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Abstract

In this paper, we investigate the approximate controllability of Hilfer fractional stochastic evolution equations
of order 8 € (1,2). The main findings are carried out by using fractional calculus, stochastic analysis theory,
measure of noncompactness, and the fixed point theorem. At first, we prove the existence of a mild solution for
Hilfer fractional stochastic evolution equations, and then we establish the concept of approximate controllability.
Finally, we provide an example to illustrate our theoretical results.
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1. INTRODUCTION

The study of fractional differential equations and fractional calculus have emerged as crucial components of math-
ematics in recent decades. Currently, the idea of fractional calculus has been extensively investigated in many fields,
including engineering, image processing, viscoelasticity, biological diffusion, control theory, fluid dynamics, and porous
media. For various practical applications, fractional order models perform better than integer-order models. For more
information, refer these books [11, 29] and the research articles [10, 14, 19, 21]. Hilfer [8] introduced the Hilfer frac-
tional derivative, which is a generalized Riemann-Liouville fractional derivative. It includes both Riemann-Liouville
and Caputo fractional derivatives. Further, the significance and applications of the Hilfer fractional derivative have
emerged in the theoretical simulation of dielectric relaxation in glass-forming materials, engineering, polymer science,
and so on. For more information on the Hilfer fractional derivative, refer [5, 6, 9, 26, 31, 32].

Controllability is a fundamental concept in mathematical control theory and plays an important role in both de-
terministic and stochastic control systems. The idea of controllability plays important role in both finite and infinite
dimensional spaces. It has many applications in different fields such as physics, engineering, robotics, electronics, chem-
istry, biology, economics, power systems, and space technology. In recent decades, various works has been discussed
on the concept of approximate controllability for differential equations, integro-differential equations, impulsive func-
tional inclusions, stochastic equations, neutral differential equations, and semilinear functional equations, evolution
equations and references therein [7, 14, 20, 25].

In many cases, deterministic models often fluctuate due to environmental noise, which is random or at least appears
to be so. Stochastic differential equations can be used for escape and jump issues of Brownian particles in physics,
along with option pricing problems in economics. Consequently, the significance of stochastic differential equations is
crucial in several scientific fields, including chemistry, physics, economics, etc. In recent decades, existence, stability,
uniqueness, controllability and other qualitative and quantitative attributes of solutions of stochastic evolution equa-
tions received a lot of attention by researchers. An overview of stochastic differential equations and their applications
in [1, 4, 16, 22].
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We observe that recent researchers doing research on the topic of fractional differential equations of order 0 < 5 < 1.
For example, [2, 12, 30] discussed the existence of mild solutions for stochastic evolution equations with Caputo
fractional derivative of order 8 € (0,1). Authors of [21, 22, 24] investigated the existence of mild solutions for Hilfer
fractional derivative by using Monch fixed point theorem. While numerous research results have been conducted on
fractional stochastic differential equations with order 8 € (1,2). While most research has focused on Caputo fractional
stochastic differential equations of order § € (1,2). In [27], authors discussed the approximate controllability for
stochastic impulsive evolution system by using Monch fixed point theorem. In [18], Li and Zhou investigated the
existence of mild solutions for Hilfer fractional stochastic evolution equations with order u € (1,2).

To the best of our knowledge, no work has been reported in the literature about the approximate controllability of
Hilfer fractional stochastic evolution equations of order 8 € (1,2). Inspired by the above-mentioned work, this paper
aims to fill this gap. Let us consider the Hilfer fractional stochastic evolution equations of order 5 € (1,2) and type
€ [0, 1] of the form

(1.1)

{HD&%(t) = Ase(t) + Bu(t) + f(t,2(t)) + h(t, 2(6)) 52 ¢ e = (0,0),
(I2°)(0) =, (122%0)(0) = 501,

where # Dgf stands for Hilfer fractional derivative of order 8 € (1,2) and type & € [0,1], the Riemann-Liouville
integral operator of order (2 — a) is denoted by I27®, where a = 8 + (2 — ). The state variable s(-) takes the
value in a separable Hilbert space Z. A : D(A) C Z — Z is the infinitesimal generator of a cosine family {C(t)}¢>o0,
which consist of strongly continuous and uniformly bounded linear operators. Here, 8 = [0,b] and control function
u(t) € L*(B, U) of admissible control functions for a separable Hilbert space U. Furthermore, B : U — Z is a bounded
linear operator. If {W(t)}t>0 is a given J-valued Wiener process having a finite trace nuclear covariance operator @ > 0
specified on a complete probability space (2, F,P) with normal filtration {F%}+>o and J represents another separable
Hilbert space. Finally, we consider that f: B x Z — Z and h P x Z — L(J, £) are appropriate functions and that
s, 7 € L*(Q, 2).

The following are the main findings of our manuscript:

(i) A study on the approximate controllability of Hilfer fractional stochastic evolution equations of order 5 €
(1,2) in the form of Eq. (1.1) is an unexplored topic in this literature that gives motivation for writing this
manuscript.

(74) In this paper, using the Monch fixed point theorem, we establish the existence of mild solutions for Hilfer
fractional stochastic evolution equations of order § € (1, 2).

(#4¢) The approximate controllability of Eq. (1.1) is illustrated, considering that the corresponding linear system is
approximately controllable.
(7v) The main findings are demonstrated by an example.

The structure of this paper is organized as follows: Some fundamental definitions, theorems, and lemmas that are
utilized in this study are given in section 2. In section 3, we demonstrate the approximate controllability for the
system Eq. (1.1). Finally, in section 4, we illustrate an example to highlight our main findings.

