| تعداد نشریات | 45 |
| تعداد شمارهها | 1,430 |
| تعداد مقالات | 17,598 |
| تعداد مشاهده مقاله | 57,239,574 |
| تعداد دریافت فایل اصل مقاله | 19,065,428 |
Effect of nitrogen nano-fertilizer concentrations on growth and some agro-physiological performance of Withania coagulans, Echinacea purpurea, and Valeriana officinalis in an aeroponic system | ||
| Journal of Plant Physiology and Breeding | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 03 آذر 1404 اصل مقاله (627.11 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/jppb.2025.69063.1382 | ||
| نویسندگان | ||
| Zahra Movahedi* ؛ Mehdi Ghabooli | ||
| Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer, Iran | ||
| چکیده | ||
| Objective: Nitrogen is a critical macronutrient for plant growth and development, and the application of nitrogen in nanoscale form has emerged as a promising strategy to enhance nutrient use efficiency and crop productivity. This study investigated the effects of different concentrations of nitrogen nano-fertilizer on some traits of three medicinal plants, Withania coagulans, Echinacea purpurea, and Valeriana officinalis, cultivated in an aeroponic system. Methods: The trials were performed in a completely randomized design using three replications. The foliar application of nitrogen nano-fertilizer (0, 1000, and 2000 mg/L) was performed at 20, 40, and 60 days after transferring to the aeroponic system. Morphological traits, including fresh and dry weights of shoots and roots, as well as the height of shoots and roots, and the number of leaves, were measured. Additionally, photosynthetic pigments, consisting of chlorophylls (a and b) and carotenoids, were identified. Results: The results demonstrated a dose-dependent effect of nitrogen nano-fertilizer on all measured traits across the three species. In Valeriana officinalis, the highest concentration significantly increased root length, leaf number, shoot dry weight, plant height, and root dry weight, compared to the control. Similarly, Echinacea purpurea and Withania coagulans showed significant improvements in vegetative growth and biomass accumulation, although the magnitude of response varied among species. Photosynthetic pigments were also enhanced under nano-fertilizer treatment, with chlorophyll a, chlorophyll b, and carotenoids reaching their highest values at 2000 mg/L in all species, suggesting improved photosynthetic capacity and photoprotection. Comparison of these species revealed that Valeriana officinalis exhibited the greatest growth improvement, while Echinacea purpurea demonstrated more pronounced root development and pigment accumulation. Conclusion: Nitrogen nano-fertilizer proved to be an effective tool for promoting vegetative growth, biomass accumulation, and photosynthetic efficiency in the medicinal plants grown under controlled aeroponic conditions. This study provided insights for the sustainable cultivation of high-value medicinal crops and supports the use of nanoscale nutrients to improve plant productivity. | ||
| کلیدواژهها | ||
| Aeroponic system؛ Morphological traits؛ Photosynthetic pigments؛ Plant biomass | ||
| مراجع | ||
|
Ahmadi F, Samadi A, Rahimi A. 2020. Improving growth properties and phytochemical compounds of Echinacea purpurea (L.) medicinal plant using novel nitrogen slow release fertilizer under greenhouse conditions. Sci Rep. 10(1): 13842. https://doi.org/10.1038/s41598-020-70949-4
Ahmadi MR, Shahhoseini R, Hakimi L. 2022. Micropropagation of Iranian native oregano (Origanum vulgare L.) using growth regulators. J Plant Physiol Breed. 12(2): 105-116. https://doi.org/10.22034/jppb.2022.16376
Akram M, Daniyal M, Munir N, Mohiuddin E, Sultana S. 2019. Medicinal plants combating against insomnia: a green anti-insomnia approach. J Nerv Ment Dis. 207(11): 927-935. https://doi.org/10.1097/NMD.0000000000001052
Al-Asally ME, Al-Hijemy SH. 2023. Response of bio-stimulator and foliar spray of nano-nitrogen on growth characteristics of two mandarin seedlings. Earth Environ Sci. 1158: 042046. https://doi.org/10.1088/1755-1315/1158/4/042046
Alhasan AS, Al-Ameri DT. 2021. Effects of macronutrient fertilization on plant growth, essential oil content, and chemical composition in medicinal and aromatic plants grown under different environmental conditions: a review. Volatiles Essent Oils. 8: 2588-2601.
