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Abstract

In this paper, we investigate the approximate controllability of Hilfer fractional stochastic evolution equations

of order β ∈ (1, 2). The main findings are carried out by using fractional calculus, stochastic analysis theory,

measure of noncompactness, and the fixed point theorem. At first, we prove the existence of a mild solution for
Hilfer fractional stochastic evolution equations, and then we establish the concept of approximate controllability.

Finally, we provide an example to illustrate our theoretical results.
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1. Introduction

The study of fractional differential equations and fractional calculus have emerged as crucial components of math-
ematics in recent decades. Currently, the idea of fractional calculus has been extensively investigated in many fields,
including engineering, image processing, viscoelasticity, biological diffusion, control theory, fluid dynamics, and porous
media. For various practical applications, fractional order models perform better than integer-order models. For more
information, refer these books [11, 29] and the research articles [10, 14, 19, 21]. Hilfer [8] introduced the Hilfer frac-
tional derivative, which is a generalized Riemann-Liouville fractional derivative. It includes both Riemann-Liouville
and Caputo fractional derivatives. Further, the significance and applications of the Hilfer fractional derivative have
emerged in the theoretical simulation of dielectric relaxation in glass-forming materials, engineering, polymer science,
and so on. For more information on the Hilfer fractional derivative, refer [5, 6, 9, 26, 31, 32].

Controllability is a fundamental concept in mathematical control theory and plays an important role in both de-
terministic and stochastic control systems. The idea of controllability plays important role in both finite and infinite
dimensional spaces. It has many applications in different fields such as physics, engineering, robotics, electronics, chem-
istry, biology, economics, power systems, and space technology. In recent decades, various works has been discussed
on the concept of approximate controllability for differential equations, integro-differential equations, impulsive func-
tional inclusions, stochastic equations, neutral differential equations, and semilinear functional equations, evolution
equations and references therein [7, 14, 20, 25].

In many cases, deterministic models often fluctuate due to environmental noise, which is random or at least appears
to be so. Stochastic differential equations can be used for escape and jump issues of Brownian particles in physics,
along with option pricing problems in economics. Consequently, the significance of stochastic differential equations is
crucial in several scientific fields, including chemistry, physics, economics, etc. In recent decades, existence, stability,
uniqueness, controllability and other qualitative and quantitative attributes of solutions of stochastic evolution equa-
tions received a lot of attention by researchers. An overview of stochastic differential equations and their applications
in [1, 4, 16, 22].
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We observe that recent researchers doing research on the topic of fractional differential equations of order 0 < β < 1.
For example, [2, 12, 30] discussed the existence of mild solutions for stochastic evolution equations with Caputo
fractional derivative of order β ∈ (0, 1). Authors of [21, 22, 24] investigated the existence of mild solutions for Hilfer
fractional derivative by using Mönch fixed point theorem. While numerous research results have been conducted on
fractional stochastic differential equations with order β ∈ (1, 2). While most research has focused on Caputo fractional
stochastic differential equations of order β ∈ (1, 2). In [27], authors discussed the approximate controllability for
stochastic impulsive evolution system by using Mönch fixed point theorem. In [18], Li and Zhou investigated the
existence of mild solutions for Hilfer fractional stochastic evolution equations with order µ ∈ (1, 2).

To the best of our knowledge, no work has been reported in the literature about the approximate controllability of
Hilfer fractional stochastic evolution equations of order β ∈ (1, 2). Inspired by the above-mentioned work, this paper
aims to fill this gap. Let us consider the Hilfer fractional stochastic evolution equations of order β ∈ (1, 2) and type
ℑ ∈ [0, 1] of the form{

HDβ,ℑ
0+ κ(t) = Aκ(t) +Bu(t) + f(t,κ(t)) + h(t,κ(t))dW(t)dt , t ∈ P′ = (0, b],

(I2−α
0+ κ)(0) = κ0, (I2−α

0+ κ)′(0) = κ1,
(1.1)

where HDβ,ℑ
0+ stands for Hilfer fractional derivative of order β ∈ (1, 2) and type ℑ ∈ [0, 1], the Riemann-Liouville

integral operator of order (2 − α) is denoted by I2−α
0+ , where α = β + ℑ(2 − β). The state variable κ(·) takes the

value in a separable Hilbert space Z. A : D(A) ⊂ Z → Z is the infinitesimal generator of a cosine family {C(t)}t≥0,
which consist of strongly continuous and uniformly bounded linear operators. Here, P = [0, b] and control function
u(t) ∈ L2(P,U) of admissible control functions for a separable Hilbert space U. Furthermore, B : U → Z is a bounded
linear operator. If {W(t)}t≥0 is a given J-valued Wiener process having a finite trace nuclear covariance operator Q ≥ 0
specified on a complete probability space (Ω,F ,P) with normal filtration {Ft}t≥0 and J represents another separable
Hilbert space. Finally, we consider that f : P×Z → Z and h : P×Z → L(J,Z) are appropriate functions and that
κ0,κ1 ∈ L2(Ω,Z).
The following are the main findings of our manuscript:

(i) A study on the approximate controllability of Hilfer fractional stochastic evolution equations of order β ∈
(1, 2) in the form of Eq. (1.1) is an unexplored topic in this literature that gives motivation for writing this
manuscript.

