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Numerical solution of time-dependent Foam Drainage Equation (FDE)
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Abstract Reduced Differental Transform Method (RDTM), which is one of the useful and effec-
tive numerical method, is applied to solve nonlinear time-dependent Foam Drainage

Equation (FDE) with different initial conditions. We compare our method with

the famous Adomian Decomposition and Laplace Decomposition Methods. The ob-
tained results demonstrated that RDTM is a powerful tool for solving nonlinear

partial differential equations (PDEs), it can be applied very easily and it has less

computational work than other existing methods like Adomian decomposition and
Laplace decomposition. Additionally, effectiveness and precision of RDTM solutions

are shown in tables and graphically.
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1. Introduction

Most of the natural events, such as chemical, physical, biological, can be modeled

by nonlinear differential equations. Besides exact solutions, we need their approxi-

mate solutions in terms of applicability. Therefore, a lot of approximate, numerical

and analytical methods are developed and applied for nonlinear models [3–5, 7, 8, 17,

18,20,29,34].
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The process of Foam drainage, which is a natural event, is described in [27], [28]

and also shown in Figure 1. Because of the importance, many technological and in-

dustrial applications have been developed for foams, which include cleansing, water

purification, mineral extraction as mentioned in [27], [28].

More than ten years ago, given studies by Verbist and Weaire described the main

features of both free drainage, where liquid drains out of a foam due to gravity and

forced drainage, where liquid is introduced to the top of a column of foam [9–11,14,15].

In the second state, a solitary wave of constant velocity is generated when liquid is

added at a constant rate [9–11, 13–15]. So forced foam drainage may be the best

prototype for certain general phenomena described by nonlinear differential equations,

particularly the type of solitary wave [14,15]. The model is developed by Verbist and

Weaire to idealize the network of Plateau borders as a set of N identical pipes of cross

section A, which is a function of position and time as in show [12–15] and below

∂A(x, t)

∂t
+

∂

∂x

(
A(x, t)2 −

√
A(x, t)

2

∂A(x, t)

∂x

)
= 0, (1.1)

and exact solution of (1.1) as shown [14,15]

A(x, t) =

c tanh(
√
c(x− ct))2, x ≤ ct,

0, x ≥ ct,
(1.2)

where x and t are location and time respectively, c is the velocity of the wave front.

If we substitute A(x, t) = u(x, t)2 and rearrange the eq (1.1), then it can be written

with initial condition as follow

u(x, t)t + 2u(x, t)2u(x, t)x − (u(x, t)x)2 − 1

2
u(x, t)xxu(x, t) = 0

u(x, 0) = g(x).
(1.3)

In this context, we consider the famous time-dependent nonlinear forced channel-

dominated foam drainage equation (FDE)(1.1) to solve as numerical with reduced

differential transform method (RDTM). RDTM, which has an alternative approach of

problems, is presented to overcome the demerit of complex calculation, discretization,

linearization or small perturbations of well-known numerical and analytical methods

such as ADM, DTM, HPM etc. And also the main advantage of this method is that

it allows an analytical approximation, in many cases an exact solution, with rapidly
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Figure 1. Schematic of the interdependence of drainage, coarsening
and rheology of foams [28].

convergent sequence [30–33]. Some of the novel research articles related to RDTM

can be shown in ref. [1, 2, 6, 21–24,26].

2. Reduced Differential Transform Method (RDTM)

Let, suppose that u(x, t) can be represented two variable function as a product of

two single variable functions f(x) and g(t) to show following manner [30–33]

u(x, t) = f(x)g(t). (2.1)

From the similar meaning of definition of Differential Transform Method and its prop-

erties, we can write the transforming form of RDTM [30–33]

u(x, t) =

∞∑
i=0

F (i)xi
∞∑
j=0

G(j)tj =

∞∑
k=0

Uk(x)tk, (2.2)

where Uk(x) is called t dimensional spectrum function of u(x, t). If function u(x, t)

is analytic and differentiated continuously with respect to time t and space x in the

domain of interest, then let

Uk(x) =
1

k!