Ali W, Mohammed N, Younis Z, Zeebaree P, Qasim M. 2025. Effect of nano NPK fertilizer, cytokinin, and gibberellic acid on vegetative growth and chemical constituents of Paulownia. J Appl Hort. 27(2): 304-310. https://doi.org/10.37855/jah.2025.v27i02.57
Al-Juthery HW, Al-Maamouri EHO. 2020. Effect of urea and nano-nitrogen fertigation and foliar application of nano-boron and molybdenum on some growth and yield parameters of potato. Al-Qadisiyah J Agric Sci. 10(1): 253-263. https://doi.org/10.33794/qjas.2020.167074
Arnon DI. 1967. Photosynthetic activity of isolated chloroplasts. Physiol Rev. 47(3): 317-358. https://doi.org/10.1152/physrev.1967.47.3.317
Avila-Quezada GD, Ingle AP, Golińska P, Rai M. 2022. Strategic applications of nano-fertilizers for sustainable agriculture: Benefits and bottlenecks. Nanotech Rev. 11(1): 2123-2140. https://doi.org/10.1515/ntrev-2022-0126
Bhardwaj AK, Malik K, Rani M, Kumar A, Devi S, Kumar N, Yadav RK. 2025. Transitioning From Soil‐Based to Soil‐Foliar Hybrid Application for Nitrogen Fertilizers Offers Energy‐Saving and Use‐Efficiency Benefits. Food Energy Secur. 14(5): e70109. https://doi.org/10.1002/fes3.70109
Bonomelli C, Cisterna D, Reciné C. 2005. Effect of nitrogen fertilization on Echinacea purpurea mineral composition. Cien Inv Agr. 32(2), 85-91. https://doi.org/10.4067/rcia.v32i2.310
Chauhan P, Sharma NC, Sharma DP, Kumar P, Chauhan A. 2025. Nano-N enabled fruiting, fruit quality and physiological behavior in apple (Malus × domestica Borkh.) under high density plantation. Appl Fruit Sci. 67(4): 237. https://doi.org/10.1007/s10341-025-01462-z
Chen J, Liu L, Wang Z, Zhang Y, Sun H, Song S, Li C. 2020. Nitrogen fertilization increases root growth and coordinates the root–shoot relationship in cotton. Front Plant Sci. 11: 880. https://doi.org/10.3389/fpls.2020.00880
Chethan Babu RT, Singh M, Praveen BR, Kumar R, Kumar B, Melavanki MS. 2025. Partial substitution of conventional nitrogen fertilizers with nano urea and plant growth-promoting rhizobacteria in fodder oats. Range Manag. Agrofor. 46(1): 123-128. https://doi.org/10.59515/rma.2025.v46.i1.17
Daryabari R, Movahedi Z, Moieni A. 2025. Chemical and biological fertilizers affect the seedling development of bell pepper. J Plant Physiol Breed. 15(1): 93-113. https://doi.org/10.22034/JPPB.2023.56387.1304
Dey A, Sadhukhan A. 2024. Molecular mechanisms of plant productivity enhancement by nano fertilizers for sustainable agriculture. Plant Mol Bio. 114(6): 128. https://doi.org/10.1007/s11103-024-01527-9
Dsouza A, Dixon M, Shukla M, Graham T. 2025. Harnessing controlled-environment systems for enhanced production of medicinal plants. J Exper Bot. 76(1): 76-93. https://doi.org/10.1093/jxb/erae248
Geszke-Moritz M, Nowak G, Moritz M. 2023. Pharmacological properties and safe use of 12 medicinal plant species and their bioactive compounds affecting the immune system. Appl Sci. 13(11): 6477. https://doi.org/10.3390/app13116477
Ghasembaghlou M, Sedghi M, Seid Sharifi R, Farzaneh S. 2022. Effect of nitrogen-fixing bacteria and mycorrhiza on biochemical properties and absorption of essential elements in green pea (Pisum sativum L.) under water deficit stress. J Plant Physiol Breed. 12(2): 59-70. https://doi.org/10.22034/jppb.2022.16324
Ghobashi EL, Ismail MR. 2022. Effect of mineral and nano-nitrogen fertilizers on yield and its components of soybean and maize hybrids under intercropping system. J Plant Prod. 13: 621-628.
