| تعداد نشریات | 45 |
| تعداد شمارهها | 1,433 |
| تعداد مقالات | 17,642 |
| تعداد مشاهده مقاله | 57,426,864 |
| تعداد دریافت فایل اصل مقاله | 19,180,744 |
Physiological protection of basil plant (Ocimum basilicum L.) against cold stress using L-arginine-coated calcium hydroxide nanoparticles | ||
| Journal of Plant Physiology and Breeding | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 09 آذر 1404 اصل مقاله (1.06 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/jppb.2025.65959.1361 | ||
| نویسندگان | ||
| Faegheh Bahraminejad* 1؛ Fatemeh Nasibi1؛ Esmaeel Darezereshki2؛ Fatemeh Rostami1 | ||
| 1Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran | ||
| 2Department of Material Processing Engineering, Shahid Bahonar University of Kerman, Kerman, Iran | ||
| چکیده | ||
| Objective: Low temperatures can limit crop productivity, which is a major concern for agricultural and horticultural crops worldwide. Cold stress can cause damage to plants during sensitive growth stages, leading to reduced crop performance. One such crop that is particularly susceptible to cold stress is Ocimum basilicum L., commonly known as basil. In this article, we present a study on the use of Ca (OH)2 nanoparticles (NPs) coated with L-arginine to decrease cold stress in this plant. Methods: Basil plants were divided into two groups after two weeks of growth. One group was sprayed with distilled water, while the other group was sprayed with Arg-Ca(OH)₂ nanoparticle solutions every other day for a week. To induce cold stress, the plants were placed at 3 °C for 5 hours and then transferred to a greenhouse. After 24 hours, samples were taken and frozen in liquid nitrogen. The photosynthetic pigments, lipid peroxidation, protein oxidation, proline content, total soluble sugars, total protein, and enzymes’ activity, including superoxide dismutase, ascorbate peroxidase, catalase, guaiacol peroxidase, and lipoxygenase, were measured. Results: The findings of this study revealed that cold stress decreased chlorophyll levels in basil plants while increasing activity of antioxidant enzymes, including malondialdehyde, proline, soluble sugars, protein oxidation, and lipoxygenase activity. However, treating the plants with the NPs significantly reduced malondialdehyde, proline, and protein oxidation. It also prevented chlorophyll degradation, boosted soluble sugar content, and increased antioxidant enzyme activity in the cold-stressed plants compared to untreated ones. Conclusion: Overall, this research highlighted a beneficial role of the Ca(OH)2 NPs in mitigating the adverse effects of cold stress on basil plants. | ||
| کلیدواژهها | ||
| Calcium hydoxide nanoparticles؛ Cold stress؛ Nanoparticles؛ Ocimum basilicum L | ||
| مراجع | ||
|
Bao G, Tang W, An Q, Liu Y, Tian J, Zhao N, Zhu S. 2020. Physiological effects of the combined stresses of freezing-thawing, acid precipitation and deicing salt on alfalfa seedlings. BMC Plant Biol. 20: 204. https://doi.org/10.1186/s12870-020-02413-4
Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39: 205-207. https://doi.org/10.1007/BF00018060
Bhattacharya A. 2022. Physiological processes in plants under low temperature stress. Singapore: Springer. https://doi.org/10.1007/978-981-16-9037-2
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1-2): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Brandão LB, Santos LL, Martins RL, Rodrigues AB, da Costa AL, Faustino CG. 2022. The potential effects of species Ocimum basilicum L. on health: A review of the chemical and biological studies. Pharmacogn Rev. 16(31): 22-26. https://doi.org/10.5530/phrev.2022.16.4
de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK. 2021. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 229(5): 2446-2469. https://doi.org/10.1111/nph.17074
Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I. 2018. Calcium transport across plant membranes: mechanisms and functions. New Phytol. 220(1): 49-69. http://dx.doi.org/10.1111/nph.15266
