the fractional
advection-diffusion equations and apply the implicit finite difference scheme to obtain
corresponding linear systems. In Section 3 we briefly describe the two preconditioned
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methods, namely, GMRES and CGN for solving large-scale linear systems arising from
the fractional models. In Section 4 we carry out numerical experiment to investigate
the performance of the developed algorithm. Finally, we draw our conclusions in
Section 5.

2. The finite difference scheme: Structure of the coefficient matrix

In this section, the implicit finite difference scheme is applied to discretize the time-
independent space-fractional convection-diffusion model and the fractional advection-
dispersion model, which are obtained from the standard diffusion models by replacing
the first order time derivative with a fractional derivative and can be written as the
following forms
The first model: The time-independent space-fractional convection-diffusion
model

P(D)v(x, t) = k(x)
∂ϑ1v(x, t)

∂xϑ1
+ h(x)v(x, t) + z1(x, t),

0 < x < xU1 , 0 < t ≤ T1, 1 < ϑ1 ≤ 2, (2.1)

with the boundary conditions

v(0, t) = 0, v(xU1 , t) = 0, 0 < t ≤ T1, (2.2)

and the initial condition

v(x, 0) = ϕ(x), 0 ≤ x ≤ xU1 , (2.3)

where

P(D) =
∂ω1v

∂tω1
, 0 < ω1 ≤ 1. (2.4)

Here k(x) ≥ 0 and h(x) ≤ 0 are continuous functions on [0, xU1 ], z1(x, t) is a contin-
uous function on [0, xU1 ]× [0, T1].
The second model: The fractional advection-dispersion model

Q(D)v(x, t) = α1
∂ϑ2v

∂xϑ2
+ z2(x, t), 0 < x < xU2 , 0 < t ≤ T2, 1 < ϑ2 ≤ 2, (2.5)

with the boundary conditions

v(0, t) = 0, v(xU2 , t) = 0, 0 < t ≤ T2, (2.6)

and the initial condition

v(x, 0) = ϕ(x), 0 ≤ x ≤ xU2 , (2.7)

where

Q(D) =
∂v(x, t)

∂t
+

∂ω2v(x, t)

∂tω2
, 0 < ω2 ≤ 1. (2.8)

Here α1 ≥ 0 is a constant and z2(x, t) is a continuous function on [0, xU2 ]× [0, T2].
To illustrate the discretization process, denote xj = jδx, tn = nδt, ∆δx = {xj |0 ≤
j ≤ J}, ∆δt = {tn|0 ≤ n ≤ N}, ∆δt

δx
= ∆δx × ∆δt , where δx =

xUi

J , i = 1, 2,

δt =
Ti

N , i = 1, 2, are uniform spacial and temporal mesh sizes respectively, and J,N

are two positive integers. Suppose that V = {V (n)
j = v(xj , tn)|0 ≤ j ≤ J, 0 ≤ n ≤
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N}, ∂ϑi
x V = {∂ϑi

x V
(n)
j = ∂ϑiv(x,t)

∂xϑi
|(x,t)=(xj ,tn)|0 ≤ j ≤ J, 0 ≤ n ≤ N, i = 1, 2} and

∂ωi
t V = {∂ωi

t V
(n)
j = ∂ωiv(x,t)

∂tωi
|(x,t)=(xj ,tn)|0 ≤ j ≤ J, 0 ≤ n ≤ N, i = 1, 2} are three

gird functions on ∆δt
δx
.

We use the first order shifted Grünwald formula to descretize the Riemann-Liouville
fractional order derivative ∂ϑiv(x,t)

∂xϑi
, i = 1, 2 as the following (see Ref. [14])

∂ϑiv(xj , t)

∂xϑi
=

1

δϑi
x

j+1∑
k=0

µ
(ϑi)
k v(xj+1−k, t) +O(δx), i = 1, 2, (2.9)

where the coefficients µ
(ϑi)
k can be evaluated recursively (see Ref. [14, 19]){

µ
(ϑi)
0 = 1,

µ
(ϑi)
k = (1− ϑi+1

k )µ
(ϑi)
k−1, k > 0.