2. PRELIMINARIES

In this section, we provide some basic definitions, lemmas, theorems, and preliminary results that will be useful
for understanding this article. Let (2, F,{F;}t>0,P) be a complete probability space equipped with a right con-
tinuous increasing family and Fy contains all P-null sets. L3(Q, Z) = {3 € L?*(Q, Z); » is Fy — measurable} is a
significant subspace of L?({2, Z). The Banach space of all continuous mappings from [0, b] into L2(£2, Z) is denoted by
C([0,b], L*(, Z)), whose norm is ||s()|lc = (SuPte[o,b] E||%(t)||2)% < oo.

Given a norm |- ||, let L(J, Z) represent the space containing all bounded linear operators from J into Z. Considered
that there exists a complete orthonormal basis {ex}r>1 for J. For Qer = Ayer, k € N, let Tr(Q) = 2211 Ak < 00 be
indicated. According to proposition 2.9 in [3], given that w(t) € L(J, Z), and that w(t) is measurable with regard to
an
Ba
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Fi for t € ]0,b], and fulfills fo E||lw(s)||?ds < oo, consequently, we possess the following property:

E||/ w(s)du(s)|? < Tr(Q / E|w(s)|*ds. (2.1)
Another space is now introduced:

C1([0,0), L*(Q, 2)) = {% € C((0,b], L*(R, 2)) : lim t*~“s(t) exists and ﬁnite}.

t—0t

sup E||t2_°‘%(t)||2> , the space is obviously

t€(0,b]

Define the symbol € = C1 ([0, ], L%(€, Z)) with the norm ||s()||¢ = (

a Banach space.
In this study, we present the function g,(-), which is specified as follows for calculating convenience:

t(xfl

X, t>0
L(t) = T(a)’ )
ga(t) {07 <0,

where « > 0, and the gamma function T'(+) fulfills aI'(a) = T'(aw + 1). In case o = 0, we represent go(t) = 6(t);
concentration of the Dirac measure occurs at the origin.

The basics of the Riemann-Liouville fractional integral, the Riemann-Liouville fractional derivative, the Caputo
fractional derivative and the relationship between the Riemann-Liouville and the Caputo fractional derivative, one
can refer [11].

Definition 2.1. [11] The Riemann-Liouville fractional integral is defined as follows:

o#(0) = g5 [ (6= o) e(a)ds = (g5 2 ) (1), €308 > 0

where x is the convolution.

Definition 2.2. [11] The Riemann-Liouville fractional derivative is defined as follows:

D () = ] (8- 9 s
p

T den
in particular, its Laplace transform is as follows:

——(gn_p*2)(t), >0, n—1< B <n,

n

L("™ Dg.52(t)) = A L((£)(A) = D (gn—p % ) (0)A" 1 F. (2.2)
k=0

Definition 2.3. [11] The Caputo fractional derivative is defined as follows:

1 t bt - na )
F(n—ﬁ)/o (t —s) »"(s)ds = gn—p (dtn%)(t), t>0,n—1<p<n,

D0+ #(t) =
where the function »(t) is n — 1 times continuously differentiable, and is absolutely continuous.
Remark 2.4. [18] Relationship between the Riemann-Liouville and the Caputo fractional derivatives, we get
Dy (2 Qu(t) ) =1 DT (2 Qu(t) ), ¢ €(0,1), x € 2.

Definition 2.5. [8] The Hilfer fractional derivative of order n — 1 < 8 < n and type 0 < & < 1 is defined by

I(n— dr 1-9)(n
HDES5(t) = <IO+(L P I )>(t), t > 0.
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Remark 2.6. (1) fS=0and n—1< f <n, then Doﬁ’ﬁ becomes a Riemann-Liouville fractional derivative:

A" e
DEOx(t) = Ck—nfé+ D) = BEDE, e(t).

(765) fS=1and n—1< f <mn, then Dgf’ becomes a Caputo fractional derivative:
n—g) d"
DE: s(t) = 1L B)dT"%(t) = D8 x(v).
Definition 2.7. [29] If (Ig;a%) (t) is continuous and (Ig;o‘%)’(t) is absolutely continuous, then

(15775 (0) oy 57%2)'(0) 4

6 (FE DG 52(t)) = (t) — T(a—1) t Wt ;

where 1 < o < 2.

Lemma 2.8. [13] Given a sequence of Bochner integrable function {sm(t)}o_; : [0,b] — Y, if there exists £ €
L([0,b],RT) such that

Isam (8)lly < £(t), t €[0,0].
Following that, x({5m(t)}5_1) € L([0,b],RT), and it fulfills

x({/0 %m(s)ds:mzl,Z,---})§2/0 x({sm(s) :m=1,2,---})ds.

Definition 2.9. [15] The Wright function M, is defined as follows:

B e (_,ﬂ)mfl
M, (9) = 1(m—1)!F(1—mm)’ O<kr<l 9eC,

m=

which fulfills

/ P M (0)d9 = —EHO) g5,

0 L(1+ rd)’
Definition 2.10. [23] If Y is a Banach space, then bounded linear operators mapping {C(t)}ter : Y — Y are called
a strongly continuous cosine family iff
(1) C(t" +t)+C(t" —t') =2C(t")C(t!) for all t”,t' € R;
(#4) C(0) is the identity operator I;
(#i7) C(t)y is continuous for t € R and > € Y.

One parameter family, {S(t) }ter is defined by

t
S(t)%:/ C(s)xds, t eR, x €Y,
0

where the strongly continuous cosine family in Y is represented by {C(t)}+er. An operator A : Y — Y is an infinitesimal
generator for a strongly continuous cosine family {C(t)}+cgr, which is specified by

d2
Az = <dtzc(t)%)t_0, P AS D(A),
here D(A) = {3 € Y : C(t)s is a twice continuously differentiable with regard to t}.