(ii) In this paper, using the Mönch fixed point theorem, we establish the existence of mild solutions for Hilfer
fractional stochastic evolution equations of order β ∈ (1, 2).

(iii) The approximate controllability of Eq. (1.1) is illustrated, considering that the corresponding linear system is
approximately controllable.

(iv) The main findings are demonstrated by an example.

The structure of this paper is organized as follows: Some fundamental definitions, theorems, and lemmas that are
utilized in this study are given in section 2. In section 3, we demonstrate the approximate controllability for the
system Eq. (1.1). Finally, in section 4, we illustrate an example to highlight our main findings.

2. Preliminaries

In this section, we provide some basic definitions, lemmas, theorems, and preliminary results that will be useful
for understanding this article. Let (Ω,F , {Ft}t≥0,P) be a complete probability space equipped with a right con-
tinuous increasing family and F0 contains all P-null sets. L2

0(Ω,Z) = {κ ∈ L2(Ω,Z);κ is F0 − measurable} is a
significant subspace of L2(Ω,Z). The Banach space of all continuous mappings from [0, b] into L2(Ω,Z) is denoted by

C([0, b], L2(Ω,Z)), whose norm is ∥κ(·)∥C = (supt∈[0,b] E∥κ(t)∥2) 1
2 < ∞.

Given a norm ∥·∥, let L(J,Z) represent the space containing all bounded linear operators from J into Z. Considered
that there exists a complete orthonormal basis {ek}k≥1 for J. For Qek = λkek, k ∈ N, let Tr(Q) =

∑∞
k=1 λk < ∞ be

indicated. According to proposition 2.9 in [3], given that ϖ(t) ∈ L(J,Z), and that ϖ(t) is measurable with regard to



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-19 3

Ft for t ∈ [0, b], and fulfills
∫ t

0
E∥ϖ(s)∥2ds < ∞, consequently, we possess the following property:

E∥
∫ t

0

ϖ(s)dW(s)∥2 ≤ Tr(Q)

∫ t

0

E∥ϖ(s)∥2ds. (2.1)

Another space is now introduced:

C1([0, b], L
2(Ω,Z)) :=

{
κ ∈ C((0, b], L2(Ω,Z)) : lim

t→0+
t2−ακ(t) exists and finite

}
.

Define the symbol C = C1([0, b], L
2(Ω,Z)) with the norm ∥κ(·)∥C =

(
sup

t∈(0,b]

E∥t2−ακ(t)∥2
) 1

2

, the space is obviously

a Banach space.
In this study, we present the function gα(·), which is specified as follows for calculating convenience:

gα(t) =

{
tα−1

Γ(α) , t > 0,

0, t ≤ 0,

where α > 0, and the gamma function Γ(·) fulfills αΓ(α) = Γ(α + 1). In case α = 0, we represent g0(t) = δ(t);
concentration of the Dirac measure occurs at the origin.

The basics of the Riemann-Liouville fractional integral, the Riemann-Liouville fractional derivative, the Caputo
fractional derivative and the relationship between the Riemann-Liouville and the Caputo fractional derivative, one
can refer [11].

Definition 2.1. [11] The Riemann-Liouville fractional integral is defined as follows:

Iβ0+κ(t) =
1

Γ(β)

∫ t

0

(t− s)β−1κ(s)ds = (gβ ∗ κ)(t), t > 0, β > 0,

where ∗ is the convolution.

Definition 2.2. [11] The Riemann-Liouville fractional derivative is defined as follows:

RLDβ
0+κ(t) =

1

Γ(n− β)

dn

dtn

(∫ t

0

(t− s)n−β−1κ(s)ds
)

=
dn

dtn
(gn−β ∗ κ)(t), t > 0, n− 1 < β < n,

in particular, its Laplace transform is as follows:

L(RLDβ
0+κ(t)) = λβ−1L(κ(t))(λ)−

n∑
k=0

(gn−β ∗ e)(0)λn−1−k. (2.2)

Definition 2.3. [11] The Caputo fractional derivative is defined as follows:

CDβ
0+κ(t) =

1

Γ(n− β)

∫ t

0

(t− s)n−β−1κn(s)ds := gn−β ∗ ( dn

dtn
κ)(t), t > 0, n− 1 < β < n,

where the function κ(t) is n− 1 times continuously differentiable, and is absolutely continuous.

Remark 2.4. [18] Relationship between the Riemann-Liouville and the Caputo fractional derivatives, we get

CD1−ζ
0+ (tℓ−1Qℓ(t)κ) =RL D1−ζ

0+ (tℓ−1Qℓ(t)κ), ζ ∈ (0, 1), κ ∈ Z.

Definition 2.5. [8] The Hilfer fractional derivative of order n− 1 < β < n and type 0 ≤ ℑ ≤ 1 is defined by

HDβ,ℑ
0+ κ(t) =

(
I
ℑ(n−β)
0+

dn

dtn
(I

(1−ℑ)(n−β)
0+ κ)

)
(t), t > 0.
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Remark 2.6. (i) If ℑ = 0 and n− 1 < β < n, then Dβ,ℑ
0+ becomes a Riemann-Liouville fractional derivative:

Dβ,0
0+ κ(t) =

dn

dtn
I
(n−β)
0+ κ(t) = RLDβ

0+κ(t).