Dey S, Biswas A, Huang S, Li D, Liu L, Deng Y, Xiao A, Birhanie ZM, Zhang J, Li J, et al. 2021. Low temperature effect on different varieties of Corchorus capsularis and Corchorus olitorius at seedling stage. Agronomy. 11(12): 2547. https://doi.org/10.3390/agronomy11122547
Dhindsa RS, Plumb-Dhindsa PA, Thorpe TA. 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 32(1): 93-101. https://doi.org/10.1093/jxb/32.1.93
El-Mahdy MT, Youssef M, Eissa MA. 2018. Impact of in vitro cold stress on two banana genotypes based on physio-biochemical evaluation. S Afr J Bot. 119: 219-225. https://doi.org/10.1016/j.sajb.2018.09.014
Eom SH, Ahn MA, Kim E, Lee HJ, Lee JH, Wi SH, Kim SK, Lim HB, Hyun TK. 2022. Plant response to cold stress: Cold stress changes antioxidant metabolism in heading type kimchi cabbage (Brassica rapa L. ssp.) Pekinensis. Antioxidants. 11(4): 700. https://doi.org/10.3390/antiox11040700
Eslami M, Nasibi F, Manouchehri Kalantari K, Khezri M, Oloumi H. 2019. Effect of exogenous application of l-arginine and sodium nitroprusside on fruit abscission and physiological disorders of pistachio (Pistacia vera L.) Scions. Int. J Hortic Sci Technol. 6(1): 51-62. https://doi.org/10.22059/ijhst.2019.270762.265
Fales F. 1951. The assimilation and degradation of carbohydrates by yeast cells. J Biol Chem. 193(1): 113-124. https://doi.org/10.1016/S0021-9258(19)52433-4
Freitas IS, Trennepohl BI, Acioly TM, Conceição VJ, Mello SC. 2022. Exogenous application of L-arginine improves protein content and increases yield of Pereskia aculeata Mill. grown in soilless media container. Horticulturae. 8(2): 142. https://doi.org/10.3390/horticulturae8020142
Gao Y, Chen S, Li Y, Shi Y. 2023. Effect of nano-calcium carbonate on morphology, antioxidant enzyme activity and photosynthetic parameters of wheat (Triticum aestivum L.) seedlings. Chem Biol Technol Agric. 10(1): 31. https://doi.org/10.1186/s40538-023-00404-9
Gholinezhad E, Heidari Sureshjani Z, Fakharzadeh S, Kalanaky S. 2024. Impact of nano-chelated NPK and chemical fertilizers on the growth and productivity features of maize (Zea mays L.) under water-deficit stress. J Plant Physiol Breed. 31: 147-67. https://doi.org/10.22034/jppb.2024.62666.1342
Giannopolitis CN, Ries SK. 1977. Superoxide dismutases: I. Occurrence in higher plants. J Plant Physiol. 59(2): 309-314. https://doi.org/10.1104/pp.59.2.309
Guo Y, Liu Y, Zhang Y, Liu J, Gul Z, Guo XR, Abozeid A. 2021. Effects of exogenous calcium on adaptive growth, photosynthesis, ion homeostasis and phenolics of Gleditsia sinensis Lam. plants under salt stress. Agriculture. 11(10): 978. https://doi.org/10.3390/agriculture11100978
Guo Z, Cai L, Liu C, Chen Z, Guan S, Ma W, Pan G. 2022. Low-temperature stress affects reactive oxygen species, osmotic adjustment substances, and antioxidants in rice (Oryza sativa L.) at the reproductive stage. Sci Rep. 12(1): 6224. https://doi.org/10.1038/s41598-022-10420-8
Gusain S, Joshi S, Joshi R. 2023. Sensing, signalling, and regulatory mechanism of cold-stress tolerance in plants. Plants Physiol. 107646. https://doi.org/10.1016/j.plaphy.2023.107646
Hajihashemi S, Noedoost F, Geuns JM, Djalovic I, Siddique KH. 2018. Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana. Front Plant Sci. 9: 1430. https://doi.org/10.3389/fpls.2018.01430
Hasanuzzaman M, Nahar K, Rahman A, Inafuku M, Oku H, Fujita M. 2018. Exogenous nitric oxide donor and arginine provide protection against short-term drought stress in wheat seedlings. Physiol Mol Biol Plants. 24: 993-1004. https://doi.org/10.1007/s12298-018-0531-6
Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1): 189-198. https://doi.org/10.1016/0003-9861(68)90654-1
Hmmam I, Raza A, Đalović I, Khedr N, Abdellatif A. 2023. An in vitro approach to investigate the role of abscisic acid in alleviating the negative effects of chilling stress on banana shoots. PHYTON. 92(6): 1695-1711. https://doi.org/10.32604/phyton.2023.028317
Hu W, Tian SB, Di Q, Duan SH, Dai K. 2018. Effects of exogenous calcium on mesophyll cell ultrastructure, gas exchange, and photosystem II in tobacco (Nicotiana tabacum Linn.) under drought stress. Photosynthetica. 56(4): 1204-1211. https://doi.org/10.1007/s11099-018-0822-8