Lemma 2.11. [23] Strongly continuous cosine family {C(t)}ver fulfilling ||C(t)|ly < Moe®!®! in Y, for all t > 0 and
somew >0, Mg > 1, and {C(t)}rer has an infinitesimal generator denoted by A. Afterwards, for ReX > w, \? € p(A),
and

)\R(/\Z;A)%:/ e NC(t) sedt, R()\2;A)%:/ e MS(t)sdt, for x €Y.
0 0

B8O

BE
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In this work, A represents the infinitesimal generator of a strongly continuous cosine family of uniformly bounded
linear operators {C(t)}¢>0 in Z, if £ > 0, then [|C(t)||(z) < M, there exists a constant M > 1.

Lemma 2.12. [18] The Hilfer fractional stochastic differential system Eq. (1.1) is equivalent to the integral equations
as the form:

#(t) = ga—1(t)s0 + ga(t)sa +/0 gp(t —s) {A%(s) + Bu(s) + f(s, %(s))} ds —l—/o g5(t — s)h(s, »(s))dW(s), (2.3)

where a = 8+ (2 — B).
Lemma 2.13. [18] If (t) fulfills the integral Eq. (2.3), then

s(t) =" DoT (71 Qu(t)30) + 5, (87 Qu(t)5a) + /t(t—s)“Qe(t—S)BU(S)ds
0 (2.4)

t

+ [ =9 = 9)f (s, (e))ds + [ (68" Qult — 5)h(s.#(6)d),
0 0
fort € (0,b], (=S(2—-0) €(0,1), B =2, where
t) = / b M, (9)S (£49)d.
0

Definition 2.14. [18] An F;-adapted stochastic process s € € is a mild solution for the Cauchy problem Eq. (1.1),
if 59,50 € LE(Q, Z), u(-) € L%(B,U) and

s(t) =" DT (671 Qu(t)0) + T (817 Qult)41) + /t(t—s)f‘lQe(t—s)Bu(s)ds
0 (2.5)

[ @9 - o), xe)ds + (5= 8V QU5 — s)ihls, w(s))di(s), © € (0,0
0 0

Lemma 2.15. [6] Given any » € Z, the following inequality holds:

1Qe(t) 5

Furthermore, Qu(t) is uniformly continuous: that is, for every t1,ts >0,

|Qe(t2) — Qe(t1)]| = 0, as ta — t1.
Lemma 2.16. [18] The following formula is accurate if Eq. (2.3) holds for every t >0 and » € Z:
dii(tfflcge(t)%) = (0 —1)t2Qu(t) 2 + t272 / 0292 My (9)C(£59) ed.
0
Moreover,

< ——||7]], t>0.

Mt2£ 2
T(20)

d
[I>Il, t > 0.

) <

Lemma 2.17. [28] Suppose
(1) v>0,0< P < o0.
(#i) positive function a(t) and e(t) are locally integrable on 0 <t < P.
(#i7) Continuous function g(t) is positive, increasing and bounded, 0 < t < P. If

e(t) < aft) + g(t) / (t — )" Le(s)ds,

oz [ [ 5

n=1

in particular, if a(t) =0, then e(t) =0 for each 0<t<P.

then

n

- s)”la(s)} ds, for 0 <t < P,
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Definition 2.18. [20] Indicate that at terminal time b, the reachable set Eq. (1.1) is
R(b, 320, 501) = {5(b, 50, 71,u) : u(-) € L*(B, )}
If W = Z, then Eq. (1.1) is considered to be approximately controllable on B.
Consider the following linear control system

{HDgfx(t) = Ax(t) + Bu(t), te(0,b], 26
(I275)(0) =30, (I27%52)(0) = 521, '

Given Eq. (2.6), define its corresponding operator as

b
rb= / (b—s)'Qu(b—s)BB*Q;(b — s)ds,
0
R(e,TY) = (el +T4)~1, for e >0,
where B* and Qj(t) represents the adjoint of B and Q(t). Then, I'} becomes a linear bounded operator.

Lemma 2.19. [19] The linear system Eq. (2.6) is approzimately controllable in B iff s¢(sI +T5)~1 — 0 as s — 0F
in the strong operator topology.

Lemma 2.20. [17] Let V be a closed, convex subset of a Banach space Y and 0 € V. Suppose that ¥ : V — Y is
continuous map that fulfills Monch condition, i.e., Vi C V is countable Vi C co({0} U ¥ (V1)) = Vi is compact. Then
U has a fixed point in V.

3. MAIN RESULTS

The following hypotheses are required in order to illustrate the primary result of this paper:

(A1) The function f : B x Z — Z fulfills the following conditions:
(7) The function f(t,-) : £ — Z is continuous, and for each » € Z, f(-, %) : P — Z is strongly measurable.
(ii) There exist a function my € L'(B,RT), and non-decreasing continuous function ©; : RT™ — RT, such
that
B f (. 5)* < ma()O1(]|[1%),
for arbitrary (t, ») € P x Z,and the function ©; fulfilling
O1(7)

. 1
lim inf——=
T—00 T

(i73) There exists a function n; € L'(B, R) such that for bounded and countable subset D C Z,

x(f(t,D)) <mt* *x(D).

(A2) The function h : B x Z — LI(J, Z) fulfills the following conditions:
(i) For each t € ‘B, the function h(t,-) : Z — L3(J, Z) is continuous, and for each s € Z, the function
h(-, %) : P — L3(J, Z) is strongly measurable.
(i1) There exist a function ms € L'(PB,RT), and non-decreasing continuous function ©y : RT — RT, such
that

ZAf<OO.