(ii) If ℑ = 1 and n− 1 < β < n, then Dβ,ℑ
0+ becomes a Caputo fractional derivative:

Dβ,1
0+ κ(t) = I

(n−β)
0+

dn

dtn
κ(t) = CDβ

0+κ(t).

Definition 2.7. [29] If (I2−α
0+ κ)(t) is continuous and (I2−α

0+ κ)′(t) is absolutely continuous, then

Iα0+(
RLDα

0+κ(t)) = κ(t)−
(I2−α

0+ κ)(0)
Γ(α− 1)

tα−2 −
(I2−α

0+ κ)′(0)
Γ(α)

tα−1,

where 1 < α < 2.

Lemma 2.8. [13] Given a sequence of Bochner integrable function {κm(t)}∞m=1 : [0, b] → Y, if there exists ξ ∈
L([0, b],R+) such that

∥κm(t)∥Y ≤ ξ(t), t ∈ [0, b].

Following that, χ({κm(t)}∞m=1) ∈ L([0, b],R+), and it fulfills

χ({
∫ t

0

κm(s)ds : m = 1, 2, · · · }) ≤ 2

∫ t

0

χ({κm(s) : m = 1, 2, · · · })ds.

Definition 2.9. [15] The Wright function Mκ is defined as follows:

Mκ(ϑ) =
∞∑

m=1

(−ϑ)m−1

(m− 1)!Γ(1− κm)
, 0 < κ < 1, ϑ ∈ C,

which fulfills ∫ ∞

0

ϑδMκ(ϑ)dϑ =
Γ(1 + δ)

Γ(1 + κδ)
, for δ ≥ 0.

Definition 2.10. [23] If Y is a Banach space, then bounded linear operators mapping {C(t)}t∈R : Y → Y are called
a strongly continuous cosine family iff

(i) C(t′′ + t′) + C(t′′ − t′) = 2C(t′′)C(t′) for all t′′, t′ ∈ R;
(ii) C(0) is the identity operator I;
(iii) C(t)y is continuous for t ∈ R and κ ∈ Y.

One parameter family, {S(t)}t∈R is defined by

S(t)κ =

∫ t

0

C(s)κds, t ∈ R, κ ∈ Y,

where the strongly continuous cosine family in Y is represented by {C(t)}t∈R. An operator A : Y → Y is an infinitesimal
generator for a strongly continuous cosine family {C(t)}t∈R, which is specified by

Aκ =

(
d2

dt2
C(t)κ

)
t=0

, κ ∈ D(A),

here D(A) = {κ ∈ Y : C(t)κ is a twice continuously differentiable with regard to t}.

Lemma 2.11. [23] Strongly continuous cosine family {C(t)}t∈R fulfilling ∥C(t)∥Y ≤ M0e
ω|t| in Y, for all t ≥ 0 and

some ω ≥ 0, M0 ≥ 1, and {C(t)}t∈R has an infinitesimal generator denoted by A. Afterwards, for Reλ > ω, λ2 ∈ ρ(A),
and

λR(λ2;A)κ =

∫ ∞

0

e−λtC(t)κdt, R(λ2;A)κ =

∫ ∞

0

e−λtS(t)κdt, for κ ∈ Y.
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In this work, A represents the infinitesimal generator of a strongly continuous cosine family of uniformly bounded
linear operators {C(t)}t≥0 in Z, if t ≥ 0, then ∥C(t)∥L(Z) ≤ M , there exists a constant M ≥ 1.

Lemma 2.12. [18] The Hilfer fractional stochastic differential system Eq. (1.1) is equivalent to the integral equations
as the form:

κ(t) = gα−1(t)κ0 + gα(t)κ1 +

∫ t

0

gβ(t− s)

[
Aκ(s) +Bu(s) + f(s,κ(s))

]
ds+

∫ t

0

gβ(t− s)h(s,κ(s))dW(s), (2.3)

where α = β + ℑ(2− β).

Lemma 2.13. [18] If κ(t) fulfills the integral Eq. (2.3), then

κ(t) =RL D1−ζ
0+ (tℓ−1Qℓ(t)κ0) + Iζ0+(t

ℓ−1Qℓ(t)κ1) +

∫ t

0

(t− s)ℓ−1Qℓ(t− s)Bu(s)ds

+

∫ t

0

(t− s)ℓ−1Qℓ(t− s)f(s,κ(s))ds+
∫ t

0

(t− s)ℓ−1Qℓ(t− s)h(s,κ(s))dW(s),
(2.4)

for t ∈ (0, b], ζ = ℑ(2− β) ∈ (0, 1), β = 2ℓ, where

Qℓ(t) =

∫ ∞

0

ℓϑMℓ(ϑ)S(tℓϑ)dϑ.

Definition 2.14. [18] An Ft-adapted stochastic process κ ∈ C is a mild solution for the Cauchy problem Eq. (1.1),
if κ0,κ1 ∈ L2

0(Ω,Z), u(·) ∈ L2
F (P,U) and

κ(t) =RL D1−ζ
0+ (tℓ−1Qℓ(t)κ0) + Iζ0+(t

ℓ−1Qℓ(t)κ1) +

∫ t

0

(t− s)ℓ−1Qℓ(t− s)Bu(s)ds

+

∫ t

0

(t− s)ℓ−1Qℓ(t− s)f(s,κ(s))ds+
∫ t

0

(t− s)ℓ−1Qℓ(t− s)h(s,κ(s))dW(s), t ∈ (0, b].