(2.10)

According to (2.10), the µ
(ϑi)
k for 1 < ϑi ≤ 2, satisfy the following properties (see Ref.

[14, 19])
µ
(ϑi)
0 = 1, µ

(ϑi)
1 = −ϑi < 0, µ

(ϑi)
2 > µ

(ϑi)
3 > ... > 0,∑∞

k=0 µ
(ϑi)
k = 0,

∑m
k=0 µ

(ϑi)
k ≤ 0 for m ≥ 1,

µ
(ϑi)
k = O(k−(ϑi+1)).

(2.11)

According to [6], we consider the following time difference formula to discretize the
time-fractional derivative

∂ωiv(x, tn+1)

∂tωi
=

δ−ωi
t

Γ(2− ωi)

n∑
k=0

a
(ωi)
k (v(x, tn+1−k)− v(x, tn−k)) + r

(n+1)
i,δt

,

i = 1, 2 (2.12)

where

a
(ωi)
k = (k + 1)(1−ωi) − k(1−ωi), k ≥ 0, (2.13)

and the truncation error r
(n+1)
i,δt

satisfies

r
(n+1)
i,δt

≤ cvδ
2−ωi
t , (2.14)

where cv is a constant depending only on v.

2.1. Formulation of the finite difference scheme for the first model. Let
Z

(n)
1,j = z1(xj , tn), kj = k(xj) and hj = h(xj). By applying (2.9) and (2.12), and ne-

glecting the small terms, the two-dimensional finite difference scheme for the problem
(2.1) can be formulated as follows

δ−ω1
t

Γ(2− ω1)

n∑
i=0

a
(ω1)
i (V

(n+1−i)
j − V

(n−i)
j ) = kjδ

−ϑ1
x

j+1∑
k=0

µ
(ϑ1)
k V

(n+1)
j−k+1 + hjV

(n+1)
j + Z

(n+1)
1,j .(2.15)
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We can rewrite (2.15) in following form

−kjδ
−ϑ1
x γ

(1)
δt

µ
(ϑ1)
2 V

(n+1)
j−1 + (−kjδ

−ϑ1
x γ

(1)
δt

µ
(ϑ1)
1 − hjγ

(1)
δt

+ 1)V
(n+1)
j − kjδ

−ϑ1
x γ

(1)
δt

V
(n+1)
j+1

−kjδ
−ϑ1
x γ

(1)
δt

∑j+1
k=3 µ

(ϑ1)
k V

(n+1)
j−k+1 = −

∑n
i=1 a

(ω1)
i (V

(n+1−i)
j − V

(n−i)
j )

+V
(n)
j + γ

(1)
δt

Z
(n+1)
1,j , 1 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1,

(2.16)

where γ
(1)
δt

= Γ(2− ω1)δ
ω1
t .

In addition, from (2.2) and (2.3) we have{
V

(n)
0 = 0, V

(n)
J = 0, 1 ≤ n ≤ N,

V
(0)
i = ϕ(xj), 0 ≤ j ≤ J.

(2.17)

To develop an efficient solution technique, we express the above scheme into a ma-

trix form. Let V(n) = [V
(n)
1 , V

(n)
2 , ..., V

(n)
J−1]

T , b(n) = [b
(n)
1 , b

(n)
2 , ..., b

(n)
J−1]

T , A(n) =

[A
(n)
ij ]J−1

i,j=1, B
(n) = [B

(n)
ij ]J−1

i,j=1 Z
(n)
1 = [Z

(n)
1,1 , Z

(n)
1,2 , ..., Z

(n)
1,J−1]

T and IJ−1×J−1 be the

identity matrix with an appropriate size, then the finite difference scheme (2.16) can
be written in the following matrix form