B|[h(t, #)|I* < ma(t)Oa(]|[I7),
for arbitrary (t, ) € 9 x Z, and the function O, fulfilling

@2(7’)

lim inf =Ap < 0.
T—>00

(iii) There exists a function 1y € L*(B, RT) such that for bounded and countable subset D C Z,
X(h(t, D)) < mt>~“x(D).
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(A3)
W3 [ MMp \> oMb [P Mp2—e b 3
K= |— 1| ——— b—s)f1 d —_— 2T / b—s)20-Dp2(5)d 1.
G (r) +) [5G [0 miens s 7 (2rr@ [l o2 ierae) | <
Lemma 3.1. [/] For any 35, € L*(Fy, Z), there exists ¢ € L%(Q, L?([0,0], L)), such that
S0 = Eig + fob é(s)dW(s). For any € > 0 and 34, € L*(Fy, Z), we define the control function

b
u,(t) = B*Q(b — t)R(e, rg){E;q, + /0 ¢(s)di(s) — FEDLTC (b1 Qu(b) s0)
b
IS (0 Qu(b)m) — / (b—5)""1Qu(b — 5)f(s, #(s))ds

—/0 (b—s)HQg(b—s)h(s,%(s»dw(s)}.

Theorem 3.2. If assumptions (A1)-(A2) are true, then it has a unique mild solution for the system Fq. (1.1) in .

Proof. Assuming that the mapping A : (As)(t) = (A1) (t) + (A2s)(t), » € C1((0,0], L*(Q, 2)),
where

(A1) (t) = BED (671 Qu(t)300) + 107 (871 Qu(t)301), for t € (0, 8],
(ha)(t) = [ (&) 1Qu(e ~ 9)Bus(e)ds + [ (v ) Qe - 5)f(s,(s))ds
0 0

+ /t(t —8)71Qu(t — s)h(s, x(s))du(s), for t € (0,b].
0

It is evident that, if A has a fixed point s* € C1([0,b], L?(£2,.2)), then (1.1) has a mild solution, s« € C1([0, 4], L*(2, Z)).
For all z € C((0,b], L?(, Z)), set
x(t) = t*722(%), t € (0,b].
Define an operator ¥ :
(W2)() = (T12)(6) + (B22)(5), for © € [0,],

where
t27%(Aq3)(t), fort € (0,0,
(W) =4 & M) (0,0]
T(¢+20—1)° for t = 0’
2—« A f
(Ta)(5) = 4 & (az)(E) 5 for v € (0, 8],
0, for t = 0.

Let By = {2 1 2 € C(0,0, IAQZ)), [Izllc < ab, By = {: % € Cu([0,6], I, ), |#lle < a}. Tt appears that,
B, and By are nonempty, convex, and closed subsets of C([0,0], L*(Q, Z)) and C;([0,], L*(9, Z)), accordingly. Let
T :={e:e(t) = (P2)(t), z € By}
Then we demonstrate the fixed point property of W. The proof is broken down into many steps.
Step 1 : We demonstrate that there exists q such that ¥ maps Bq() into B, ().

When t > 0, Lemma 2.16 and Remark 2.4 allow us to derive

d
- 5 (e )|

</ et — 9| Lst1qQu(e)sellas < 2L / " g (s — 8)822| | ds
Mt2Z+C72

= [EtlP

(20-1T(C+20-1)

B Do (6 Qu(v))

CD3:<<t“Qe<t>z)H _
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which implies that

RL DI (471Qq (¢ tm( w50, xeZ (3.1)
Vs V1 . .
[ C+2£ ) b b
Similarly, by using Lemma 2.15, we get
Mt2€+(—1
IS, (¢! < Z 2
(6@ < T g Il >0 x € 2 (32
and
B0l < 5( MM oz o) [ derte)?
* = e['(20) b 0

Mb2t+c—2 2 ) Mp2L+C—1 2 ,
T ((le)F(CJngl)) EH%OH + (W) EH%lH
MbENZ 1t o1
" (nw) 5 | 6= tmi(s)is - 0100

+ (F‘g@f:ﬁr(@ /Ob(b —5)* " Dmy(s)ds - @2(q)}7

where |B|| < Mp. If we assume ¥(B,) ¢ By, then for every positive constant q and t € 93, there exists 29(-) € By,
such that E|(¥z9)(t)]|? > q, we have
q < B[(w2)(t)[?
2
+FE

2
< 5supt2(2—a>{E BED o (671 Qu(t)30)

teP

Iiu (£ Qu(t) )

2
+ 5

2
+E

/0 "6 — 81 Qu(t — 8)Buc (s)ds

(t — S)eing(t — 8)h(s, »(s))dW(s)

/Ot(t —8)"71Qu(t — 8) f(s, #(s))ds

v

<f§§{ (%—1 T(C + 20— )> Ellzor|2+5<w> I
( " aH) /t(t_s)%_lEHf(S,%(s)ﬂ2ds
<Mt2 ) )/ot“ = 8)" Y E|(s, (s) | *ds
<MM Bt aH) 21£ /Ot(t_s)zzlE||u;(s)”2ds}

<5<(2£ - 1)r?g4+ % . 1))2E||%0||2 + 5<r(¢b+2z)>2E””l||2

2—a+l b

2—a\ 2 b
+ 5(%6)) Tr(Q) /0 (b= 5)**"Vmy(s)ds - ©2(a)

MMnr\?*/pot—2a+4 b
+25(1ag) (Spa) {215t + 2 [ dote

+FE

(=)=
E)NE
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Mp2tte—2 2 MP2AC—1\ 2
Ellswl? + [ 22"} Bl
(@ irerarn) M+ (Feean ) =il

0N\ 2 b

+ (Fi\/[%)fﬂ(@) /ob(b — )" Vimy(s)ds 92(¢I)}~

Dividing both sides by q and taking the limit as q — oo, we get

() (0)) (o () -t
+ 5(%)2%(@) /Ob(b — )2V, (s)ds - Ah> >1,

which is a contradiction to our assumption. Thus there exists a q > 0 such that ¥(By) C By.
Step 2 : We demonstrate that ¥ is continuous on B, ().
Assume that the sequence {z,}32, in By converges to z. Next,

lim 2, (t) = 2(t) and lim 2722, (t) =t %2(t), for t € (0,4].
As y(t) =t 22(t), t € (0,b], according to (A1) and (A2), we obtain
Tim B (e, (€)[2 = T B|£(e, 2022, (6) |2 = Bl (e, 6" 22(0)]? = B f(t, (2|2
Tim Bl[h(e, ,(6))[2 = im_ Bllh(e,t2~ 22, (6)[2 = E[lA(e,62~2(0)]2 = Bh(e, #(2))]
By employing (A1), we can obtain
(t = 8)* T E| f(s, 52n(s)) — f (s, 52(8))|” < 4(t = 5)* T mu(s)O1 (|| %), t € (0,8].