Gholinezhad E, Heidari Sureshjani Z, Fakharzadeh S, Kalanaky S. 2024. Impact of nano-chelated NPK and chemical fertilizers on the growth and productivity features of maize (Zea mays L.) under water-deficit stress. J Plant Physiol Breed. 14: 147-167. https://doi.org/10.22034/jppb.2024.62666.1342
Goyal A, Chavan SS, Mohite RA, Shaikh IA, Chendake Y, Mohite DD. 2025. Emerging trends and perspectives on nano-fertilizers for sustainable agriculture. Discover Nano. 20(1): 97. https://doi.org/10.1186/s11671-025-04286-8
Gupta A, Yadav A, Rajan N, Kulshrestha V, Singh H, Priya KS, Upadhyay NK. 2023. Unforgettable Impressions: A Captivating Review Of Echinacea (Purple Coneflower). Eur Chem Bull. 12: 2408-2428. https://doi.org/10.48047/ecb/2023.12.si10.00289
Hudson, J. B. (2012). Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases. BioMed Res Inter. 2012(1): 769896. https://doi.org/10.1155/2012/769896
Hao D, Luan Y, Wang Y, Xiao P. 2024. Unveiling nitrogen fertilizer in medicinal plant cultivation. Agron. 14(8): 1647. https://doi.org/10.3390/agronomy14081647
Iqbal U, Rehman FU, Aslam MU, Gul MF, Farooq U, Ameer A, Ahmad KS. 2023. Survival tactics of an endangered species Withania coagulans (Stocks) Dunal to arid environments.
Environ Monit Assess. (11): 1363. https://doi.org/10.1007/s10661-023-11982-4
Kizil S, Toncer O. 2013. Effects of different nitrogen forms on some agronomical characteristics of Echinacea Purpurea. In: Semi-Arid Conditions of Turkey. Sci Papers Series A. Agro. 56: 304-307.
Kumar A, Sheoran P, Kumar N, Devi S, Kumar A, Malik K, Mann A. 2024a. Elucidating morphogenic and physiological traits of rice with nitrogen substitution through nano-nitrogen under salt stress conditions. BMC Plant Bio. 24(1): 908. https://doi.org/10.1186/s12870-024-05569-5
Kumar N, Tripathi SC, Yadav DB, Samota SR, Venkatesh K, Sareen S. 2024b. Efficient nitrogen management in wheat through a combination of conventional and nano urea with optimized methods and timing. J Plant Nutr. 47(10): 1630-1649. https://doi.org/10.1080/01904167.2024.2316006
López-Valdez L. G, Herrera-Cabrera BE, Vásquez-García I, Salazar-Magallón JA, Salgado-Garciglia R, Montiel-Montoya J, Barrales-Cureño HJ. 2022. Sustainable Economic Systems Against Biotic and Abiotic Stress in Medicinal Plants: Aeroponics, Hydroponics, and Organoponics. In: Aftab T. (eds) Environmental Challenges and Medicinal Plants. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-92050-0_13
Luo Y, Yin H, Ma Y, Wang J, Che Q, Zhang M, Feng G. 2024. Optimizing nitrogen fertilizer for improved root growth, nitrogen utilization, and yield of cotton under mulched drip irrigation in southern Xinjiang, China. Sci Rep. 14(1): 23223. https://doi.org/10.1038/s41598-024-73350-7
Maqbool S, Hassan MA, Xia X, York LM, Rasheed A, He Z. 2022. Root system architecture in cereals: progress, challenges and perspective. Plant J. 110(1): 23-42. https://doi.org/10.1111/tpj.15669
Miransari M, Adham S, Miransari M, Miransari A. 2022. The physicochemical approaches of altering growth and biochemical properties of medicinal plants in saline soils. Appl Microbiol Biotechnol. 106(5): 1895-1904. https://doi.org/10.1007/s00253-022-11838-w