B(n+1)V(n+1) = (I− γ
(1)
δt

A(n+1))V(n+1) = b(n+1). (2.18)

Here the entries of matrix A(n+1) and vector b(n+1) are given by

A
(n+1)
ij =



kiµ
(ϑ1)
i−j+1δ

−ϑ1
x , i ≥ j + 2,

kiµ
(ϑ1)
2 δ−ϑ1

x , i = j + 1,

kiµ
(ϑ1)
1 δ−ϑ1

x + hi, i = j,
kiδ

−ϑ1
x , i = j − 1,

0, i < j − 1,

(2.19)

and

b(n+1) = −
n∑

i=1

a
(ω1)
i (V(n+1−i) −V(n−i)) + γ

(1)
δt

V(n) + γ
(1)
δt

Z
(n+1)
1 ,

n = 0, 1, 2, ...N − 1. (2.20)

2.2. Formulation of the finite difference scheme for the second model. Now,
we consider the finite difference scheme for problem (2.5) with the conditions (2.6)-
(2.7). As usual, the first order temporal derivative can be approximated by the
backward difference scheme

∂v(x, tn+1)

∂t
=

v(x, tn+1)− v(x, tn)

δt
+O(δt). (2.21)
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By applying (2.9), (2.11) and (2.21), and neglecting the truncation error of implicit
finite difference scheme, the problem (2.5) can be formulated as follows

−α1δ
−ϑ2
x γ

(2)
δt

µ
(ϑ2)
2 V

(n+1)
j−1 + (γ

(2)
δt

+ 1− α1δ
−ϑ2
x γ

(2)
δt

µ
(ϑ2)
1 )V

(n+1)
j − α1δ

−ϑ2
x V

(n+1)
j+1

−α1δ
−ϑ2
x B

(1)
δt

∑j+1
k=3 µ

(ϑ2)
k V

(n+1)
j+1−k = (1 + δ−1

t γ
(2)
δt

)V
(n)
j

−
∑n

k=1 a
(ω2)
k (V

(n+1−k)
j − V

(n−k)
j ) + γ

(2)
δt

Z
(n+1)
2,j ,

(2.22)

where Z
(n+1)
2,j = z2(xj , tn+1) and γ

(2)
δt

= Γ(2− ω2)δ
ω2
t .

The initial and boundary conditions are discretized as follows{
V

(n)
0 = 0, V

(n)
J = 0, 1 ≤ n ≤ N,

V
(0)
i = ϕ(xj), 0 ≤ j ≤ J.

(2.23)

Suppose that IJ−1×J−1 is an identity matrix and V(n), b(n) and Z
(n)
2 are vectors

given by 
V(n) = [V

(n)
1 , V

(n)
2 , ..., V

(n)
J−1]

T ,

b(n) = [b
(n)
1 , b

(n)
2 , ..., b

(n)
J−1]

T ,

Z
(n)
2 = [Z

(n)
2,1 , Z

(n)
2,2 , ..., Z

(n)
2,J−1]

T ,

(2.24)

then (2.22) can be written in a matrix form

B(n+1)V(n+1) = (I+ γ
(2)
δt

A(n+1))V(n+1) = b(n+1), (2.25)

where the entries of matrix A(n+1) and vector b(n+1) are defined as follows

A
(n+1)
ij =



−α1δ
−ϑ2
x γ

(2)
δt

µ
(ϑ2)
i−j+1, i ≥ j + 2,

−α1δ
−ϑ2
x µ

(ϑ2)
2 , i = j + 1,

1− α1δ
−ϑ2
x µ

(ϑ2)
1 , i = j,

−α1δ
−ϑ2
x , i = j − 1,

0, i < j − 1,

(2.26)

and

b(n+1) = (1 + δ−1
t γ

(2)
δt

)V(n) −
n∑

k=1

a
(ω2)
k (V(n+1−k) −V(n−k)) + γ

(2)
δt

Z
(n+1)
2 ,

n = 0, 1, 2, ...N − 1 . (2.27)