(2.5)

Lemma 2.15. [6] Given any κ ∈ Z, the following inequality holds:

∥Qℓ(t)κ∥ ≤ Mtℓ

Γ(2ℓ)
∥κ∥, t ≥ 0.

Furthermore, Qℓ(t) is uniformly continuous: that is, for every t1, t2 ≥ 0,

∥Qℓ(t2)−Qℓ(t1)∥ → 0, as t2 → t1.

Lemma 2.16. [18] The following formula is accurate if Eq. (2.3) holds for every t > 0 and κ ∈ Z:

d

dt
(tℓ−1Qℓ(t)κ) = (ℓ− 1)tℓ−2Qℓ(t)κ + t2ℓ−2

∫ ∞

0

ℓ2ϑ2Mℓ(ϑ)C(tℓϑ)κdϑ.

Moreover, ∥∥∥∥ d

dt
(tℓ−1Qℓ(t)κ)

∥∥∥∥ ≤ Mt2ℓ−2

Γ(2ℓ)
∥κ∥, t > 0.

Lemma 2.17. [28] Suppose

(i) ν > 0, 0 < P ≤ ∞.
(ii) positive function a(t) and e(t) are locally integrable on 0 ≤ t < P .
(iii) Continuous function g(t) is positive, increasing and bounded, 0 ≤ t < P. If

e(t) ≤ a(t) + g(t)

∫ t

0

(t− s)ν−1e(s)ds,

then

e(t) ≤ a(t) +

∫ t

0

[ ∞∑
n=1

(g(t)Γ(ν))n

Γ(nν)
(t− s)ν−1a(s)

]
ds, for 0 ≤ t < P,

in particular, if a(t) = 0, then e(t) = 0 for each 0 ≤ t < P .
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Definition 2.18. [20] Indicate that at terminal time b, the reachable set Eq. (1.1) is

R(b,κ0,κ1) = {κ(b,κ0,κ1, u) : u(·) ∈ L2(P,U)}.

If R(b,κ0,κ1) = Z, then Eq. (1.1) is considered to be approximately controllable on P.

Consider the following linear control system{
HDβ,ℑ

0+ κ(t) = Aκ(t) +Bu(t), t ∈ (0, b],

(I2−α
0+ κ)(0) = κ0, (I2−α

0+ κ)′(0) = κ1.
(2.6)

Given Eq. (2.6), define its corresponding operator as

Γb
0 =

∫ b

0

(b− s)ℓ−1Qℓ(b− s)BB∗Q∗
ℓ (b− s)ds,

R(ϵ,Γb
0) = (ϵI + Γb

0)
−1, for ϵ > 0,

where B∗ and Q∗
ℓ (t) represents the adjoint of B and Qℓ(t). Then, Γ

b
0 becomes a linear bounded operator.

Lemma 2.19. [19] The linear system Eq. (2.6) is approximately controllable in P iff κ(κI + Γb
0)

−1 → 0 as κ → 0+

in the strong operator topology.

Lemma 2.20. [17] Let V be a closed, convex subset of a Banach space Y and 0 ∈ V . Suppose that Ψ : V → Y is
continuous map that fulfills Mönch condition, i.e., V1 ⊂ V is countable V1 ⊂ co({0} ∪Ψ(V1)) ⇒ V1 is compact. Then
Ψ has a fixed point in V .

3. Main results

The following hypotheses are required in order to illustrate the primary result of this paper:

(A1) The function f : P×Z → Z fulfills the following conditions:
(i) The function f(t, ·) : Z → Z is continuous, and for each κ ∈ Z, f(·,κ) : P → Z is strongly measurable.
(ii) There exist a function m2 ∈ L1(P,R+), and non-decreasing continuous function Θ1 : R+ → R+, such

that

E∥f(t,κ)∥2 ≤ m1(t)Θ1(∥κ∥2C ),

for arbitrary (t,κ) ∈ P×Z, and the function Θ1 fulfilling

lim
τ→∞

inf
Θ1(τ)

τ
= Λf < ∞.

(iii) There exists a function η1 ∈ L1(P,R+) such that for bounded and countable subset D ⊂ Z,

χ(f(t, D)) ≤ η1t
2−αχ(D).

(A2) The function h : P×Z → L0
2(J,Z) fulfills the following conditions:

(i) For each t ∈ P, the function h(t, ·) : Z → L0
2(J,Z) is continuous, and for each κ ∈ Z, the function

h(·,κ) : P → L0
2(J,Z) is strongly measurable.

(ii) There exist a function m2 ∈ L1(P,R+), and non-decreasing continuous function Θ2 : R+ → R+, such
that

E∥h(t,κ)∥2 ≤ m2(t)Θ2(∥κ∥2C ),

for arbitrary (t,κ) ∈ P×Z, and the function Θ2 fulfilling

lim
τ→∞

inf
Θ2(τ)

τ
= Λh < ∞.

