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Abstract In this paper, we consider an implicit block backward differentiation formula (BBDF)
for solving Volterra Integro-Differential Equations (VIDEs). The approach given in
this paper leads to numerical methods for solving VIDEs which avoid the need for
special starting procedures. Convergence order and linear stability properties of the
methods are analyzed. Also, methods with extensive stability region of orders 2, 3
and 4 are constructed which are suitable for solving stiff VIDEs.
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1. Introduction

Consider Volterra Integro-Differential Equations (VlDEs) of the form

y′(t) = g(t, y(t)) +

∫ t

0

K(t, τ, y(τ))dτ, t ∈ I := [0, T ], y(0) = y0, (1.1)

where g ∈ C(S) and the kernel K ∈ C(Ω) with S = {(t, y) : t ∈ I, y ∈ R},
Ω = {(t, τ, y) : 0 ≤ τ ≤ t ≤ T, y ∈ R}, denote given functions which are (at least)
continuous on their respective domain and satisfy a uniform Lipschitz condition with
respect to y. In these hypotheses there exists a unique solution y ∈ C1(I) (see [5]).
It is convenient to rewrite this equation in the form

y′(t) = f(t, y(t)),

where

f(t, y(t)) = g(t, y(t)) +

∫ t

0

K(t, τ, y(τ))dτ.

VIDEs arise as mathematical models of many physical and biological phenomena
with memory, such as population dynamics, viscoelasticity in materials with memory,
fluid dynamics (see [8, 15] and references therein contained).

Several numerical methods have been proposed in the literature for the solution of
(1.1), such as linear multistep methods, Runge-Kutta methods, collocation methods
[4, 5], and Galerkin type methods for linear VIDEs [10]. In [16] construction of the
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quadrature rules generated by the backward differentiation formulae is discussed in
detail and their linear stability properties are analyzed. In some literature, hybrid
methods are used for numerical solution of VIDEs [11, 13].

In this paper we are concerned with the backward differentiation formula (BDF)
for solving VIDEs which is generally written as

k
∑

j=0

αjyn+j = hβkfn+k, (1.2)

where h is the step size, αk = 1 and αj , j = 1, 2, · · · , k− 1, βk are unknown constants
which are uniquely determined such that the formula is of order k. The implemen-
tation of the BDF methods for solving stiff ODEs was discussed by Gear in [7]. The
block methods were first introduced by Milne [14] and several block methods for
numerical integration of ordinary differential equations have been introduced in [3].
Recently continuous block BDF have been used for solving siff ODEs [1]. The aim of
these methods is to develop of self-starting implicit block BDFs where the starting
values are not computed by other methods. Here, we use this technique for numerical
treatment of VIDEs in order to construct high order methods with extensive stability
regions. In many of numerical approaches, one or more starting values are required
which must be found by other methods. The method which we now describe, gives
starting values directly.

Next sections of this paper are organized as follows. In Section 2, we describe the
construction of CBBDF for VIDEs. In Section 3, we determine convergence orders of
the methods and in Section 4, we analyze the linear stability properties of the method.
Some examples of methods are described in Section 5. In Section 6, efficiency of the
methods are shown by some numerical experiments.

2. Construction of the method

In this section, we describe construction of the main block method of the form
(1.2) where the solution of (1.1) is approximated by assuming a continuous solution
of the form

Y (t) =

k
∑

j=0

mjϕj(t), (2.1)

where t ∈ [0, T ], the coefficients mj are unknown, the functions ϕj(t) are polynomial
basic functions and the integer k ≥ 1 denotes the step number of the method. Let
us define a uniform partition of [0, T ] in the form 0 = t0 < t1 < · · · < tN = T ,
such that tn = nh, n = 0, · · · , N, contrained that N = kr for some r ∈ N. By
setting n̄ = nk, we construct the k-step method with ϕj(t) = tj−1 where imposing
the interpolation condition for unknown function at the points tn̄+i, i = 0, 1, · · · , k−1
and the interpolation condition for derivative of unknown function at the point tn̄+k

lead to k + 1 equations for determination of mj in the form

k
∑

j=0

mjt
j
n̄+i = yn̄+i, i = 0, · · · , k − 1, (2.2)
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k
∑

j=0

mjjtn̄+i = fn̄+i, i = k. (2.3)

Let us define

A = (tj−1
n̄+i−1)i,j ∈ R(k+1)×(k+1), M = [m0,m1, · · · ,mk]

T ,

C = [yn̄, yn̄+1, · · · , yn̄+k−1, fn̄+k]
T .