2.3. Stability and convergence results. Applying the similar techniques as in [7],
we state the analogous results for models (2.1) and (2.5).
Remark 3.2.1 The implicit finite difference schemes defined by (2.16) and (2.22) are
unconditionally stable.
Theorem 3.2.1 Let V n

j be the numerical solution computed by using the implicit
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finite difference schemes (2.16) and (2.22), and v(x, t) be the exact solution of (2.1)-
(2.3) and (2.5)-(2.7), then a positive constant Cv exists, such that

∥V n
j − v(xj , tn)∥ ≤ Cv(δt + δx), j = 1, 2, , ..., J, n = 0, 1, 2, ...N. (2.28)

2.4. Full coefficient matrices. By the Gerschgorin theorem the eigenvalues of the

coefficient matrix B(n+1) defined in (2.19) lie in the disks centered B
(n+1)
ii = 1 −

γ
(1)
δt

kiµ
(ϑ1)
1 δ−ϑ1

x − γ
(1)
δt

hi with radius Ri =
∑J−1

j=1j ̸=i
|B(n+1)

ij |.
Now by (2.11), we have

Ri = γ
(1)
δt

kiδ
−ϑ1
x

i+1∑
j=0j ̸=1

µ
(ϑ1)
j ≤ −γ

(1)
δt

kiδ
−ϑ1
x µ

(ϑ1)
1 . (2.29)

Since hi ≤ 0 and ki ≥ 0, then each eigenvalue λ of B(n+1) defined in (2.19) satisfies
the following inequality

|λ| ≥ B
(n+1)
ii −Ri ≥ 1− γ

(1)
δt

hi ≥ 1. (2.30)

Therefore the coefficient matrix B(n+1) defined in (2.19) is a nonsingular matrix.

Using the similar argument, we can show that the coefficient matrix B(n+1) defined
in (2.25) is nonsingular.

3. Overview of Preconditioned GMRES and Preconditioned CGN

In this section, we briefly describe the background of the preconditioned GMRES
and preconditioned CGN for solving large-scale linear systems arising from fractional
models in the previous sections. These methods are powerful tools for solving huge
systems of linear algebraic equations. The significant advantages of these methods
such as low memory requirements and good approximation properties make them very
popular.

3.1. Preconditioned GMRES. The Generalized Minimum Residual method (GM-
RES) has the property of minimizing the norm of the residual at each step over a
Krylov subspace. The algorithm GMRES is derived from the Arnoldi process for con-
structing an orthogonal basis of Krylov subspace (see [15]). Since the residual norm
is minimized at each step, we would expect GMRES to be convergent for sufficiently
large step. The algorithm of standard GMRES method is formulated in [15].
Now, suppose that Pi be the space of all polynomials of degree ≤ i, the following
result was proved in [16] for the GMRES method.

Theorem 2 At step i of the GMRES iteration, the residual r
(n+1)
i = b(n+1) −

B(n+1)V
(n+1)
i satisfies

∥r(n+1)
i ∥

∥b(n+1)∥
≤ κ(W(n+1)) inf

pi∈Pi,pi(0)=1
sup |pi(λ)|λ∈Λ(B(n+1)), (3.1)

where Λ(B(n+1)) is the spectrum of B(n+1), W(n+1) is a nonsingular matrix of eigen-

vectors and κ(W ) is the condition number of W(n+1).
Therefore the rate of convergence of the GMRES method depends on the distribution
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of the eigenvalues of B(n+1) in the complex plane, and if properly normalized degree i

polynomials can be found whose size on the Λ(B(n+1)) decreases quickly with i, then
our method based on GMRES converges quickly.