Hussein HA, Alshammari SO, Kenawy SK, Elkady FM, Badawy AA. 2022. Grain-priming with L-arginine improves the growth performance of wheat (Triticum aestivum L.) plants under drought stress. Plants. 11(9): 1219. https://doi.org/10.3390/plants11091219
Jakovljević D, Momčilović J, Bojović B, Stanković M. 2021. The short-term metabolic modulation of basil (Ocimum basilicum L. cv.‘Genovese’) after exposure to cold or heat. Plants. 10(3): 590. https://doi.org/10.3390/plants10030590
Javidi MR, Maali-Amiri R, Poormazaheri H, Niaraki MS, Kariman K. 2022. Cold stress-induced changes in metabolism of carbonyl compounds and membrane fatty acid composition in chickpea. Plant Physiol Biochem. 192: 10-19. https://doi.org/10.1016/j.plaphy.2022.09.031
Kawade K, Tabeta H, Ferjani A, Hirai MY. 2023. The roles of functional amino acids in plant growth and development. Plant Cell Physiol. 64(12): 1482-1493. https://doi.org/10.1093/pcp/pcad071
Kumar R, Singh PC, Singh S. 2018. A review report: Low temperature stress for crop production. Int. J Pure Appl Biosci. 6(2): 575-598. http://dx.doi.org/10.18782/2320-7051.3031
Lamnai K, Anaya F, Fghire R, Zine H, Janah I, Wahbi S, Loutfi K. 2022. Combined effect of salicylic acid and calcium application on salt-stressed strawberry plants. Russ J Plant Physiol. 69(1): 12. https://doi.org/10.1134/S1021443722010101
Levine RL, Williams JA, Stadtman EP, Shacter E. 1994. Carbonyl assays for determination of oxidatively modified proteins. In: Packer L (ed.) Methods in enzymology. Cambridge, Massachusetts, USA: Academic Press. 233: 346-357. https://doi.org/10.1016/S0076-6879(94)33040-9
Li M, Zhao W, Du Q, Xiao H, Li J, Wang J, Shang F. 2023. Abscisic acid and hydrogen peroxide regulate proline homeostasis in melon seedlings under cold stress by forming a bidirectional closed loop. Environ Exp Bot. 205: 105102. https://doi.org/10.1016/j.envexpbot.2022.105102
Lichtenthaler HK 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Parker L, Douce R (eds.) Methods in enzymology. Cambridge, Massachusetts, USA: Academic Press. 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
Liu W, Yu K, He T, Li F, Zhang D, Liu J. 2013. The low temperature induced physiological responses of Avena nuda L., a cold-tolerant plant species. Sci World J. https://doi.org/10.1155/2013/658793
Liu Y, Lu J, Cui L, Tang Z, Ci D, Zou X, Zhang X, Yu X, Wang Y, Si T. 2023. The multifaceted roles of Arbuscular Mycorrhizal Fungi in peanut responses to salt, drought, and cold stress. BMC Plant Biol. 23(1): 36. https://doi.org/10.1186/s12870-023-04053-w
Malekzadeh P, Hatamnia AA, Tiznado-Hernández ME. 2023. Arginine catabolism induced by exogenous arginine treatment reduces the loss of green color rate in broccoli florets. Physiol Mol Plant Pathol. 124: 101973. https://doi.org/10.1016/j.pmpp.2023.101973
Manaa A, Gharbi E, Mimouni H, Wasti S, Aschi-Smiti S, Lutts S, Ahmed HB. 2014. Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. S Afr J Bot. 95: 32-39. https://doi.org/10.1016/j.sajb.2014.07.015 Manasa S L, Panigrahy M, Panigrahi KC, Rout GR. 2022. Overview of cold stress regulation in plants. Bot Rev. 88(3): 359-387. https://doi.org/10.1007/s12229-021-09267-x
Mazhar MW, Ishtiaq M, Maqbool M, Atiq Hussain S, Casini R, Abd-ElGawad AM, Elansary HO. 2023. Seed nano-priming with calcium oxide maintains the redox state by boosting the antioxidant defense system in water-stressed carom (Trachyspermum ammi L.) plants to confer drought tolerance. Nanomaterials. 13(9): 1453. https://doi.org/10.3390/nano13091453
Mehrotra S, Verma S, Kumar S, Kumari S, Mishra BN. 2020. Transcriptional regulation and signalling of cold stress response in plants: An overview of current understanding. Environ Exp Bot. 180: 104243. https://doi.org/10.1016/j.envexpbot.2020.104243
Minguez-Mosquera MI, Jaren-Galan M, Garrido-Fernandez J. 1993. Lipoxygenase activity during pepper ripening and processing of paprika. Phytochemistry. 32(5): 1103-1108.