(iii) There exists a function η2 ∈ L1(P,R+) such that for bounded and countable subset D ⊂ Z,

χ(h(t, D)) ≤ η2t
2−αχ(D).



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-19 7

(A3)

K∗ =

(
2b3ℓ

3ℓ

(
MMB

ϵ
1
2Γ(β)

)2

+ 1

)[
2Mb2−α

Γ(β)

∫ b

0

(b− s)β−1η1(s)ds+
Mb2−α

Γ(β)
×

(
2Tr(Q)

∫ b

0

(b− s)2(β−1)η22(s)ds

) 1
2
]
< 1.

Lemma 3.1. [4] For any κ̃b ∈ L2(Fb,Z), there exists ϕ̃ ∈ L2
F (Ω, L

2([0, b], L0
2)), such that

κ̃b = Eκ̃b +
∫ b

0
ϕ̃(s)dW(s). For any ϵ > 0 and κ̃b ∈ L2(Fb,Z), we define the control function

uϵ
κ(t) = B∗Q∗

p(b− t)R(ϵ,Γb
0)

{
Eκ̃b +

∫ b

0

ϕ̃(s)dW(s)− RLD1−ζ
0+ (bℓ−1Qℓ(b)κ0)

− Iζ0+(b
ℓ−1Qℓ(b)κ1)−

∫ b

0

(b− s)ℓ−1Qℓ(b− s)f(s,κ(s))ds

−
∫ b

0

(b− s)ℓ−1Qℓ(b− s)h(s,κ(s))dW(s)
}
.

Theorem 3.2. If assumptions (A1)-(A2) are true, then it has a unique mild solution for the system Eq. (1.1) in P.

Proof. Assuming that the mapping Λ : (Λκ)(t) = (Λ1κ)(t) + (Λ2κ)(t), κ ∈ C1((0, b], L
2(Ω,Z)),

where

(Λ1κ)(t) = RLD1−ζ
0+ (tℓ−1Qℓ(t)κ0) + I1−ζ

0+ (tℓ−1Qℓ(t)κ1), for t ∈ (0, b],

(Λ2κ)(t) =
∫ t

0

(t− s)ℓ−1Qℓ(t− s)Buϵ
κ(s)ds+

∫ t

0

(t− s)ℓ−1Qℓ(t− s)f(s,κ(s))ds

+

∫ t

0

(t− s)ℓ−1Qℓ(t− s)h(s,κ(s))dW(s), for t ∈ (0, b].

It is evident that, if Λ has a fixed point κ∗ ∈ C1([0, b], L
2(Ω,Z)), then (1.1) has a mild solution, κ ∈ C1([0, b], L

2(Ω,Z)).
For all z ∈ C((0, b], L2(Ω,Z)), set

κ(t) = tα−2z(t), t ∈ (0, b].

Define an operator Ψ :
(Ψz)(t) = (Ψ1z)(t) + (Ψ2z)(t), for t ∈ [0, b],

where

(Ψ1z)(t) =

{
t2−α(Λ1κ)(t), for t ∈ (0, b],

κ0

Γ(ζ+2ℓ−1) , for t = 0,

(Ψ2z)(t) =

{
t2−α(Λ2κ)(t), for t ∈ (0, b],

0, for t = 0.

Let Bq = {z : z ∈ C([0, b], L2(Ω,Z)), ∥z∥C ≤ q}, B̃q = {κ : κ ∈ C1([0, b], L
2(Ω,Z)), ∥κ∥C ≤ q}. It appears that,

Bq and B̃q are nonempty, convex, and closed subsets of C([0, b], L2(Ω,Z)) and C1([0, b], L
2(Ω,Z)), accordingly. Let

T := {e : e(t) = (Ψz)(t), z ∈ Bq}.
Then we demonstrate the fixed point property of Ψ. The proof is broken down into many steps.
Step 1 : We demonstrate that there exists q such that Ψ maps Bq(P) into Bq(P).

When t > 0, Lemma 2.16 and Remark 2.4 allow us to derive∥∥∥∥RLD1−ζ
0+ (tℓ−1Qℓ(t)κ)

∥∥∥∥ =

∥∥∥∥CD1−ζ
0+ (tℓ−1Qℓ(t)κ)

∥∥∥∥ =

∥∥∥∥Iζ0+( d

dt
tℓ−1Qℓ(t)κ

)∥∥∥∥
≤

∫ t

0

gζ(t− s)

∥∥∥∥ d

ds
sℓ−1Qℓ(s)κ

∥∥∥∥ds ≤ M

Γ(2ℓ)

∫ t

0

gζ(t− s)s2ℓ−2∥κ∥ds

=
Mt2ℓ+ζ−2

(2ℓ− 1)Γ(ζ + 2ℓ− 1)
∥κ∥,
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which implies that∥∥∥∥RLD1−ζ
0+ (tℓ−1Qℓ(t)κ)

∥∥∥∥ ≤ Mt2ℓ+ζ−2

(2ℓ− 1)Γ(ζ + 2ℓ− 1)
∥κ∥, t > 0, κ ∈ Z. (3.1)

Similarly, by using Lemma 2.15, we get∥∥∥∥Iζ0+(tℓ−1Qℓ(t)κ)
∥∥∥∥ ≤ Mt2ℓ+ζ−1

Γ(ζ + 2ℓ)
∥κ∥, t > 0, κ ∈ Z, (3.2)

and

E∥uϵ
κ(t)∥2 ≤ 5

(
MMB(b− t)ℓ

ϵΓ(2ℓ)