The equations (2.2) and (2.3) lead to a system of k+1 equations of the form AM = C
to obtain the coefficients mj in terms of yn̄, yn̄+1, · · · , yn̄+k−1 and fn̄+k. Then the
k−step block BDF method is obtained by substituting the values of mj in (2.1) which
yields the expression in the form

Y (t) = −

k−1
∑

j=0

αj(t)yn̄+j + hβk(t)fn̄+k, (2.4)

where αj(t) and βk(t) are continuous functions. Infact, the approximation given by
(2.4) is the Hermite interpolation polynomial which is obtained by the values of y(t)
in the points tn̄+j , j = 0, 1, · · · , k− 1 and the value of y′(t) in tn+1. By differentiating
from (2.4) and evaluating it at the point tn+1, and also evaluating (2.4) at the points
tn+1, · · · , tn̄+k−1, the block method is obtained in the form

fn+1 = (β1,khfn+k + α1,0yn − α1,1yn+1 − · · · − α1,k−1yn+k−1) /h,
...
fn+k−1 = (βk−1,khfn+k + αk−1,0yn − αk−1,1yn+1 − · · · − αk−1,k−1yn+k−1) /h,
yn+k = βk,khfn+k + αk,0yn − αk,1yn+1 − · · · − αk,k−1yn+k−1.

(2.5)

These methods can be represented in the matrix form as

A(1)Yn+1 = A(0)Yn + hB(1)Fn+1, (2.6)

where
Yn+1 = [yn+1, yn+2, · · · , yn+k−1, yn+k]

T ∈ R
k,

Yn = [yn−k+1, yn−k+2, · · · , yn−1, yn]
T ∈ R

k,

Fn+1 = [fn+1, fn+2, · · · , fn+k−1, fn+k]
T ∈ R

k,

A(0) =











0 0 · · · 0 α1,0

0 0 · · · 0 α2,0

...
...

. . .
...

...
0 0 · · · 0 αk,0











, A(1) =











α1,1 α1,2 · · · α1,k−1 0
α2,1 α2,2 · · · α2,k−1 0
...

... . . .
... 0

αk,1 αk,2 · · · αk,k−1 1











,

B(1) =















−1 0 · · · 0 β1,k

0 −1 · · · 0 β2,k

...
...

. . .
...

...
0 0 · · · −1 βk−1,k

0 0 · · · 0 βk,k















,
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By solving the nonlinear system (2.5) for unknowns yn+1, · · · , yn+k, the method is
obtained. In practice, we need to compute fn+i which is in the form

fn+i := f(tn+i, yn+i) = gn+i

+

∫ tn+i

0

K(tn+i, τ, y(τ))dτ, i = 1, · · · , k,

= gn+i +

n
∑

j=1

∫ tjk

t(j−1)k

K(tn+i, τ, y(τ))dτ

+

∫ tn+i

tn

K(tn+i, τ, y(τ))dτ

= gn+i + h

n
∑

j=1

∫ k

0

K(tn+i, tj + sh, y(tj + sh))ds

+h

∫ i

0

K(tn+i, tn+sh, y(tn + sh)ds,

where gn+i := g(tn+i, yn+i). The integrals on the subintervals [0, k] and [0, i] are
approximated by the integration formula with the weights bν , ωi,ν ν, i = 1, 2, · · · , k
for integrations in the subintervals [0, k] and [0, i], respectively and nodes 1, 2, · · · , k
in the form

∫ k

0 p(s)ds =
k
∑

l=1

blp(l),

∫ i

0
p(s)ds =

k
∑

l=1

ωi,lp(l).

(2.7)

These quadrature formulas are specified by the vector and matrix of weights

W =







ω11 · · · ω1k

...
. . .

...
ωk1 · · · ωkk






, b =







b1
...
bk






.