Mirghiasi, Z, Bakhtiari F, Darezereshki E. Esmaeilzadeh E. 2014. Preparation and characterization of CaO nanoparticles from Ca (OH)2 by direct thermal decomposition method. J Ind Eng Chem. 20(1): 113-117. https://doi.org/10.1016/j.jiec.2013.04.018
Naeem M, Aftab T, Khan MN. 2020. Exogenous calcium mitigates heat stress effects in common bean: a coordinated impact of photoprotection of PSII, up-regulating antioxidants, and carbohydrate metabolism. Acta Physiol Plant. 42: 180. https://doi.org/10.1007/s11738-020-03171-4
Naeem M, Aftab T, Khan MN. 2023. Calcium homeostasis in plants: Roles in stress tolerance. S Afr J Bot. 155: 393-395. https://doi.org/10.1016/j.sajb.2023.02.030
Nahar K, Hasanuzzaman M, Fujita M. 2016. Roles of osmolytes in plant adaptation to drought and salinity. In: Iqbal N, Nazar R, Khan NA (eds.) Osmolytes and plants acclimation to changing environment: Emerging omics technologies. New Delhi: Springer, pp. 37-68. https://doi.org/10.1007/978-81-322-2616-1_4
Nakano Y, Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5): 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
Nasibi F, Yaghoobi MM, Kalantari KM. 2011. Effect of exogenous arginine on alleviation of oxidative damage in tomato plant under water stress. J Plant Interact. 6(4): 291-296. https://doi.org/10.1080/17429145.2010.539708
Nejadalimoradi H, Nasibi F, Kalantari M, Zanganeh R. 2014. Effect of seed priming with L-arginine and sodium nitroprusside on some physiological parameters and antioxidant enzymes of sunflower plants exposed to salt stress. Agric Commun. 2(1): 23-30.
Novak J, Blüthner WD (eds.) 2020. Medicinal, aromatic and stimulant plants. Berlin/Heidelberg, Germany: Springer. https://doi.org/10.1007/978-3-030-38792-1
Pardha-Saradhi P, Yamal G, Peddisetty T, Sharmila P, Singh J, Nagarajan R, Rao KS. 2014. Plants fabricate Fe-nanocomplexes at root surface to counter and phytostabilize excess ionic Fe. Biometals. 27: 97-114. https://doi.org/10.1007/s10534-013-9690-7
Patterson A. 1939. The Scherrer formula for X-Ray particle size determination. Phys Rev. 56(10): 978-982. https://doi.org/10.1103/PhysRev.56.978
Petit T, Puskar L. 2018. FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam Relat Mater. 89: 52-66. https://doi.org/10.1016/j.diamond.2018.08.005
Plewa MJ, Smith SR, Wagner ED. 1991. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutat Res- Fundam Mol Mech Mutagen. 247(1): 57-64. https://doi.org/10.1016/0027-5107(91)90033-K
Ramadan AA, Abd Elhamid EM, Sadak MS. 2019. Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bull Natl Res Cent. 43: 118. https://doi.org/10.1186/s42269-019-0156-0
Ramazan S, Qazi HA, Dar ZA, John R. 2021. Low temperature elicits differential biochemical and antioxidant responses in maize (Zea mays) genotypes with different susceptibility to low temperature stress. Physiol Mol Biol Plants. 27(6): 1395-1412. https://doi.org/10.1007/s12298-021-01020-3
Rezayian M, Niknam V, Ebrahimzadeh H. 2020. Penconazole and calcium ameliorate drought stress in canola by upregulating the antioxidative enzymes. Funct Plant Biol. 47(9): 825-839. https://doi.org/10.1071/FP19341
Ritonga FN, Yan S, Chen S, Slamet SA, Irmayanti L, Song R, Lin X, Jing Y, Farooq U, Khoso MA, et al. 2021. Cold acclimation affects physiological and biochemical characteristics of Betula platyphylla S. under freezing stress. Forests. 12(12): 1777. https://doi.org/10.3390/f12121777
Sahin O, Yagcioglu KD, Gunes A. 2023. Evaluating ecological nano-calcium from eggshells: Effects on calcium nutrition and oxidative stress in lettuce under saline and boron toxicity. J Plant Growth Regul. 43: 4416-4425. https://doi.org/10.1007/s00344-024-11407-7