)2{
2∥Eκ̃b∥2 + 2∥

∫ b

0

ϕ̃(s)dW(s)∥2

+

(
Mb2ℓ+ζ−2

(2ℓ− 1)Γ(ζ + 2ℓ− 1)

)2

E∥κ0∥2 +
(
Mb2ℓ+ζ−1

Γ(ζ + 2ℓ)

)2

E∥κ1∥2

+

(
Mbℓ

Γ(2ℓ)

)2
1

2ℓ

∫ b

0

(b− s)2ℓ−1m1(s)ds ·Θ1(q)

+

(
M

Γ(2ℓ)

)2

Tr(Q)

∫ b

0

(b− s)2(2ℓ−1)m2(s)ds ·Θ2(q)

}
,

where ∥B∥ ≤ MB . If we assume Ψ(Bq) ⊈ Bq, then for every positive constant q and t ∈ P, there exists zq(·) ∈ Bq,
such that E∥(Ψzq)(t)∥2 > q, we have

q < E∥(Ψzq)(t)∥2

≤ 5 sup
t∈P

t2(2−α)

{
E

∥∥∥∥RLD1−ζ
0+ (tℓ−1Qℓ(t)κ0)

∥∥∥∥2 + E

∥∥∥∥Iζ0+(tℓ−1Qℓ(t)κ1)

∥∥∥∥2
+ E

∥∥∥∥∫ t

0

(t− s)ℓ−1Qℓ(t− s)Buϵ
κ(s)ds

∥∥∥∥2 + E

∥∥∥∥∫ t

0

(t− s)ℓ−1Qℓ(t− s)f(s,κ(s))ds
∥∥∥∥2

+ E

∥∥∥∥∫ t

0

(t− s)ℓ−1Qℓ(t− s)h(s,κ(s))dW(s)
∥∥∥∥2}

≤ sup
t∈P

{
5

(
M

(2ℓ− 1)Γ(ζ + 2ℓ− 1)

)2

E∥κ0∥2 + 5

(
t

Γ(ζ + 2ℓ)

)2

E∥κ1∥2

+ 5

(
Mt2−α+ℓ

Γ(2ℓ)

)2
1

2ℓ

∫ t

0

(t− s)2ℓ−1E∥f(s,κ(s))∥2ds

+ 5

(
Mt2−α

Γ(2ℓ)

)2

Tr(Q)

∫ t

0

(t− s)2(2ℓ−1)E∥h(s,κ(s))∥2ds

+ 5

(
MMBt

2−α+ℓ

Γ(2ℓ)

)2
1

2ℓ

∫ t

0

(t− s)2ℓ−1E∥uϵ
κ(s)∥2ds

}
≤5

(
M

(2ℓ− 1)Γ(ζ + 2ℓ− 1)

)2

E∥κ0∥2 + 5

(
b

Γ(ζ + 2ℓ)

)2

E∥κ1∥2

+ 5

(
Mb2−α+ℓ

Γ(2ℓ)

)2
1

2ℓ

∫ b

0

(b− s)2ℓ−1m1(s)ds ·Θ1(q)

+ 5

(
Mb2−α

Γ(2ℓ)

)2

Tr(Q)

∫ b

0

(b− s)2(2ℓ−1)m2(s)ds ·Θ2(q)

+ 25

(
MMB

Γ(2ℓ)

)4(
b6ℓ−2α+4

8ℓ2ϵ2

){
2∥Eκ̃b∥2 + 2∥

∫ b

0

ϕ̃(s)dW(s)∥2
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+

(
Mb2ℓ+ζ−2

(2ℓ− 1)Γ(ζ + 2ℓ− 1)

)2

E∥κ0∥2 +
(
Mb2ℓ+ζ−1

Γ(ζ + 2ℓ)

)2

E∥κ1∥2

+

(
Mbℓ

Γ(2ℓ)

)2
1

2ℓ

∫ b

0

(b− s)2ℓ−1m1(s)ds ·Θ1(q)

+

(
M

Γ(2ℓ)

)2

Tr(Q)

∫ b

0

(b− s)2(2ℓ−1)m2(s)ds ·Θ2(q)

}
.

Dividing both sides by q and taking the limit as q → ∞, we get(
1 + 5

(
MMB

Γ(2ℓ)

)4(
b6ℓ

8ℓϵ2

))(
5

2ℓ

(
Mb2−α+ℓ

Γ(2ℓ)

)2 ∫ b

0

(b− s)2ℓ−1m1(s)ds · Λf

+ 5

(
Mb2−α

Γ(2ℓ)

)2

Tr(Q)

∫ b

0

(b− s)2(2ℓ−1)m2(s)ds · Λh

)
≥ 1,

which is a contradiction to our assumption. Thus there exists a q > 0 such that Ψ(Bq) ⊂ Bq.
Step 2 : We demonstrate that Ψ is continuous on Bq(P).
Assume that the sequence {zn}∞n=1 in Bq converges to z. Next,

lim
n→∞

zn(t) = z(t) and lim
n→∞

tα−2zn(t) = tα−2z(t), for t ∈ (0, b].

