| تعداد نشریات | 45 |
| تعداد شمارهها | 1,436 |
| تعداد مقالات | 17,675 |
| تعداد مشاهده مقاله | 57,748,790 |
| تعداد دریافت فایل اصل مقاله | 19,412,015 |
The combination of biochar and rhizobacteria improved leaf pigments and growth of oilseed rape under salinity | ||
| Journal of Plant Physiology and Breeding | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 27 آذر 1404 اصل مقاله (835.07 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/jppb.2025.68819.1373 | ||
| نویسندگان | ||
| Soheila Abdoli؛ Kazem Ghassemi-Golezani* | ||
| Department of Plant Ecophysiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran | ||
| چکیده | ||
| Objective: Soil salinity is a major environmental constraint that significantly influences plant growth and productivity. Application of carbon-rich materials and rhizobacteria may reduce the negative impacts of environmental stresses such as soil salinity on plants. Thus, this research aimed to investigate the possible roles of solid and enriched biochars with Pseudomonas putida RS-198 and Azotobacter chroococcum RS-106 on the physiological performance and grain yield of oilseed rape under salinity. Methods: A factorial experiment with randomized complete block design in three replicates was laid out in a greenhouse at the University of Tabriz, Iran, to find out the effects of solid biochar (30 g biochar per 1 kg soil) and enriched biochars with Pseudomonas putida (100 ml bacteria in 1 kg-1 of biochar), Azotobacter chroococcum (100 ml bacteria in 1 kg-1 of biochar), and P. putida + A. chroococcum (50 ml P. putida + 50 ml A. chroococcum in 1 kg-1 of biochar) on nutrient uptake, osmotic adjustment, photosynthetic activity, and yield components of oilseed rape plants under salt stress (0, 6, and 12 dS m-1 NaCl; as non-saline, and moderate and high salinities, respectively). Results: The Na+ uptake and osmolytes were enhanced, but the K+ uptake, Ca2+ and Mg2+ contents, leaf water content, photosynthetic activity, plant growth, grain yield, and yield components were decreased with increasing salt stress. The biochar-related treatments reduced the negative impacts of salt stress by decreasing Na+ uptake and increasing nutrients and water contents, soluble sugars, leaf pigments, plant biomass, seeds per plant, and grain yield, particularly under high salinity. In addition, the combination of biochar and P. putida + A. chroococcum was the superior treatment in enhancing pods per plant of oilseed rape. Conclusion: The integrated application of biochar and rhizobacteria could be a new method worthy of consideration for improving plant growth and productivity in saline soils. | ||
| کلیدواژهها | ||
| Biochar؛ Oilseed rape؛ Photosynthetic pigments؛ Rhizobacteria؛ Salt stress؛ Yield components | ||
| مراجع | ||
|
Abdel Latef AAH, Abu Alhmad MF, Kordrostami M, Abo-Baker Abd-Elmoniem Abo-Baker ABAE, Zakir, A. 2020. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J Plant Growth Regul. 39: 1293-1306. https://doi.org/10.1007/s00344-020-10065-9
Abd El-Mageed TA, Rady MM, Taha RS, Abd El Azeam S, Simpson CR, Semida WM. 2020. Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Sci Hortic. 261: 108930. https://doi.org/10.1016/j.scienta.2019.108930
Abdoli S, Ghassemi-Golezani K. 2021. Salicylic acid: an effective growth regulator for mitigating salt toxicity in plants. J Plant Physiol Breed. 11(1): 1-15. https://doi.org/10.22034/JPPB.2021.13681
Abdoli S, Ghassemi-Golezani K. 2025. Foliar treatments of salicylic acid and iron nanoparticles enhanced antioxidant potential and essential oil production of ajowan under salt stress. Plant Biosyst. 159(1): 92-102. https://doi.org/10.1080/11263504.2024.2446790
Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S. 2020. Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron-oxide nanoparticles under salt stress. Environ Sci Pollut Res Int. 27(29): 36939-36953. https://doi.org/10.1007/s11356-020-09453-1
Adhikari S, Mahmud MP, Nguyen MD, Timms W. 2023. Evaluating fundamental biochar properties in relation to water holding capacity. Chemosphere. 328: 138620. https://doi.org/10.1016/j.chemosphere.2023.138620
Amini S, Ghadiri H, Chen C, Marschner P. 2016. Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. J Soils Sediments. 16: 939-953. https://doi.org/10.1007/s11368-015-1293-1
Ansari M, Shekari F, Mohammadi MH, Juhos K, Végvári G, Biró B. 2019. Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity. Acta Physiol Plant. 41: 195. https://doi.org/10.1007/s11738-019-2988-5
Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S. 2020. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiol Biochem. 156: 64-77. https://doi.org/10.1016/j.plaphy.2020.08.042
Arkhipova T, Martynenko E, Sharipova G, Kuzmina L, Ivanov I, Garipova M, Kudoyarova G. 2020. Effects of plant growth promoting rhizobacteria on the content of abscisic acid and salt resistance of wheat plants. Plants. 9(11): 1429. https://doi.org/10.3390/plants9111429
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24(1): 115. https://doi.org/10.1104/pp.24.1.1
Ashraf M, McNeilly T. 2004. Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci. 23(2): 157-174. https://doi.org/10.1080/07352680490433286
Ayuso-Calles M, Flores-Félix JD, Rivas R. 2021. Overview of the role of rhizobacteria in plant salt stress tolerance. Agronomy. 11: 1759. https://doi.org/10.3390/agronomy11091759
Aziz A, Akram NA, Ashraf M. 2018. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Plant Physiol. Biochem. 123: 192-203. https://doi.org/10.1016/j.plaphy.2017.12.004
Bal HB, Nayak L, Das S, Adhya TK. 2013. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 366: 93-105. https://doi.org/10.1007/s11104-012-1402-5
Banaei-Asl F, Bandehagh A, Dorani Uliaei E, Farajzadeh D, Sakata K, Mustafa G, Komatsu S. 2015. Proteomic analysis of canola root inoculated with bacteria under salt stress. J Proteomics. 124: 88-111. https://doi.org/10.1016/j.jprot.2015.04.009
Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205-207. https://doi.org/10.1007/BF00018060
Busch D, Glaser B. 2015. Stability of co-composted hydrochar and biochar under field conditions in a temperate soil. Soil Use Manag. 31(2): 251-258. https://doi.org/10.1111/sum.12180
Carter MR, Gregorich EG. 2008. Soil sampling and methods of analysis. Second edition. Manitoba, Canada: Canadian Society of Soil Science. 1262 pages. https://doi.org/10.1201/9781420005271
Chapman HD. 1965. Cation exchange capacity. In: Black CA (ed.). Methods of soil analysis. Madison, Wisconsin: American Society of Agronomy. pp. 891-901.
Chen THH, Murata N. 2008. Glycine betaine: an effective protectant against abiotic stress in plants. Trends Plant Sci. 13(9): 499-505. https://doi.org/10.1016/j.tplants.2008.06.007
Farouk S, Elhindi KM, Alotaibi MA. 2020. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol Environ Saf. 206: 111396. https://doi.org/10.1016/j.ecoenv.2020.111396
Ghassemi-Golezani K, Abdoli S. 2021. Improving ATPase and PPase activities, nutrient uptake and growth of salt stressed ajowan plants by salicylic acid and iron-oxide nanoparticles. Plant Cell Rep. 403): 559-573. https://doi.org/10.1007/s00299-020-02652-7
Ghassemi-Golezani K, Abdoli S. 2023. Alleviation of salt stress in rapeseed (Brassica napus L.) plants by biochar-based rhizobacteria: new insights into the mechanisms regulating nutrient uptake, antioxidant activity, root growth and productivity. Arch Agron Soil Sci. 69(9): 1548-1565. https://doi.org/10.1080/03650340.2022.2103547