As s — 4(t —5)% tmy(s)O1 (|| ]|%) is integrable for s € [0, t], the Lebesgue’s dominated convergence theorem allows
us to determine

’ — &)%Y f(s, 3,(8)) — s, »(s s
E/O(t VU f(s, 20 (s)) — f(5,2(8))]d

Similarly, we obtain

2
— 0, as n — oo.

2
— 0, as n — oo.

E / (t — )2 (st o(8)) = h(s, 5(s))]dW(s)
0

Consequently, we have for any t € [0, b]

2

EH(\Ilgzn)(t) — (Ta2)(v)|| < 3t2(2°‘)E‘ / (t —5)7'Qu(t — s)B[uS, (s) — ug(s)]ds

0

2

+ 3t2<2a>E‘ / (t = )7 Qult — 8)[f(s. 2 (s)) — S (s, (s))]ds

2
+3t2C2-9p

/0 (6 — 8 1Qu(t — 8){I(s, 7 (5)) — (s, (s))]di(s)

MMpt2—>\?
< - =
_3< I'(2¢) )E

(i) 7

2

/ (6 — )% [us, (s) — uS,(s)]ds
0

2

/0 (6 — )21 f(s, 5(s)) — £(5, 5(s))]ds
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2
— 0, asn — 0.

/O (t =) H[hls, sn(s)) — hls, 5(s))]dw(s)

Mt27a 2
3\ —=—) FE
+3(Far) 4
As a result, ¥ is continuous.
Step 3 : If (A1) — (A2) true, then the set T is equicontinuous.

In order to demonstrate that 7 is equicontinuous, we have to initially show that, given limg, ¢, E||(V22)(ta) —
(U12)(t1)]|? = 0 for ta,t1 € P. The two sections of this step are as follows:

Part 1 :{e ce(t) = (\Illz)(t), z€B } is equicontinuous.

By using Definition 2.9 and C(0) = I, we can get
giH(l)tz_atC—M X / / gc (1 — 8)s 720 M,(9)S((ts) ) sodids
—

¢
(-1 / / g (1 —s)s" 209 M, (9) hm S(( ) v) ————didds

iy _ -2 2 _ (¢ —1)0
= 1)6/0 gc(l—s)s ds(/o I My(9)3¢9dd) = GBI 120 =T (3.3)
Similarly, we obtain
1 00
lim t2*at<+4*1/ / gc (1 — 8)s 7209 M, (9)S((ts) ) 51 d¥ds = 0 (3.4)
—
U

: 2—a (+4-2 22 29292 l : 0
Jim +2¢ / / g1 EPMUDC((x) D)ol = s (3.5)

By using Eq. (3.3)-(3.5) and Remark 2.4, as well as Lemma 2.3 and 2.16, We can determine the following findings:

lim £27% (A1) (t) = lim 2~ a(“pl CQu(t )%0)+Ig+(t€_1Qg(t)%1)>

t—0 t—0

t—0

= lim t2~ O‘(CDl C( - 'Qult) )+IC+( - 'Qu(t) 5 ))

— iy o2 (16 (6@ 00) + I (671 Qo))

t—0 dt

= lim t27° I, <(£ Dt 2Qu(t) s + 2~ 2/ 292 M, (ﬁ)C(teq‘})%odﬁ—i—té_ng(t)%l)

t—0

—hmt2 “e—1) / / gc(t — 8)s* 720 M(9)S(s°09) o dVds

+ lim t2_o‘/ / gc(t — 8)s 720292 My (9)C(s°9) 59 dVVds
o Jo

t—0

t [e'e]
+ lim t27 / / gc(t — 8)s" " HIM(9)S (s0) 51 dds
0 0

t—0

t—0

1 oo
= lim t27 22 (0 - 1) / / g (1 — 8)s"209M;(9)S((ts) ") 0dVds
o Jo

+ lim t2 ¢S+
t—0

1 — 8)s2 720292 M, (9)C((ts)"9) sq0ddds
)

2/ / 9¢(
o Jo
1 o]
+ lim tQ_C“tCH_l/ / gc (1 — 8)s " HIM,(9)S((ts)") a1 dVds
t—0 o Jo

>0

TT(CH2e—1)
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Employing the previously given equation and Lemma 2.17, we can get the following findings, when t; = 0 and
ty € (O,b]
2 0 2
E|[(T12)(t2) — (¥12)(0)|| = B|lt3 (A1) (t2) — = —
w9 - (120 (M%)~ e
1 0
<2B||e27 ST 20— 1) / / gc (1 — 8)s 200 M,(9)S((t28) D) sodVds
0o Jo

1 [eS)
2—ay (HE—2 o \a26-292 92 ¢ _ >0
+t5 “ts /0 /0 gc(1 — 8)s* 720209 Mp(9)C((t2s) ) 2ddds TC+20=1)

2

1 e8]
+2B|[t2 5! / / gc (1 — 8)s" " HIM;(9)S((tas) V) 301 dVds
o Jo

— 0, as tg — 0.