[
∂k

∂tk
u(x, t)

]
t=0

. (2.3)

Thus, from (2.3), it can be written the inverse transform of a sequence Uk(x)
∞
k=0

u(x, t) =

∞∑
k=0

Uk(x)tk (2.4)
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then combining (2.3) and (2.4), we obtain the RDTM solution as

u(x, t) =

∞∑
k=0

1

k!

[
∂k

∂tk
u(x, t)

]
t=0

tk. (2.5)

If we consider the expressions (2.3), (2.4) and (2.5), it’s clearly shown that the con-

cept of the reduced differential transform is derived from the power series expansion.

So, we give a table which included fundamental transformation properties of RDTM

in Table 1. The proofs of Table 1 and the basic definitions of reduced differential

transform method can be found in [32]. For illustration of the proposed method, we

write the Foam Drainage Equation (1.3) in the standard operator form [30–33]

L(u(x, t)) +Nu(x, t) = g(x, t) (2.6)

with initial condition

u(x, 0) = f(x), (2.7)

where L = ∂
∂t is a linear operator, Nu(x, t) is a nonlinear terms and g(x, t) inhomo-

geneous term. According to the RDTM and Table 1, we can construct the following

iteration formula [30–33]

(k + 1)Uk+1(x) = Gk(x)−NUk(x). (2.8)

Here, Uk(x), Gk(x) and NUk(x) are the transformations of the functions L(u(x, t)),

g(x, t) and Nu(x, t) respectively. From the initial condition, we write

U0(x) = f(x) (2.9)

Substituting (2.9) into (2.8) and by straightforward iterative calculations, we get the

following Uk(x) values. Then the inverse transformation of the set of values Uk(x)
n
k=0

gives the approximation solution as

ũn(x, t) =

n∑
k=0

Uk(x)tk, (2.10)

where n is order of approximate solution. Therefore, the exact solution of the problem

is given by [30–33]

u(x, t) = lim
x→∞

ũn(x, t). (2.11)
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Table 1. Basic transformations of RDTM for some functions.

Functional Form Transformed Form

u(x, t) Uk(x) = 1
k!

[
∂k

∂tk
u(x, t)

]
t=0

w(x, t) = u(x, t)± v(x, t) Wk(x) = Uk(x)± Vk(x)
w(x, t) = αu(x, t) Wk(x) = αUk(x), α constant

w(x, t) = xmtn xmδ(k − n), δ(k) =

{
1 k = 0

0 k 6= 0

w(x, t) = xmtnu(x, t) Wk(x) = xmUk−n(x)

w(x, t) = u(x, t)v(x, t) Wk(x) =
∑k

r=0 Ur(x)Vk−r(x) =
∑k

r=0 Vr(x)Uk−r(x)

w(x, t) = ∂r

∂tr u(x, t) Wk(x) = (k + 1)(k + 2) . . . (k + r)Uk+r(x)
w(x, t) = ∂

∂xu(x, t) Wk(x) = d
dxUk(x)

w(x, t) = ∂2

∂x2u(x, t) Wk(x) = d2

dx2Uk(x)

3. Implementation of presented method

Problem 1: The one-dimensional homogeneous forced time-dependent foam drainage

equation following

u(x, t)t + 2u(x, t)2u(x, t)x − (u(x, t)x)2 − 1

2
u(x, t)xxu(x, t) = 0, (3.1)

with initial condition

u(x, 0) = −
√
c tanh

(√
cx
)
, (3.2)

where c is the velocity of wave front as in [9, 11]. Let, Uk(x) denotes transformation

form of the function u(x, t). Then, by using the basic properties of the reduced

differential transformation as shown in Table 1, we can write the transformed form

of equation (3.1) as

(k + 1)Uk+1(x) = −2

k∑
r=0

k−r∑
s=0

Ur(x)Us(x)
d

dx
Uk−r−s(x) (3.3)

+

k∑
r=0

d

dx
Ur(x)

d

dx
Uk−r(x) +

1

2

k∑
r=0

Ur(x)
d2

dx2
Uk−r(x)

and using the initial condition (3.2), we get the reduced transform form

U0(x) = −
√
c tanh

(√
cx
)
. (3.4)
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Now, put (3.4) into place (3.3), from hence we have the Uk(x) values following

U1(x) =
c2

cosh2 (
√
cx)