If B(n+1) is not too far from normal in the sense that κ(W(n+1)) is not too large, the
convergence speed of GMRES method is determined by the value

inf
pi∈Pi,pi(0)=1

sup |pi(λ)|λ∈Λ(B(n+1)). (3.2)

Assume that there are s eigenvalues λ1, λ2, ..., λs ofB
(n+1) with non-positive real parts

and let the other eigenvalues be enclosed in a disk on complex plane with radius r > 0
and center at c > 0. Then the polynomial pi(z) = (1− z

λ1
)(1− z

λ2
)...(1− z

λs
)( z−c

c )J−1−s

can be used to show that

inf
pi∈Pi,pi(0)=1

sup |pi(λ)|λ∈Λ(B(n+1)) ≤ (
maxi=1,...,s, j=i+1,...,J−1{|λi − λj |}

mini=1,...,s{|λi|}
)s(

r

c
)J−1−s.(3.3)

Therefore, when κ(W(n+1)) is not too large, the right hand side of (3.1) represents a
good convergence bound.

If W(n+1) is far from normal, the bound (3.1) may fail to provide any reasonable
information about the GMRES convergence. We note that in the nonnormal case the
GMRES convergence behavior is significantly more difficult to analyze than in the
normal case. For more details refer to [8].
Preconditioning is a technique that can accelerate the convergence of iterative meth-
ods. We can apply this technique to speed up the convergence rate of GMRES method
(see [16]). In order to justify the idea of this technique note that the convergence rate

of GMRES method for solving the linear system B(n+1)V(n+1) = b(n+1) depends on

the spectral properties of B(n+1). For ill-conditioned problems GMRES is slowly con-
vergent or even in some of cases is divergent. For preconditioning the linear system

B(n+1)V(n+1) = b(n+1), it is often preferable to transform it into an equivalent one

Left preconditioning : M(n+1)−1

B(n+1)V(n+1) = M(n+1)−1

b(n+1).

Right preconditioning : B(n+1)M(n+1)−1

U(n+1) = b(n+1), U(n+1) = MV(n+1),

or

Split preconditioning : L(n+1)−1

B(n+1)U(n+1)−1

Z(n+1) = L−1L(n+1)−1

b(n+1),

U(n+1)−1

Z(n+1) = V(n+1).

In practice, the preconditioner M(n+1) should satisfy the following properties

• A preconditioner matrix M(n+1)−1

B(n+1) must be better conditioned than

B(n+1) (see [16]),
• The cost of constructing a preconditioner should also be cheap to make the

preconditioned system easy to be solved (see [16]). A preconditioning matrice

M(n+1) can be computed in O(i log2 i) operations,

thus the linear system M(n+1)−1

B(n+1)V(n+1) = b(n+1) can be expected to converge
quickly.
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Figure 1. Convergence histories of GMRES for preconditioning technique.
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The detailed comments concerning the preconditioned GMRES algorithm (PGMRES)
can be found in [17].

3.2. Preconditioned CGN. One of the simplest methods for solving nonsymmet-

ric linear system B(n+1)V(n+1) = b(n+1) is to apply the CG iterations to the normal

equations B(n+1)TB(n+1)V(n+1) = B(n+1)Tb(n+1) which is called the CGN method

[16]. We note that the convergence of CGN is controlled by the eigenvalue ofB(n+1)TB(n+1).

Thus the convergence of CGN is determined by the singular value of B(n+1). Now,

suppose that the CG iterations be applied to the normal equationsB(n+1)TB(n+1)V(n+1) =

B(n+1)Tb(n+1), where B(n+1)TB(n+1) has 2-norm condition number κ. Then the A-
norm of the errors satisfy

∥r(n+1)
i ∥2

∥r(n+1)
0 ∥2

≤ 2(
κ− 1

κ+ 1
)i, (3.4)

which implies if κ is reseanblely large, convergence to a specified tolerance can be ex-
pected in O(κ) iteration. A disadvantage of the CGN method is that the convergence
rate can be slow. Therefore, preconditioner technique could be exploited to accel-
erate the convergence rate of the CGN method. The preconditioned CGN (PCGN)
algorithm is given in [18].