For any 0 < t1 < t3 < b, we can apply C,-inequality, we obtain

2 2

= Bt *(A12)(t2) — t7 % (A1) (t1)

|9 - (w1

= v R DY (a4 Quea o) 1 (65 Quen)o)|

2

-t [RLDéIC(tlee(tl)%O) + IS, (tnge(tl)%l)]
2
37 (DT (4571 Qu(t2)50)) — t1(FEDI T (8571 Q1) 50))

2

<2F

+2F

5 I5. (b5 'Qult2)n) — 61T (81 Qu(t1)54)

=2I, + 2D,

where
2
L1 =F

b

t3 (" Doi (851 Qelt2)0)) — 61 (FF Dy (4171 Qul(t1) 0))

2

L= B3I, (t5 ' Qu(ta)za) — t1 "I, (¢17 ' Qu(t1)5)

By applying the Lemma 2.17, we obtain
2

I < 2B t37(REDL T (8571 Qu(t2)0)) — £ (FF D (1571 Qu(t2) )

2

+2E||1t3 (D (4571 Qu(t2)50)) — t1(FEDL T (4171 Q1) 50))

2

2—«
ts

=9 — 77| E||*E D] L (57 Qu(t2)50)

2

1262270 || RL DL€ (610, (6)529) — DTS (6471 Qu(81)340)

=11+ 2t?(2—o¢)112.
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We can observe that I;; — 0 as to — t1. According to Remark 2.16, we can derive
2

FE RLDl C( 1Qz(t2)%0) RLI)1 C( 1Qé(t1)%0)

2
= E|[“DL (657 Qu(t2)50) — C DA (57 Qu(t1) 50)

2

= 15, (G 68 Quteabn) ) — 16 (el et )

t1 2

—E /O2gc<tz—s>d<“cze< )%o)ds—/o 0c(1 — 5) (571 Qu(s)00)ds

SQE’/t2gq(2—S)dd(élQe() 0)ds
t1 2
+2E‘/ (9¢(t2 —s) — ge(t1 —s)) d( 1Qu(s))ds

These results could be obtained by using Lemma 2.16:

[ sctes -9 e ueras]| < (oms ) H/ (s <)% s

Mt” 2 2
— (WEC*—U) (ta — 1) E|50]* = 0, as ty — t;.

2
7

Noting that
(ta — )1 = (61 —8)7H)s? 72 < (tp — 8)S 1272 forae. s €[0,t1).

Afterwards, applying Lemma 2.16 and Lebesgue’s dominated convergence theorem, we demonstrate

2
g

| e = 9) = acte1 = 9) " @ul) s

< (o)

This implies that

2
— 0, as ty — t.

t1
/ ((ta = s)cf1 —(t1 — 5)471)52272%0618
0

2

I,=FE RLDl C( Qe(tz)%O) RLD(I)J:C(%AQ@(M)%O) — 0, as t2 = t1.

Thus, by I;1; — 0 and I15 — 0 as to — t1, we derive
2
— 0, as to — t1.

I = E|[t3 (" Dy (85 Qult2)0)) — 7 * (M Dy (¢ Qu(t1)0))

Using similar methods for I; — 0 as to — t1, we can obtain the following result:
= Bllt3 IS, (t571Qult2)5m) — t370I5, (8571 Qu(t1)50) > = 0, as t2 — 4.
T herefore, we get
B|(¥12)(t2) — (U12)(t1)]|> = 0, as ty — t1.

Following the above described analysis, we may infer that the set {e : e(t) = (V12)(t) : 2 € Bq} is equicontinuous.

(=)=
E)NE
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Part 2 : {e:e(t) = (¥22)(t) : 2 € By} is equicontinuous.

Based on Lemma 2.15, Equation (2.1), (A1) — (A2), and Hoélder’s inequality, given that t; = 0, 0 < to < b, we
acquire

2

B[(P22)(t2) — (¥22)(0)|* < 3E tg_a/() 2(t2 =) 71 Qu(t2 — 5)Bug,(s)ds

2

+apepe | " (62 — )1 Qult2 — 8) (s, 5(s))ds

2
+3F

R / (62— 9) ' Qu(t2 — 8)h(s, (s)a(s)
0
MMpt3t\? 1 [ 20—1 il € (< [[2
M2+t 2 1 to

s3(ME) 5 [ e 9 e (1 has

Mt27a 2 to
+ 3< F(22£) ) Tr(Q)/ (ta — s)Q(%_l)mg(s)@g(||%||gg)ds — 0, as to — 0.
0

When 0 < t1 < to < b, we obtain

t1 2

" /;2 (ta — 8)71Qu(ty — ) But,(s)ds — t3 a/ (t1—8)"'Qu(t1 — s)Bu,(s)ds

0

B[[(P22)(t2) — (V22)(t1)||* < 3E

+ 3E||t2

-a/o “(ta — 8)11Q4 (6 — 8) (s, 5¢(s))ds

B tl . /(;tl(tl B s)zilQé(tl —8)f(s, #(s))ds

+ 3K

. a/tz(tg—s)g_ng(tg—s)h(s,%(s))dW(s)
0

—t / (61— 8) 1 Qu(t1 — )h(s, (s))di(s)
0
= 3J1 + 3J2 + 3J3a

where
2

)

/ (t2 —s) e 1Qg(t2 — s)BuS,(s)ds — t -« /tl(tl — s)é_ng(tl — s)Bug,(s)ds
0

/ (t2 —s) £ 'Qu(ty — 8)f(s, 2(s))ds
2

)

/ (b1 — 8)° ' Qult1 — 5)f (s, 5(s))ds

/ (t2 —s) £ YQu(ty — s)h(s, x(s))dw(s)