,

U2(x) =
c

7
2 sinh (

√
cx)

cosh3 (
√
cx)

,

U3(x) =
1

3

c5
(
2cosh2 (

√
cx)− 3

)
cosh4 (

√
cx)

, (3.5)

U4(x) =
1

3

c
13
2 sinh (

√
cx)
(
cosh2 (

√
cx)− 3

)
cosh5 (

√
cx)

, · · ·

Thus, if we continue this process and also the inverse transformation of the set of

Uk(x)
∞
k=0 values are written

∞∑
k=0

Uk(x)tk = −
√
ctanh

(√
cx
)

+
c2

cosh2 (
√
cx)

t

+
c

7
2 sinh (

√
cx)

cosh3 (
√
cx)

t2 +
1

3

c5
(
2cosh2 (

√
cx)− 3

)
cosh4 (

√
cx)

t3 (3.6)

+
1

3

c
13
2 sinh (

√
cx)
(
cosh2 (

√
cx)− 3

)
cosh5 (

√
cx)

t4 + · · ·

Arranging (3.6) and from (2.4) and (2.5), we obtain RDTM solution of (3.1) as

u(x, t) = lim
n→∞

un(x, t) =

∞∑
k=0

Uk(x)tk = −
√
ctanh

(√
cx
)

+c2tsech2

(√
cx
)

+ c
7
2 t2tanh

(√
cx
)
sech2

(√
cx
)

(3.7)

−1

3

(
3c5sech4

(√
cx
)
− 2c5sech2

(√
cx
))
t3 + · · ·

Higher accuracy and efficient convergence of solution (3.7) presented in Figure 2,

Figure 3 and Table 2, Table 3 as shown below. Also, from Table 4, it can be say that

our presented method is faster than ADM and LDM.

Problem 2: Secondly, in order to test efficiency, accuracy and reliability of RDTM,

we consider the nonlinear foam drainage equation (1.3) for different initial value such

that

u(x, t)t + 2u(x, t)2u(x, t)x − (u(x, t)x)2 − 1

2
u(x, t)xxu(x, t) = 0 (3.8)

u(x, 0) = −1

2
+

1

1 + ex
.
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Taking differential transform of (3.8), we obtain the same transformed form in (3.3)

which has a different initial condition as follows

U0(x) = −1

2
+

1

1 + ex
. (3.9)

Then, substituting (3.9) into (3.3), we obtain the following Uk(x) values,

U1(x) =
1

4

ex

(1 + ex)
2 , U2(x) =

1

32

ex (−1 + ex)

(1 + ex)
3 ,

U3(x) = − 1

384

ex
(
−1 + 4ex − e2x

)
(1 + ex)

4 ,

U4(x) =
1

6144

ex
(
e3x − 1 + 11ex − 11e2x

)
(1 + ex)

5 , (3.10)

U5(x) =
1

122880

ex
(
26e3x − 1 + 26ex − 66e2x − e4x

)
(1 + ex)

6

Therefore, if we go on this process and the inverse transformation of the set of

Uk(x)
∞
k=0 values gives RDTM solution as

u(x, t) = lim
n→∞

un(x, t) =

∞∑
k=0

Uk(x)tk = −1

2
+

1

1 + ex

+
1

4

ex

(1 + ex)
2 t+

1

32

ex (−1 + ex)

(1 + ex)
3 t2 (3.11)

− 1

384

ex
(
−1 + 4ex − e2x

)
(1 + ex)

4 t3 + · · ·

Table 2. Comparison of absolute errors for Problem 1 by solving
RDTM,ADM and LDM with 15 terms at c = 1.