As y(t) = tα−2z(t), t ∈ (0, b], according to (A1) and (A2), we obtain

lim
n→∞

E∥f(t,κn(t))∥2 = lim
n→∞

E∥f(t, tα−2zn(t))∥2 = E∥f(t, tα−2z(t))∥2 = E∥f(t,κ(t))∥2,

lim
n→∞

E∥h(t,κn(t))∥2 = lim
n→∞

E∥h(t, tα−2zn(t))∥2 = E∥h(t, tα−2z(t))∥2 = E∥h(t,κ(t))∥2.

By employing (A1), we can obtain

(t− s)2ℓ−1E∥f(s,κn(s))− f(s,κ(s))∥2 ≤ 4(t− s)2ℓ−1m1(s)Θ1(∥κ∥2C ), t ∈ (0, b].

As s → 4(t− s)2ℓ−1m1(s)Θ1(∥κ∥2C ) is integrable for s ∈ [0, t], the Lebesgue’s dominated convergence theorem allows
us to determine

E

∥∥∥∥∫ t

0

(t− s)2ℓ−1[f(s,κn(s))− f(s,κ(s))]ds
∥∥∥∥2 → 0, as n → ∞.

Similarly, we obtain

E

∥∥∥∥∫ t

0

(t− s)2ℓ−1[h(s,κn(s))− h(s,κ(s))]dW(s)
∥∥∥∥2 → 0, as n → ∞.

Consequently, we have for any t ∈ [0, b]

E

∥∥∥∥(Ψ2zn)(t)− (Ψ2z)(t)

∥∥∥∥2 ≤ 3t2(2−α)E

∥∥∥∥∫ t

0

(t− s)ℓ−1Qℓ(t− s)B[uϵ
κn

(s)− uϵ
κ(s)]ds

∥∥∥∥2
+ 3t2(2−α)E

∥∥∥∥∫ t

0

(t− s)ℓ−1Qℓ(t− s)[f(s,κn(s))− f(s,κ(s))]ds
∥∥∥∥2

+ 3t2(2−α)E

∥∥∥∥∫ t

0

(t− s)ℓ−1Qℓ(t− s)[h(s,κn(s))− h(s,κ(s))]dW(s)
∥∥∥∥2

≤ 3

(
MMBt

2−α

Γ(2ℓ)

)2

E

∥∥∥∥∫ t

0

(t− s)2ℓ−1[uϵ
κn

(s)− uϵ
κ(s)]ds

∥∥∥∥2
+ 3

(
Mt2−α

Γ(2ℓ)

)2

E

∥∥∥∥∫ t

0

(t− s)2ℓ−1[f(s,κn(s))− f(s,κ(s))]ds
∥∥∥∥2
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+ 3

(
Mt2−α

Γ(2ℓ)

)2

E

∥∥∥∥∫ t

0

(t− s)2ℓ−1[h(s,κn(s))− h(s,κ(s))]dW(s)
∥∥∥∥2 → 0, as n → ∞.

As a result, Ψ is continuous.
Step 3 : If (A1)− (A2) true, then the set T is equicontinuous.
In order to demonstrate that T is equicontinuous, we have to initially show that, given limt2→t1 E∥(Ψ2z)(t2) −
(Ψ1z)(t1)∥2 → 0 for t2, t1 ∈ P. The two sections of this step are as follows:

Part 1 :

{
e : e(t) = (Ψ1z)(t), z ∈ Bq

}
is equicontinuous.

By using Definition 2.9 and C(0) = I, we can get

lim
t→0

t2−αtζ+ℓ−2(ℓ− 1)

∫ 1

0

∫ ∞

0

gζ(1− s)sℓ−2ℓϑMℓ(ϑ)S((ts)ℓϑ)κ0dϑds

= (ℓ− 1)

∫ 1

0

∫ ∞

0

gζ(1− s)sℓ−2ℓϑMℓ(ϑ) lim
t→0

S((ts)ℓϑ)
tℓ

κ0dϑds

= (ℓ− 1)ℓ

∫ 1

0

gζ(1− s)sℓ−2ds(

∫ ∞

0

ϑ2Mℓ(ϑ)κ0dϑ) =
(ℓ− 1)κ0

(2ℓ− 1)Γ(ζ + 2ℓ− 1)
. (3.3)

Similarly, we obtain

lim
t→0

t2−αtζ+ℓ−1

∫ 1

0

∫ ∞

0

gζ(1− s)sℓ−2ℓϑMℓ(ϑ)S((ts)ℓϑ)κ1dϑds = 0 (3.4)

lim
t→0

t2−αtζ+ℓ−2

∫ 1

0

∫ ∞

0

gζ(1− s)s2ℓ−2ℓ2ϑ2Mℓ(ϑ)C((ts)ℓϑ)κ0dϑds =
ℓκ0

(2ℓ− 1)Γ(ζ + 2ℓ− 1)
. (3.5)

By using Eq. (3.3)-(3.5) and Remark 2.4, as well as Lemma 2.3 and 2.16, We can determine the following findings:

lim
t→0

t2−α(Λ1κ)(t) = lim
t→0

t2−α

(
RLD1−ζ

0+ (tℓ−1Qℓ(t)κ0) + Iζ0+(t
ℓ−1Qℓ(t)κ1)