—t7 o‘/ (t1 —8)71Qu(t1 — s)h(s, 2(s))du(s)
0

Next, we prove J3 — 0 as to — t1, according to Lemma 2.17 and 2.15, obtaining

o /t2 (t2 — ) ' Qu(t2 — s)h(s, »(s))di(s)

t1

Jz <3E
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2
+3E

£ / ) ((1:2 — )1 Qult2 — ) — (b1 — )" Qult - s))h(s, (s))dW(s)

2

+ 3(1:3“ - t§a>2EH /OtZ (ts — ) 1Qu(ts — 8)h(s, 5(s))du(s)

3
<3 Z J345
i=1

where

T = (Aﬁfw) Tr(@>( | e = e mae)n(a e - [ (ea s)wf—”mz<s>@2<||%||?g>ds),

2
J32 = ti(Q_a)E‘

7

/ ' <(t2 - s)zleg(tg —8)—(t; — S)eing(tl - s))h(s, #(s))dW(s)
0

Js3 = (tga - t§a>2E‘ /Otz (ta — 8)1Qu(t — s)h(s, 5(s))du(s)

We can deduce that lims,_¢, J31 = 0 and limy, ¢, J33 = 0. Then,

o t1 to—s d _
g =] [ [ S e Qoo o) fasate)

R

2

2

Moreover, Lemma 2.15 and Equation (2.1) implies that
2

Ty < e2 | M ) yau(s)
32 < 6] reo Jy ) s, x#(s s
2 t

—a X 2
< ((ggﬂi[tf)r(gg)) TT(Q)/O ((tg — )2 (g — s)%_l) ma(s)Oa(||||Z)ds — 0, as ta — ti.
Hence J3 — 0 as ty3 — ty;. Thus, we can prove J; — 0 and Jo — 0 as t3 — t; in a way similar to Js3 — 0.
Consequently,
B|(22)(t2) — (U22)(t1)]|> = 0, as ty — 1.
According to the above analysis, t211_1>111:1 [(T22)(ts) — (T2z)(t1)|| — O for ti,to € [0,d]; therefore, T = {e : e(t) =

(W2z)(t), z € By} is equicontinuous.
Step 4 : We demonstrate that the Monch’s condition is satisfied.
Let ‘l’ = \Ifl + \112 —|— \113 + \1147 where

Uy 2(t) = 2 FEDIT (297 1Qu(t) 500) + 27O IS, (271 Qu(t) 511),

Uyz(t) =272 /Ot(t —8)71Qu(t — 8)But,. (s)ds,
Wax() =0 [ (6= 5 1Qu(e — 5) (s, ()i

Uya(t) = £2-0 /0 (£ — 8)""1Qu(t — 8)h(s, ™ (s))dW(s).

Assume that M C By is countable and M C ¢o({0}UW¥(M)). We show that x(M) = 0, where x is the Kuratowski mea-
sure of noncompactness. We could say that M = {z™}°_, without losing generality. Therefore W(M) = {T2"}°_,
and its relative compactness implies that M is also relatively compact. It is clear that ¥(M) is equicontinuous on ‘B.
Utilizing, Lemma 2.8 and 2.15, (A1) (i), and (A2)(4i7), we derive

X({2™(8)}n=0) = x(2°(6) U {2 (8) }nmy) = X ({2 (8) } =)

(=)=
E)NE
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(T2 (6))5,) < x {827 / (t — )1 Qu(t — ) B (s)ds}

2]\4]\4]31:2_Ué t 201 . e
< 7F(ﬂ) /0 (t —s) X{u%m(s)}m_lds

< 2*’2;7” (Mrﬂfg) [r% /0b<b —5)""'m(s)ds

N % (m@) / . s>2<ﬁ—1>n§<s>ds) %] sup x({="(0) 351,

0 PEP

where
Y. b _
(@it < MRS Bt [ ds)aits) - MDY (0 Qi)

b
IS (6 Qub)a) / (b—9)""1Qe(b— ) (s, ™ (s))ds

b
—/ (b—8)1Qu(b - s)h(s,%m(s))dw(s)}
0 m=1

MMp(b—t)'[2M [° B - N
=T [r(@)/o(bs)ﬁ fm(s)ds s sup X({=" (0) )5

M T ’ _g)2(B-1) 2 S%,Su ,m oo
1y (277(@ [ 0 9P ) sup (=705

MMp(b—t)[2M [° 4
< R [t [ 0m S e

ﬁ r b — 8 2(8-1) 2 s)ds % su LM 00
1 (2@ [ 02 0 Dniterie) | s x(Em 0

V(T2 (0))3) < x{t“ / (= ) "' Qelt — 8) (s, zM<s>>ds}

2—aﬂ : _s B-1 s a=2 zm
< [0 (e (s o)t

stw%/o (6= 8) i (s)s” X ({s" 722" ()} 5im)
2—q b
< le(bm/o (b—s)P"tni(s)ds - sup x({z™(9)})o5_1.

peEP

o0

m=1

o

a2 ()} 1><x{ v | <t—s>f—1cze(t—s)h(s,zM<s>>dw<s>}

m=1
Mt27a t - o m %
: Nﬂ)(m(@/o (t — £)2C D[y (h(s, {522 (s) )35 1m2ds)
Mt2—« . t s 2(8—1),.2 s 82(2_(!) a—2 m . 3
=T <2T (Q)/o(t P20 ()62 [y ({5722 (8)} 2, )2d )
Mp2—e b ) 1 o
< M (277(@ [ 000 nt(erie) - sup ({5
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Thus, we have

X2 (e) =) < x({Waz" (o) b)) + x({ P2z (e) o) + x({Ws2™ (0) ) + x({Waz" (8) }21)