Ghassemi-Golezani K, Abdoli S. 2024. Salicylic acid and iron-oxide nanoparticles improved the growth and productivity of ajowan under salt stress. Adv Hortic Sci. 38(2): 129-139. https://doi.org/10.36253/ahsc-15671
Ghassemi-Golezani K, Farhadi N. 2021. The efficacy of salicylic acid levels on photosynthetic activity, growth, and essential oil content and composition of pennyroyal plants under salt stress. J Plant Growth Regul. 41: 1953-1965. https://doi.org/10.1007/s00344-021-10515-y
Ghassemi-Golezani K, Mousavi SA. 2022. Improving physiological performance and grain yield of maize by salicylic acid treatment under drought stress. J Plant Physiol Breed. 12(2): 1-10. https://doi.org/10.22034/JPPB.2022.16041
Ghassemi-Golezani K, Rahimzadeh S. 2024. Biochar-based nanoparticles mitigated arsenic toxicity and improved physiological performance of basil via enhancing cation exchange capacity and ferric chelate reductase activity. Chemosphere. 362: 142623. https://doi.org/10.1016/j.chemosphere.2024.142623
Ghassemi-Golezani K, Farhangi-Abriz S, Abdoli S. 2021. How can biochar-based metal oxide nanocomposites counter salt toxicity in plants? Environ Geochem Health. 43(5): 2007-2023. https://doi.org/10.1007/s10653-020-00780-3
Grieve CM, Grattan SR. 1983. Rapid assay for determination of water-soluble quaternary ammonium compounds. Plant Soil. 70: 303-307. https://doi.org/10.1007/BF02374789
Guerzoni JTS, Belintani NG, Moreira RMP, Hoshino AA, Domingues DS, Filho JCB, Vieira LGE. 2014. Stress-induced D1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol Plant. 36(9): 2309-2319. https://doi.org/10.1007/s11738-014-1579-8
Gupta S, Pandey S. 2019. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol. 10: 1506. https://doi.org/10.3389/fmicb.2019.01506
Hussain S, Huang J, Zhu C, Zhu L, Cao X, Hussain S, Ashraf M, Khaskheli MA, Kong Y, Jin Q, et al. 2020. Pyridoxal 5′-phosphate enhances the growth and morpho-physiological characteristics of rice cultivars by mitigating the ethylene accumulation under salinity stress. Plant Physiol Biochem. 154: 782-795. https://doi.org/10.1016/j.plaphy.2020.05.035
Jamil M, Lee KJ, Kim JM, Kim HS, Rha ES. 2007. Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Sci Agric. 64(2): 111-118. https://doi.org/10.1590/S0103-90162007000200002
Kan X, Ren J, Chen T, Cui M, Li C, Zhou R, Zhang Y, Liu H, Deng D, Yin Z. 2017. Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ Exp Bot. 140: 56-64. https://doi.org/10.1016/j.envexpbot.2017.05.019
Kapadia C, Sayyed RZ, El Enshasy HA, Vaidya H, Sharma D, Patel N, Malek RA, Syed A, Elgorban AM, Ahmad K, et al. 2021. Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plants and soil nutrient enrichment. Sustainability. 13(15): 8369. https://doi.org/10.3390/su13158369
Kasotia A, Varma A, Tuteja N, Choudhary DK. 2016. Amelioration of soybean plant from saline-induced condition by exopolysaccharide producing Pseudomonas-mediated expression of high affinity K+ -transporter (HKT1) gene. Curr Sci. 111(12): 1961-1967. https://doi.org/10.18520/cs/v111/i12/1961-1967
Khan MIR, Iqbal N, Masood A, Khan NA. 2012. Variation in salt tolerance of wheat cultivars: Role of glycine betaine and ethylene. Pedosphere. 22(6): 746-754. https://doi.org/10.1016/S1002-0160(12)60060-5
Kim WY, Ali Z, Park HJ, Park SJ, Cha JY, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, et al. 2013. Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun. 4: 1352. https://doi.org/10.1038/ncomms2357
Kochert A, 1978. Carbohydrate determination by phenol-sulfuric acid method. In: Hellebust JA, Craige JS (eds.). Handbook of physiology and biochemical methods. London: Cambridge University Press. pp. 95-97.