Saleem M, Fariduddin Q, Janda T. 2021. Multifaceted role of salicylic acid in combating cold stress in plants: a review. J Plant Growth Regul. 40(2): 464-485. https://doi.org/10.1007/s00344-020-10152-x
Senthilkumar RP, Bhuvaneshwari V, Ranjithkumar R, Sathiyavimal S, Malayaman V, Chandarshekar B. 2017. Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: as a bionanomaterials. Int J Biol Macromol. 104: 1746-1752. https://doi.org/10.1016/j.ijbiomac.2017.03.139
Senthilkumar RP, Bhuvaneshwari V, Malayaman V, Chitra G, Ranjithkumar R, Dinesh KP, Chandarshekar B. 2019. Biogenic method of cerium oxide nanoparticles synthesis using wireweed (Sida acuta Burm. f.) and its antibacterial activity against Escherichia coli. Mater Res Express. 6(10): 105026. https://doi.org/10.1088/2053-1591/ab37b9
Shabbir R, Javed T, Hussain S, Ahmar S, Naz M, Zafar H, Pandey S, Chauhan J, Siddiqui MH, Pinghua C. 2022. Calcium homeostasis and potential roles in combatting environmental stresses in plants. S Afr J Bot 148: 683-693. https://doi.org/10.1016/j.sajb.2022.05.038
Shahrajabian MH, Sun W, Cheng Q. 2020. Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. Int J Food Prop. 23(1): 1961-1970. https://doi.org/10.1080/10942912.2020.1828456
Sobhy S, Abo‑Kassem EE, Saad‑Allah KM, Hafez EE. 2023. Physiological and molecular effects of calcium and salicylic acid on Fusarium graminearum-infected wheat seedlings. J Plant Growth Regul. 42(9): 5796-5815. https://doi.org/10.1007/s00344-023-10966-5
Tambussi EA, Bartoli CG, Guiamet JJ, Beltrano J, Araus JL. 2004. Oxidative stress and photodamage at low temperatures in soybean (Glycine max L. Merr.) leaves. Plant Sci. 167(1): 19-26. https://doi.org/10.1016/j.plantsci.2004.02.018
Tang RJ and Luan S. 2017. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. Curr Opin Plant Biol. 39: 97-105. http://dx.doi.org/10.1016/j.pbi.2017.06.009
Tavallali V, Kiani M, Hojati S. 2019. Iron nano-complexes and iron chelate improve biological activities of sweet basil (Ocimum basilicum L.). Plant Physiol Biochem. 144: 445-454. https://doi.org/10.1016/j.plaphy.2019.10.021
Tavallali V, Gholami H, Espargham O. 2020. Biological and pharmacological activities of essential oils of Ocimum basilicum L. grown with Zn-salicylic acid nano-complex. J Appl Bot Food Qual. 93: https://doi.org/10.5073/JABFQ.2020.093.004
Thor K. 2019. Calcium-nutrient and messenger. Front Plant Sci. 10: 449564. https://doi.org/10.3389/fpls.2019.00440
Valizadeh Kamran R, Toorchi M, Moghadam M, Mohammadi H. 2015. The effect of cold stress on H2O2 and MDA contents in barely genotypes. J Biodiv Environ Sci. 7: 66-75.
Wang T, Chen X, Ju C, Wang C. 2023. Calcium signaling in plant mineral nutrition: From uptake to transport. Plant Commun. https://doi.org/10.1016/j.xplc.2023.100678
Yang SL, Lan SS, Deng FF, Gong M. 2016. Effects of calcium and calmodulin antagonists on chilling stress-induced proline accumulation in Jatropha curcas L. J Plant Growth Regul. 35: 815-826. https://doi.org/10.1007/s00344-016-9584-3
Yu J, Cang J, Lu Q, Fan B, Xu Q, Li W, Wang X. 2020. ABA enhanced cold tolerance of wheat ‘dn1’via increasing ROS scavenging system. Plant Signal Behav. 15(8): 1780403. https://doi.org/10.1080/15592324.2020.1780403
Zhao Y, Han Q, Ding C, Huang Y, Liao J, Chen T, Feng S, Zhou L, Zhang Z, Chen Y, Yuan S. 2020. Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. Int J Mol Sci. 21(4): 1390. https://doi.org/10.3390/ijms21041390
Zhao X, Lin S, Yu S, Zhang Y, Su L, Geng L, Cheng C, Jiang X. 2023. Exogenous calcium enhances the physiological status and photosynthetic capacity of rose (Rosa hybrida L.) under drought stress. Hortic Plant J. 10(3): 853-865. https://doi.org/10.1016/j.hpj.2023.01.010
| ||
|
آمار تعداد مشاهده مقاله: 11 تعداد دریافت فایل اصل مقاله: 11 |
||