4. Numerical Experiments

In this section, we report the results of numerical experiments to compare the
performance and efficiency of preconditioned methods that introduced in the previous
section.
All programs run in MATLAB R2012a. The tests have been performed on a computer
with the configuration:

• Intel(R) Core(TM) i3-3217U @ 1.80 GHz 1.80 GHz CPU
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Figure 2. Left hand figure: Eigenvalues distribution of noprecondi-
tioning (J = 200, N = 200). Right hand figure: Eigenvalues distri-
bution of sparse band and diagonal preconditioning (J = 200, N =
200).
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Figure 3. Convergence histories of CGN for preconditioning technique.
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Figure 4. Left hand figure: Eigenvalues distribution of noprecon-
ditioning (J = 500, N = 500) Right hand figure: Eigenvalues distri-

bution of ILU preconditioning (luinc(B(n+1)TB(n+1), 0.01), J = 500,
N = 500.
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• 4GB RAM memory under Windows seven

The stopping criterion is

∥r(n+1)
i ∥2

∥b(n+1)∥2
< ϵ, (4.1)

where r
(n+1)
i is the residual vector after i iterations.

Example 1. In this example, we consider the time-independent space-fractional
convection-diffusion model with ω1 = 0.8, ϑ1 = 1.5, k(x) = x2, h(x) = −1,ϕ(x) =
x2(1− x) and

z1(x, t) = 1.815207368t
6
5x2 − 1.815207368t

6
5x4 − 2.256758334

√
tx4

+ 2.256758334x6
√
t+ x2 + x2t2 − x4 − x4t2, 0 < x < 1, 0 < t ≤ 1.

(4.2)

In order to solve the linear system arising from (4.2) two strategies are proposed:
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Table 1. The average number of iterations of GMRES and precon-
ditioned GMRES.

method nopre SOR SSOR

GMRES(J = 600, N = 600) 41 5 4
GMRES(J = 700, N = 700) 58 6 4

a): GMRES with band and diagonal preconditioning and without precondition-
ing (ϵ = 10−17).
Band and Diagonal Preconditioner: A simple preconditioner would be
sparse band and diagonal matrix constructed by considering the special struc-
ture of the original matrix. The toolbox of MATLAB supplies a function
spdiags, that can be used to produce sparse band and diagonal precondi-
tioner. In our tests, we use
d = [−10 : 10];

C(n+1) = spdiags(B(n+1), d);

[m,m] = size(B(n+1));

M(n+1) = spdiags(C(n+1), d,m,m);
b): CGN with incomplete Cholesky preconditioning and without precondition-

ing (ϵ = 10−8).
ILU preconditioner: Incomplete LU (ILU) factorisations constitute one of
the best known classes of general-purpose preconditioners. It is known that
ILU preconditioners tend to cluster eigenvalues. A general ILU factorization
computes a sparse approximation of the LU factorization. Incomplete LU
factorization is often used as a preconditioner (see [17]). The toolbox of Mat-
lab supplies a function luinc, incomplete lu factorization, that can be used to
produce ILU preconditioners. The idea behind luinc is simple: start a normal
LU factorization but if any entry in the factorization is small, set it to zero.
In the above-mentioned example we used ILU preconditioner where:

a) Preconditioner (1): [L(n+1),U(n+1)] = luinc(B(n+1)TB(n+1),′ 0′) is no fill
ILU decomposition

b) Preconditioner (2): [L(n+1),U(n+1)] = luinc(B(n+1)TB(n+1), τ) is an ILU
decomposition of A with threshold τ = 0.01.