Mony C, Kaur P, Rookes JE, Callahan DL, Eswaran SV, Yang W, Manna PK. 2022. Nanomaterials for enhancing photosynthesis: interaction with plant photosystems and scope of nanobionics in agriculture. Environ Sci Nano 9(10): 3659-3683. https://doi.org/10.1039/D2EN00451H
Movahedi Z, Moieni A. 2024. Effects of Farmax nano fertilizer and Amino Acid on morological traits and photosynthetic pigments of chicory in aeroponic system. Iran J Soil Water Res. 55(6): 889-902. https://doi.org/10.22059/ijswr.2024.371442.669651
Muhetaer H, Li H, Wang B, Cai X, Zhang Y, Li Y, Wu B. 2025. Exploring the effects and mechanisms of valerian volatile oil in treating insomnia using network pharmacology, molecular docking, and molecular dynamics simulation-based approaches. Int J Mol Sci. 26(4): 1726. https://doi.org/10.3390/ijms26041726
Namdeo P, Samaiya RK, Tiwari G, Upadhyay A, Ramakrishnan RS, Dubey RK. 2023. Nano-urea improves yield attributes, yield and active ingredients in Ashwagandha (Withania somnifera (L.) Dunal). Pharma Innov J. 12(12): 1353-1357. https://doi.org/10.13140/RG.2.2.25536.96000
Nazish HA, Gulzar N, Nadeem M, Rafiq S, Sameen A, Ajmal M, Saleem IM. 2022. Efficacy of Withania coagulans fruit extract as a coagulant for Mozzarella cheese at different coagulation temperatures from curd formation to pizza top. J Food Process Preserv. 46(12): e17167. https://doi.org/10.1111/jfpp.17167
Penzkofer M, Heuberger H. 2020. Valeriana officinalis L. s.l.: Valerian. In: Novak, J, Blüthner, WD. (eds) Medicinal, Aromatic and Stimulant Plants. Handbook of Plant Breeding, Vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-38792-1_19
Petrova A, Ognyanov M, Petkova N, Denev P. 2023. Phytochemical characterization of purple coneflower roots (Echinacea purpurea (L.) Moench.) and their extracts. Molecules. 28(9): 3956. https://doi.org/10.3390/molecules28093956
Raj K, Węglarz Z, Przybył JL, Kosakowska O, Pawełczak A, Gontar Ł, Bączek K. 2023. Chemical diversity of wild-growing and cultivated common valerian (Valeriana officinalis L. sl) originating from Poland. Molecules. 29(1): 112. https://doi.org/10.3390/molecules29010112
Rathnayaka RMNN, Mahendran S, Iqbal YB, Rifnas LM. 2018. Influence of urea and nano-nitrogen fertilizers on the growth and yield of rice (Oryza sativa L.) cultivar Bg 250. Int J Res Pub. 5: 1-7. https://doi.org/10.13140/RG.2.2.14315.59684
Rostaei M, Fallah S, Carrubba A, Lorigooini Z. 2024. Organic manures enhance biomass and improve content, chemical compounds of essential oil and antioxidant capacity of medicinal plants: A review. Heliyon. 10(17): e36693. https://doi.org/10.1016/j.heliyon.2024.e36693
Sampathkumar K, Riyajan S, Tan CK, Demokritou P, Chudapongse N, Loo SCJ. 2019. Small-intestine-specific delivery of antidiabetic extracts from Withania coagulans using polysaccharide-based enteric-coated nanoparticles. ACS Omega. 4(7): 12049-12057. https://doi.org/10.1021/acsomega.9b00823
Senica M, Mlinsek G, Veberic R, Mikulic-Petkovsek M. 2019. Which plant part of purple coneflower (Echinacea purpurea (L.) Moench) should be used for tea and which for tincture?. J Med Food. 22(1): 102-108. https://doi.org/10.1089/jmf.2018.0026