Thus the approximation f̂n+i to fn+i takes the following form

f̂n+i = gn+i + h
n
∑

j=1

k
∑

l=1

blK(tn+i, tj+l, yj+l)

+h
k
∑

l=1

ωi,lK(tn+i, tn+l, yn+l).

3. Derivation of the order condition

In this section we derive order conditions for the method (2.6) with k steps, as-
suming the order p. We assume that the components of the known vector Yn satisfy

(Yn)i = y(tn−k+i) +O(hp+1), i = 1, 2, · · · , k. (3.1)
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We then request that

(Yn+1)i = y(tn+i) +O(hp+1), i = 1, 2, · · · , k. (3.2)

We also assume that the quadrature formula (2.7) are of order p− 1 and the compo-

nents of the f̂n satisfy in

(f̂n)i = f(tn+i) +O(hp+1), i = 1, 2, · · · , k. (3.3)

Let us define the matrices

V
(p)
1 =





















1 1 1
2! · · · 1

p!

1 2 22

2! · · · 2p

p!
...

...
...

. . .
...

1 k k2

2! · · · kp

p!





















∈ R
k×(p+1),

V
(p)
2 =































1 (−k + 1) (−k+1)2

2! · · · (−k+1)p

p!

1 (−k + 2) (−k+2)2

2! · · · (−k+2)p

p!
...

...
...

. . .
...

1 −1 (−1)2

2! · · · (−1)p

p!

1 0 0 · · · 0































∈ R
k×(p+1),

V
(p)
3 =





















0 1 1 1
2! · · · 1

(p−1)!

0 1 2 22

2! · · · 2p−1

(p−1)!

...
...

...
. . .

...

0 1 k k2

2! · · · kp−1

(p−1)!





















∈ R
k×(p+1).

Now we have the following theorem:

Theorem 3.1. Assume that Yn satisfy (3.1) and quadrature formulas are such that
(3.3) is satisfied. Then BBDF satisfy (3.2) if and only if

A(1)V
(p)
1 = A(0)V

(p)
2 +B(1)V

(p)
3 .

Proof. Substituting (3.1)-(3.3) in (2.6), we obtain

A(1)Y (tn+1) = A(0)Y (tn) + hB(1)F (tn+1) +O(hp+1),

where
Y (tn+1) = [y(tn+1), y(tn+2), · · · , y(tn+k−1), y(tn+k)]

T ∈ R
k,

Fn+1 = [f(tn+1), f(tn+2), · · · , f(tn+k−1), f(tn+k)]
T ∈ R

k.



104 S. FAZELI

Expanding all entries of Y (tn+1), Y (tn) and F (tn+1) as Taylor series about the point
tn yields the result. �

Now, we analyze the condition on the quadrature formulas which guarantee the
required accuracy.

Theorem 3.2. Suppose that K(t, τ, y) is sufficiently smooth. Then (3.3) is satisfied
if

k
∑

l=1

bll
j = kj+1

j+1 ,

k
∑

l=1

ωi,ll
j = ij+1

j+1 , i, l = 1, 2, · · · , k

(3.4)

Proof. The condition (3.3) will be satisfied if

∫ k

0

p(s)ds =

k
∑

l=1

blp(l) +O(hp),

∫ i

0

p(s)ds =

k
∑

l=1

ωi,lp(l) +O(hp), i = 1, · · · , k,

for sufficiently smooth function p. Expanding the functions p and p as Taylor series
around s0 = 0 and comparing corresponding terms up to order p = k, we obtain the
system (3.4). This completes the proof. �

4. Linear stability analysis

In this section, we analyze the stability properties of the introduced methods with
respect to the basic test equation [5, 6, 12]

y′(t) = g(t) + ξy(t) + η

∫ t

0

y(τ)dτ, t > 0, y(0) = y0, (4.1)

where ξ, η ∈ C. The solution of (4.1) is stable if Re(r1) < 0 and Re(r2) < 0 where

r1,2 = (ξ±
√

ξ2 + 4η)/2 (see [2]). We observe that, particularly for real ξ and η, these
conditions reduce to ξ < 0 and η < 0. As usual, we look for sufficient conditions for
the stability of the numerical solution of (4.1).