We choose J = 200, N = 200. Figure 1 shows convergence curve corresponding to
23 steps of the GMRES and a preconditioned GMRES iterations. As Figure 1 illus-
trates, the GMRES iterations for this linear system converges slowly. The condition

numbers of B(n+1) and W(n+1) are 98.9 and 3.27, respectively, so the deterioration
in convergence can be explained by conditioning alone. When an iterative method
stagnates like this, it is time to look for a better preconditioner. Distributions of the

eigenvalues of matrix B(n+1) and matrix M(n+1)−1

B(n+1) are shown in Figure 2. It
is clear that the eigenvalues of the system are very scattered and such distribution
is not favorable to the rapid convergence of GMRES. From Figure 2, it can be seen
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Figure 5. Left hand figure: Eigenvalues distribution of noprecondi-
tioning (J = 600, N = 600). Right hand figure: Eigenvalues distri-
bution of sparse band and diagonal preconditioning (J = 600, N =
600).
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that the eigenvalues of preconditioning are clustered around 1. Therefore, one goal
of preconditioning is to improve this distribution by grouping the eigenvalues into a
few small clusters and around 1 as approximate as possible.
For second strategy, we choose J = 500, N = 500. The CGN algorithm, without
preconditioning, converges very badly as shown in Figure 3. This can be explained
by looking to the eigenvalues. As can be seen in Figure 4, most of the eigenvalues
are close to zero, which leads to a bad convergence. The eigenvalues of the ILU pre-
conditioning are shown in Figure 4. The difference in convergence speed between a
preconditioned matrix with eigenvalues close to 1 and an unpreconditioned matrix
with the eigenvalues close to zero is shown in Figure 4.
Example 2. As second example, we consider the fractional advection-dispersion

model with ω2 = 0.5, ϑ2 = 1.5, α1 = −1, ϕ(x) = x2 and

z2(x, t) = x2 + 1.128379167
√
tx2 + 2.256758334x

3
2 + 2.256758334x

3
2 t,

0 < x < 1, 0 < t ≤ 1. (4.3)

The results of the previous example show that the CGN in composition precondition-
ers don’t work very well but by using GMRES method in composition preconditioners,
we get less iteration number than CGN method. In order to solve the linear system
arising (4.3) a strategy is proposed:
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Figure 6. Left hand figure: Eigenvalues distribution of noprecondi-
tioning (J = 700, N = 700). Right hand figure: Eigenvalues distri-
bution of sparse band and diagonal preconditioning (J = 700, N =
700).
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a: GMRES in combination of the SOR and SSOR preconditioners and without
preconditioning (ϵ = 10−7).

Preconditioner based on relaxation technique: Suppose that B(n+1) =

D(n+1) − E(n+1) − F(n+1), in which D(n+1) is the diagonal of A, −E(n+1)

its strict lower part, and −F(n+1) its strict upper part, as was seen in [17],
the SOR and SSOR preconditioner are defined by a) SOR Precondition-

ing: M(n+1) = 1
ω (D

(n+1) − ωE(n+1)),

b) SSOR Preconditioning:M(n+1) = 1
ω(2−ω) (D

(n+1)−ωE(n+1))D(n+1)−1

(D(n+1)+

ωF(n+1)),
where ω is called the relaxation parameter. The more explanations of the
preconditioners can be found in [17].

Figure 4 and Figure 5 depict the spectral distribution of the original coefficient matri-
ces and the preconditioned matrices with the SSOR preconditioner. The eigenvalues
of the preconditioned matrices are well clustered around 1 while the eigenvalues of
the original coefficient matrices lie in a much larger range. The numbers of iterations
required for convergence of the GMRES in combination of various preconditioning is
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shown in Table 1. We can see that the average number of iterations required by the
preconditioned GMRES method is less than GMRES method.

5. Concluding remarks

We present two preconditioned iterative methods to solve linear systems arising
from the discretization of fractional advection-diffusion equations. Numerical exper-
iments confirm that the methods perform very well, easily obtaining the solution of
large systems that are infeasible to solve using traditional methods.
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