Shah MH, Aktar SN, Barik S, Chowdhury A, Molla SR, Kundu S, Hossain A. 2025. Effect of Various Nanofertilizers on Physiological Activities of Plants. In Nanofertilizers in Agriculture: Synthesis, Mechanisms, and Effect on Plants (pp. 311-354). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-78096-7_14
Sharaf-Eldin MA, Elsawy MB, Eisa MY, El-Ramady H, Usman M, Zia-ur-Rehman M. 2022. Application of nano-nitrogen fertilizers to enhance nitrogen efficiency for lettuce growth under different irrigation regimes. Pak J Agric Sci. 59(3): 367-379; https://doi.org/10.21162/PAKJAS/22.1044
Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, Ramamoorthy S. 2022. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth Res. 152(1), 23-42. https://doi.org/10.1007/s11120-021-00892-6
Soltanbeigi A, Maral H. 2022. Agronomic yield and essential oil properties of Purple Coneflower (Echinacea purpurea L. Moench) with different nutrient applications. Chilean J Agric Anim Sci. 38(2): 164-175. https://doi.org/10.29393/CHJAA38-16AYAH20016
Songserm R, Nishiyama Y, Sanevas N. 2024. Light influences the growth, pigment synthesis, photosynthesis capacity, and antioxidant activities in Scenedesmus falcatus. Sci. 2024(1): 1898624. https://doi.org/10.1155/2024/1898624
Upadhyay PK, Singh VK, Rajanna GA, Dwivedi BS, Dey A, Singh RK, Rathore SS, Shekhawat K, Babu S, Singh T, et al. 2023. Unveiling the combined effect of nano fertilizers and conventional fertilizers on crop productivity, profitability, and soil well-being. Front Sustain Food Sys. 7: 1260178. https://doi.org/10.3389/fsufs.2023.1260178
Valipour H, Shafagh-Kolvanagh J, Ghassemi Golezani K, Alizadeh-Salteh S. 2021. Improvement of yield-related traits of spring rapeseed in response to nano-superabsorbent and bio-fertilizers under water deficit conditions. J Plant Physiol Breed. 11(2): 15-32. https://doi.org/10.22034/jppb.2021.14414
Xie J, Yang L, Tan S, Xiao C, Liu Z, Xu L, Shen S. 2025. Optimization of growth and physiological responses of Yunnanopilia longistaminea using nano NPK foliar fertilizer. Plant Sci. 358: 112571. https://doi.org/10.1016/j.plantsci.2025.112571
Xue J, Zhou S, Wang W, Huo L, Zhang L, Fang X, Yang Z. 2018. Water availability effects on plant growth, seed yield, seed quality in Cassia obtusifolia L, a medicinal plant. Agricl Water Manag. 195: 104-113. https://doi.org/10.1016/j.agwat.2017.10.002
Yasmin A, Jindal S, Monga V, Gupta GD, Goyal K. 2025. Withania coagulans: a comprehensive exploration of its botanical, phytochemical, and pharmacological properties. Med Chem Res. 34: 1-25. https://doi.org/10.1007/s00044-025-03446-w
Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Yuan ZC. 2023. Nitrogen journey in plants: From uptake to metabolism, stress response, and microbe interaction. Biomol. 13(10): 1443. https://doi.org/10.3390/biom13101443
Zyadeh M, Kasrawi M, Hamadneh I, Jaradat S. 2025. The effects of novel nanohydroxyapatite/hydrogel/N-fertilizers on the growth and quality of lettuce. J Saudi Soc Agric Sci. 24(3): 14. https://doi.org/10.1007/s44447-025-00018-7 | ||
|
آمار تعداد مشاهده مقاله: 2 تعداد دریافت فایل اصل مقاله: 4 |
||