25 () [ L -

+ % (2%(@) /b(b - s)2<ﬂ—1>n§(s)ds> 1 sup x({z"™(9)})m=1

0 pEP
oMbz [P . S
W/o (b= )" m(s)ds - sup x({z"(0)D)m=s
My N I
+ (5) <2TT(Q)/O (b—-s) nz(s)ds) 22};3)(({2 (P,

<5 () [t [ omor o

2—a b 2
+ % <2TT(Q)/O (b— s)2(ﬁ_1)ﬂ§(s)ds) } sup X ({z" ()} m=1

PEP
[2Mb2—a
IN()

+ ]\?Z;)a <2TT(Q) /Ob(b - s)2<51>n§(s)ds> } ;ggx({zm(@)})i‘le

() (g o

1

b
/ (b-— s)B_lnl(s)ds
0

N|=

2—a b 3
+%<2TT(Q) / (b—s>2<ﬁl>n§<s>ds) Lsggxazm(m})f;:l
< K* sup x({=" ()b

pEP

Therefore, from the Monch’s condition, we get
X(M) < x(@{0} U¥(M)) = x(IM) < K*x(M).

Since K* < 1, we get x(M) = 0. As a result, M is relatively compact. We may determine that ¥ has a fixed point z
in M by using Lemma 2.20. The proof is concluded. (]

Theorem 3.3. Assume (A1) — (A2) are fulfilled. Furthermore, the control system Eq. (1.1) is approximately con-
trollable on P provided the functions f and h are uniformly bounded.

Proof. For each ¥ in By, consider »°(-) to become a fixed point. Utilizing the stochastic Fubini theorem, it is easy to
see that

b ~
25(b) = 3, — (el + Fg)l{E;}b + /O o(s)di(s) — FEDLTC (b1 Qu(b)s0)
b
~ I 0 Qu) = [ =2 — ) (e, () (3.6)

b
—/ (b—5)1Qu(b - s)h(s,%s(s))dw(s)}.
0
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By the assumptions on f and h, we get the sequences { f(s, °(s))} and h(s, »°(s)) are uniformly bounded on 3. The
subsequences represented by {f(s, »#(s))} and h(s, »“(s)) that weakly converge to f(s) and h(s). From the above
equation, we have

2

Bl (0) - l? < 08 (el + 1) (B - DS Qul0) ) 0 Qe )

2
ds)
L3

+6E (el +T8)714(s)

+6E (b—s) (e +T0) ' Qu(b — 8)[f (s, (s)) — f(s)]

2
ds)

e(el +10)7'Qe(b — s)[h(s, #*(s)) — h(s)]

2
ds) {
L3

For all t € [0,b], the operator e(el +T'3)~! — 0 strongly as e — 0 and ||e(el + T3)~!|| < 1. Thus, by the Lebesgue’s
dominated convergence theorem, we obtain E|[»(b) — 55[/*> — 0 as € — 0. This demonstrates that the system
Eq. (1.1) is approximately controllable. ]

2
ds)
2
ds)
LO

2

+6F

+6LF

/
/ (b= )" |e(el + T8 Qu(b — 5) £(s)
o

+6E</O(b—s) “Hle(el +T5)71Qu(b — s)h(s)

4. EXAMPLE
Consider the following equation
02 (v, 2) = 825(t, 2) + Bu(t, 2) + f1(t,52(t, 2)) + ha(t, #(t,2) MU ¢ € (0,0], z € [0,7],
#(t,0) = »x(t,7) =0, t € (0,0], (4.1)
(137 5)(0, 2) = s0(2), (155 72)'(0,2) = 51(2), 2 € [0,7],

where 82 represents the Hilfer fractional partial derivative of order 8 € (1,2), & € [0,1], a« = B+ (2 —
B), fi(t,(t,2)), hi(t,x(t,z)) fulfill (A1) and (A2), respectively.
Let Z = L?([0,7]) and defined A fulfills Asc = %%, D(A) ={sx € Z:(0) = 3(m) =0;" € Z; 5/, 5" are absolutely continuo
Furthermore, A is an infinitesimal generator of a strongly continuous cosine family {C(t) }+<o that is uniformly bounded.
Let A (z) = \/%sin(mﬂ'z), indicating that —m?, m € N are eigenvalues of A, and that {A,,}%°_, is an orthonormal
basis of Z. Then,

=) m (5, A) A, 3 € D(A);

where the inner product in Z is denoted by (-, -). Based on [23], we may get

(t)se = Z cos(mmt) (5, A ) A, S(t)x = %Sin(mﬂt)(%, Ap)Ap, € Z.

m=1

Describe an infinite-dimensional space U by

— {u - WiumAm(z)
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m

0 3
Then, norm in U is specified by |lu| = ( S u? > . Define a linear operator B : U — Z by

m=2
(Bu)(2) = 2us Ay (2) + Z unAp(2), for u = Z unAp(z) € U.
m=2 m=2
According to [32], we get

)

Qg(t)% = i thBﬁ(metB)(%, Am>Am, { = g

m=1
00
m

where Eg g(2) = Y m represents the Mittag-Leffler function. Let s(t)z = s(t, z). Therefore, the problem
m=0

Eq. (4.1) can be written in the abstract form of problem Eq. (1.1) in Z. As a result, all the conditions of Theorem
3.3 are fulfilled. Therefore, Eq. (4.1) is approximately controllable on 3.

5. CONCLUSION

In this work, we discussed the approximate controllability of Hilfer fractional stochastic evolution equations of order
B € (1,2) and type [0,1]. The Kuratowski measure of noncompactness, the fixed point approach, and the results and
concepts from fractional calculus are applied to establish the main conclusions. In particular, for f(t,-) and h(t,-),
the Lipschitz condition does not need to be satisfied. To illustrate the importance of our main results, an example
was given at the end. The approximate controllability of Sobolev-type Hilfer fractional stochastic evolution equations
with infinite delay of order 5 € (1,2) will be investigated in the future.
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