Liu Q, Zhang Y, Liu B, Amonette JE, Lin Z, Liu G, Ambus P, Xie Z. 2018. How does biochar influence soil N cycle? A meta-analysis. Plant Soil. 426: 211-225. https://doi.org/10.1007/s11104-018-3619-4
Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P. 2011a. Effects of optimal and supra-optimal salinity stress on antioxidative defense, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tiss Organ Cult. 104: 41-49. https://doi.org/10.1007/s11240-010-9802-9
Lokhande VH, Srivastava AK, Srivastava S, Nikam TD, Suprasanna P. 2011b. Regulated alterations in redox and energetic status are the key mediators of salinity tolerance in the halophyte Sesuvium portulacastrum L. Plant Growth Regul. 65: 287-298. https://doi.org/10.1007/s10725-011-9600-3
Luo X, Liu G, Xia Y, Chen L, Jiang Z, Zheng H, Wang Z. 2017. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J Soils Sediments, 17: 780-789. https://doi.org/10.1007/s11368-016-1361-1
Mayak S, Tirosh T, and Glick BR, 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry 42: 565–572. https://doi.org/10.1016/j.plaphy.2004.05.009
Nia SH, Zarea MJ, Rejali F, Varma A. 2012. Yield and yield components of wheat as affected by salinity and inoculation with Azospirillum strains from saline or non-saline soil. J Saudi Soc Agric Sci. 11(2): 113-121. https://doi.org/10.1016/j.jssas.2012.02.001
Ohnishi N, Murata N. 2006. Glycine betaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC 7942. Plant Physiol. 141(2): 758-765. https://doi.org/10.1104/pp.106.076976
Pushpavalli R, Quealy J, Colmer TD, Turner NC, Siddique KHM, Rao MV, Vadez V. 2016. Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na+ accumulation in leaves. J Agron Crop Sci. 202(2): 125-138. https://doi.org/10.1111/jac.12128
Qian L, Chen B, Hu D. 2013. Effective alleviation of aluminum phytotoxicity by manure derived biochar. Environ Sci Technol. 47(6): 2737-2745. https://doi.org/10.1021/es3047872
Radyukina NL, Toaima VIM, Zaripova NR. 2012. The involvement of low-molecular antioxidants in cross-adaptation of medicine plants to successive action of UV-B radiation and salinity. Russ J Plant Physiol. 59: 71-78. https://doi.org/10.1134/s1021443712010165
Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K., 2013. Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus. 2: 6. https://doi.org/10.1186/2193-1801-2-6
Rasool S, Ahmad A, Siddiqi TO, Ahmad P. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant. 35: 1039-1050. https://doi.org/10.1007/s11738-012-1142-4
Rengasamy P. 2010. Soil processes affecting crop production in salt-affected soils. Funct Plant Biol. 37(7): 613-620. https://doi.org/10.1071/FP09249
Rizk MS, Mekawy AM, Assaha DV, Chuamnakthong S, Shalaby NE, Ueda A. 2021. Regulation of Na+ and K+ transport and oxidative stress mitigation reveal differential salt tolerance of two Egyptian maize (Zea mays L.) hybrids at the seedling stage. J Plant Growth Regul. 40: 1629-1639. https://doi.org/10.1007/s00344-020-10216-y
Shu S, Guo SR, Sun J, Yuan LY. 2012. Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiol Plant. 146(3): 285-296. https://doi.org/10.1111/j.1399-3054.2012.01623.x
Šimanský V, Horák J, Igaz D, Balashov E, Jonczak J. 2018. Biochar and biochar with N fertilizer as a potential tool for improving soil sorption of nutrients. J Soils Sediments. 18: 1432-1440. https://doi.org/10.1007/s11368-017-1886-y
Solhi-Khajehmarjan R, Ghassemi-Golezani K, Alizadeh Salteh S. 2025. The efficacy of solid and enriched biochars with magnesium and iron nanoparticles on growth and essential oil composition of German chamomile under salt stress. J Plant Physiol Breed. 15(1): 1-15. https://doi.org/10.22034/jppb.2025.64958.1354
Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, et al. 2020. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants. 6(1): 34-45. https://doi.org/10.1038/s41477-019-0577-7
Surender Reddy P, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kavi Kishor PB. 2015. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem. 94: 104-113. https://doi.org/10.1016/j.plaphy.2015.05.014
Szabados L, Savouré A. 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15(2): 89-97. https://doi.org/10.1016/j.tplants.2009.11.009
Tanveer M, Shah AN. 2017. An insight into salt stress tolerance mechanisms of Chenopodium album. Environ Sci Pollut Res Int. 24(19): 16531-16535. https://doi.org/10.1007/s11356-017-9337-2
Trovato M, Mattioli R, Costantino P. 2008. Multiple roles of proline in plant stress tolerance and development. Rend Fis Acc Lincei. 19: 325-346. https://doi.org/10.1007/s12210-008-0022-8
Wang H, Tang X, Wang H, Shao HB. 2015. Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Front Plant Sci. 6: 792. https://doi.org/10.3389/fpls.2015.00792
Wu S, Zhang Y, Tan Q, Sun X, Wei W, Hu C. 2020. Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin. Sci Total Environ. 714: 136722. https://doi.org/10.1016/j.scitotenv.2020.136722
Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Paré PW. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact. 21(6): 737-744. https://doi.org/10.1094/MPMI-21-6-0737 | ||
|
آمار تعداد مشاهده مقاله: 5 تعداد دریافت فایل اصل مقاله: 1 |
||