Definition 4.1. We set w = ξh and z = ηh2. The absolute stability region is the
set R of all the pairs (z;w) ∈ C− × C− such that the numerical solution yn of test
equation (4.1) with a fixed stepsize h, tends to zero as n → ∞. The method is A0-
stable if R ⊇ R− ×R− and is A-stable if it is stable for any value of (z, w) such that
Re(r1) < 0 and Re(r2) < 0. An A-stable method is A0-stable too.

Theorem 4.2. The discretized BBDF, applied to the test equation (4.1), leads to the
following recurrence relation

[

Yn+1

Zn+1

]

= R(z, w)

[

Yn

Zn

]

+ hGn+1,
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where
R(z, w) = [Q(z, w)]−1M(z, w),

and

Q(z, w) =

[

A(1) − zB(1)W − wB(1)
0k×k

−Ik Ik

]

,

M(z, w) =

[

A(0) zB(1)Q
0k×k Ik

]

and

Gn+1 = [Q(z, w)]−1

[

Gn+1

0k

]

,

with

Q =







bT

...
bT






∈ Rk×k.

Proof. By considering the test problem (4.1) and F̂n+1 as the approximation of
the Fn+1 and by using the quadrature formulas we have

f̂n+i = gn+i + ξyn+i + hη

n−1
∑

j=0

k
∑

l=1

blyj+l + hη

k
∑

l=1

ωi,lyn+l,

which can be represented in the matrix form

F̂n+1 = Gn+1 + ξYn+1 + hηQ

n
∑

j=1

Yj + hηWYn+1. (4.2)

Now, by setting Zn =
n
∑

j=1

Yj , ξh = w and ηh2 = z and substituting (4.2) in (2.6) we

obtain






A(1)Yn+1 = A(0)Yn +B(1)
(

hGn+1 + wYn+1 + zQZn + zWYn+1

)

,

Zn+1 = Yn+1 + Zn.

These relations can be written in the matrix form
[

A(1) − wB(1) − zB(1)W 0k×k

−Ik Ik

]





Yn+1

Zn+1



 =

[

A(0) zB(1)Q
0k×k Ik

]





Yn

Zn





+

[

hGn+1

0k

]

,

and this completes the proof. �
R(z, w) is called the stability matrix of the method. Now, the method is stable if

ρ(R(z, w)) < 1. Hence, the stability region of the method is R = {(z, w) ∈ C × C :
ρ(R(z, w) < 1}. Here, the term Gn does not influence stability. The stability function
of the method with respect to (4.1) is then defined as

p(z, w;λ) = det(λI2k −R(z, w)). (4.3)
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To investigate the stability properties of the BBDF, it is more convenient to work
with the polynomial obtained by multiplying the stability function (4.3) by its de-
nominator. The resulting polynomial will be denoted by the same symbol p(z, w;λ).
This polynomial takes the form

p(z, w;λ) =
2k
∑

i=0

pi(z, w)λ
i, (4.4)

where pi(z, w), i = 0, 1, . . . , 2k are polynomials of degree less than or equal to k. De-
noting the roots of the polynomial p(z, w;λ) by λ1, λ2, . . . , λ2k, the absolute stability
region of the method is then defined by

R = {(z, w) ∈ C
− × C

− : |λi(z, w)| < 1, i = 1, 2, . . . , 2k}.

5. Examples of methods

Now we describe some classes of BBDF methods. We analyze the order conditions
(3.4) and the stability properties with respect to test equation (4.1) with z < 0, w < 0
and find classes of A0-stable methods.

Example 1. Two-step method with k = 2. The method is defined by




−2
3 0

−4
3 1









y2n+1

y2n+2



 =





0 −2
3

0 −1
3









y2n−1

y2n



+ h





−1 +1
3

0 2
3









f2n+1

f2n+2





This method is A0-stable method of order 2 and the weights of the numerical inte-
gration formula of order 2 are in the form

W =





3
2

−1
2

2 0



 , b =





2

0



 .

Example 2. Three-step method with k = 3. The method is defined by












4
11

−8
11 0

28
22

−23
22 0

−8
11

−6
11 1

























y3n+1

y3n+2

y3n+3













=









0 0 −4
11

0 0 5
22

0 0 −3
11





















y3n−2

y3n−1

y3n













+h













−1 0 −1
11

0 −1 4
22

0 0 24
11

























f3n+1

f3n+2

f3n+3













.