RDTM ADM LDM
x t = 0.2 t = 0.7 t = 0.2 t = 0.7 t = 0.2 t = 0.7
0 1e− 15 1.145166e− 6 1e− 15 1.145166e− 6 1e− 15 1.145166e− 6
1 0 3.2766458e− 8 0 3.2766458e− 8 0 3.2766458e− 8
2 4e− 15 5.44128e− 10 4e− 15 5.44128e− 10 4e− 15 5.44128e− 10
3 4e− 15 3.559e− 12 4e− 15 3.559e− 12 4e− 15 3.559e− 12
4 2e− 15 1.33e− 13 2e− 15 1.33e− 13 2e− 15 1.33e− 13
5 0 0 0 0 0 0
6 0 2e− 15 0 2e− 15 0 2e− 15
7 2e− 15 2e− 15 2e− 15 2e− 15 2e− 15 2e− 15
8 2e− 15 2e− 15 2e− 15 2e− 15 2e− 15 2e− 15
9 2e− 15 2e− 15 2e− 15 2e− 15 2e− 15 2e− 15
10 3e− 15 3e− 15 3e− 15 3e− 15 3e− 15 3e− 15
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Table 3. Comparison of absolute errors for Problem 1 by solving
RDTM,ADM and LDM with 15 terms at t = 0.5.

RDTM ADM LDM
x c = 1 c = 2 c = 1 c = 2 c = 1 c = 2
0 4.0874e− 9 0.1668503 4.0874e− 9 0.1668503 4.0874e− 9 0.1668503
1 4.0766e− 11 2.16074e− 3 4.0766e− 11 2.16074e− 3 4.0766e− 11 2.16074e− 3
2 2.058e− 12 2.11298e− 6 2.058e− 12 2.11298e− 6 2.058e− 12 2.11298e− 6
3 1.1e− 14 7.22317e− 9 1.1e− 14 7.22317e− 9 1.1e− 14 7.22317e− 9
4 0 6.9e− 13 0 6.9e− 13 0 6.9e− 13
5 0 1.84e− 12 0 1.84e− 12 0 1.84e− 12
6 2e− 15 9e− 14 2e− 15 9e− 14 2e− 15 9e− 14
7 2e− 15 2e− 14 2e− 15 2e− 14 2e− 15 2e− 14
8 0 0 0 0 0 0
9 1e− 15 1e− 14 1e− 15 1e− 14 1e− 15 1e− 14
10 3e− 15 1e− 14 3e− 15 1e− 14 3e− 15 1e− 14

Table 4. The comparison of computation times which computed
with Intel(R) Core (TM) i5-3230M CPU for 2.60 GHz between ADM,
LDM and RDTM for equation (3.1) with initial condition (3.2).

Iterations CPU times of RDTM CPU times of ADM CPU times of LDM
10 terms 0.841 sec 0.879 sec 1.874 sec
20 terms 4.822 sec 5.127 sec 9.221 sec
30 terms 14.618 sec 22.049 sec 34.298 sec
40 terms 30.049 sec 115.077 sec 147.342 sec
50 terms 75.106 sec 753.342 sec 835.238 sec

Now, we compare the solution (3.11) with well-known ADM and LDM solutions for

eq. (3.8) as Figure 4 and also in Table 5.

4. Conclusion

Foam Drainage Equation is solved numerically by RDTM. Our results compared

with ADM-LDM by displaying in figures and tables. The solutions obtained by RDTM

shows that it has higher accuracy and efficiency with compare ADM and LDM. At the

same time presented method is more quickly than LDM and ADM as seen Table 4.

Additionally, we can say that RDTM is very simple and powerful numerical method

to solve various nonlinear partial differential equations.
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Table 5. Comparison of RDTM,ADM and LDM solutions for
Problem 2 with 15 terms at t = 0.8.

x RDTM ADM LDM
0 0.04983399731 0.04983399731 0.04983399731
1 −0.1899744810 −0.1899744810 −0.1899744810
2 −0.3581489352 −0.3581489352 −0.3581489352
3 −0.4426758241 −0.4426758241 −0.4426758241
4 −0.4781187290 −0.4781187290 −0.4781187290
5 −0.4918374288 −0.4918374288 −0.4918374288
6 −0.4969815836 −0.4969815836 −0.4969815836
7 −0.4988874639 −0.4988874639 −0.4988874639
8 −0.4995904329 −0.4995904329 −0.4995904329
9 −0.4998492896 −0.4998492896 −0.4998492896
10 −0.4999445515 −0.4999445515 −0.4999445515

Figure 2. Error values for RDTM solution of Problem 1 at c =
1.0, (Left) t = 0.1, (Middle) t = 0.5 and (Right) t = 1.0.
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