This method is of order 3 with extensive stability region and the stability region of 3-
step methods is plotted in Figure 1. The weights of the numerical integration formula
of order 3 are

W =













23
12

−4
3

5
12

7
3

−2
3

1
3

9
4 0 3

4













, b =













9
4

0

3
4













.
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0
-1

0

−0.5

z

w

Figure 1. The stability region for 3-step method.

Example 3. four-step method with k = 4. The method is defined by




















39
50

−69
50

17
50 0

18
25

−3
25

−38
75 0

−33
50

93
50

−197
150 0

−16
25

36
25

−48
25 1









































yn+1

yn+2

yn+3

yn+4





















=





















0 0 0 −13
50

0 0 0 7
75

0 0 0 −17
150

0 0 0 −3
25









































y4n−3

y4n−2

y4n−1

y4n





















+h





















−1 0 0 2
50

0 −1 0 −3
75

0 0 −1 3
25

0 0 0 12
25









































f4n+1

f4n+2

f4n+3

f4n+4





















.

The integration formula are declared by the weights

W =





















55
24

−59
24

37
24

−3
8

8
3

−5
3

4
3

−1
3

21
8

−9
8

15
8

−3
8

8
3

−4
3

8
3 0





















, b =





















8
3

−4
3

8
3

0





















.

6. Numerical examples

We illustrate the performances of discretized BBDF by means of some test exam-
ples. We verify the theoretical order of convergence established in Section 3.
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0
-2

-1

0

−0.4

z

w

Figure 2. The stability region of 4-step method.

We consider the following test equations:
I. linear test equation

y′(t) = 1 + 2t− y(t) +

∫ t

0

τ(1 + 2τ)eτ(t−τ)y(τ)dτ, t ∈ [0, 2],

y(0) = 1,

with the exact solution y(t) = et
2

.
II. nonlinear test equation

y′(t) = − sin(t)− 2
t

e
+ 2te−y +

∫ t

0

−2t sin(τ) e−ydτ, t ∈ [0, 1],

y(0) = 1,

with the exact solution y(t) = cos(t).
III. stiff test equation

y′(t) = λ(y(t)− sin(t)) + 1−

∫ t

0

y(τ)dτ, t ∈ [0,
3π

4
],

y(0) = 0,

where the exact solution y(t) = sin(t) and with λ < 0. Differentiating of this problem
leads to the second order ODE which can be written in the form of system of first
order ODE with eigenvalues λ1, λ2. It is equivalent to a system of ODEs of Prothero-
Robinson type, with |λ1

λ2
| = O(λ2), and it is stiff for large values of |λ|. We handle

it with λ = −106. We have implemented the methods with a fixed stepsize h = T
2m ,

with several integer values of k. In the following tables, the maximal end point error
is written as 10−cd, where cd is the number of correct significant digits. Also, a
numerical estimation of the order of convergence of the methods is computed by the

formula p(h) = log2(
e(2h)
e(h) ), where e(h) is the maximal absolute end point error.

The results in Tables 1-3 confirm the proved convergence order.
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Table 1. The results of problem I.

m 2 3 4 5 6 7
3-step method cd 0.21 1.64 2.74 3.75 4.71 5.63

p(h) 4.76 3.68 3.33 3.17 3.08
4-step method cd 1.02 2.66 4.11 5.43 6.71 5.63

p(h) 5.42 4.79 4.41 4.21 4.11
6-step method cd 2.37 4.19 6.00 7.81 9.62 12.36

p(h) 6.05 6.01 6.00 6.00 6.00

Table 2. The results of problem II.

m 2 3 4 5 6 7
3-step method cd 4.44 5.38 6.31 7.22 8.12 9.03

p(h) 3.12 3.05 3.03 3.02 3.01
4-step method cd 3.91 5.19 6.41 7.64 8.86 10.08

p(h) 4.25 4.06 4.09 4.07 4.04

Table 3. The results of problem III.

m 2 3 4 5 6
4-step method cd 1.21 2.33 3.49 4.96 5.89

p(h) 3.72 3.85 3.92 3.96
6-step method cd 2.81 4.62 6.43 8.22 10.03

p(h) 6.05 6.01 6.00 6.00
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