)
= lim

t→0
t2−α

(
CD1−ζ

0+ (tℓ−1Qℓ(t)κ0) + Iζ0+(t
ℓ−1Qℓ(t)κ1)

)
= lim

t→0
t2−α

(
Iζ0+(

d

dt
(tℓ−1Qℓ(t)κ0)) + Iζ0+(t

ℓ−1Qℓ(t)κ1)

)
= lim

t→0
t2−αIζ0+

(
(ℓ− 1)tℓ−2Qℓ(t)κ0 + t2ℓ−2

∫ ∞

0

ℓ2ϑ2Mℓ(ϑ)C(tℓϑ)κ0dϑ+ tℓ−1Qℓ(t)κ1

)
= lim

t→0
t2−α(ℓ− 1)

∫ t

0

∫ ∞

0

gζ(t− s)sℓ−2ℓϑMℓ(ϑ)S(sℓϑ)κ0dϑds

+ lim
t→0

t2−α

∫ t

0

∫ ∞

0

gζ(t− s)s2ℓ−2ℓ2ϑ2Mℓ(ϑ)C(sℓϑ)κ0dϑds

+ lim
t→0

t2−α

∫ t

0

∫ ∞

0

gζ(t− s)sℓ−1ℓϑMℓ(ϑ)S(sℓϑ)κ1dϑds

= lim
t→0

t2−αtζ+ℓ−2(ℓ− 1)

∫ 1

0

∫ ∞

0

gζ(1− s)sℓ−2ℓϑMℓ(ϑ)S((ts)ℓϑ)κ0dϑds

+ lim
t→0

t2−αtζ+ℓ−2

∫ 1

0

∫ ∞

0

gζ(1− s)s2ℓ−2ℓ2ϑ2Mℓ(ϑ)C((ts)ℓϑ)κ0dϑds

+ lim
t→0

t2−αtζ+ℓ−1

∫ 1

0

∫ ∞

0

gζ(1− s)sℓ−1ℓϑMℓ(ϑ)S((ts)ℓϑ)κ1dϑds

=
κ0

Γ(ζ + 2ℓ− 1)
.
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Employing the previously given equation and Lemma 2.17, we can get the following findings, when t1 = 0 and
t2 ∈ (0, b]:

E

∥∥∥∥(Ψ1z)(t2)− (Ψ1z)(0)

∥∥∥∥2 = E

∥∥∥∥t2−α
2 (Λ1κ)(t2)−

κ0

Γ(ζ + 2ℓ− 1)

∥∥∥∥2
≤ 2E

∥∥∥∥t2−α
2 t

ζ+ℓ−2
2 (ℓ− 1)

∫ 1

0

∫ ∞

0

gζ(1− s)sℓ−2ℓϑMℓ(ϑ)S((t2s)ℓϑ)κ0dϑds

+ t2−α
2 t

ζ+ℓ−2
2

∫ 1

0

∫ ∞

0

gζ(1− s)s2ℓ−2ℓ2ϑ2Mℓ(ϑ)C((t2s)ℓϑ)κ0dϑds−
κ0

Γ(ζ + 2ℓ− 1)

∥∥∥∥2
+ 2E

∥∥∥∥t2−α
2 t

ζ+ℓ−1
2

∫ 1

0

∫ ∞

0

gζ(1− s)sℓ−1ℓϑMℓ(ϑ)S((t2s)ℓϑ)κ1dϑds

∥∥∥∥2
→ 0, as t2 → 0.

For any 0 < t1 < t2 ≤ b, we can apply Cr-inequality, we obtain

E

∥∥∥∥(Ψ1z)(t2)− (Ψ1z)(t1)

∥∥∥∥2 = E

∥∥∥∥t2−α
2 (Λ1κ)(t2)− t2−α

1 (Λ1κ)(t1)
∥∥∥∥2

= E

∥∥∥∥t2−α
2

[
RLD1−ζ

0+ (tℓ−1
2 Qℓ(t2)κ0) + Iζ0+(t

ℓ−1
2 Qℓ(t2)κ1)

]
− t2−α

1

[
RLD1−ζ

0+ (tℓ−1
1 Qℓ(t1)κ0) + Iζ0+(t

ℓ−1
1 Qℓ(t1)κ1)

]∥∥∥∥2
≤ 2E

∥∥∥∥t2−α
2 (RLD1−ζ

0+ (tℓ−1
2 Qℓ(t2)κ0))− t2−α

1 (RLD1−ζ
0+ (tℓ−1

1 Qℓ(t1)κ0))

∥∥∥∥2
+ 2E

∥∥∥∥t2−α
2 Iζ0+(t

ℓ−1
2 Qℓ(t2)κ1)− t2−α

1 Iζ0+(t
ℓ−1
1 Qℓ(t1)κ1)

∥∥∥∥2
= 2I1 + 2I2,

where

I1 = E

∥∥∥∥t2−α
2 (RLD1−ζ

0+ (tℓ−1
2 Qℓ(t2)κ0))− t2−α

1 (RLD1−ζ
0+ (tℓ−1

1 Qℓ(t1)κ0))

∥∥∥∥2,
I2 = E

∥∥∥∥t2−α
2 Iζ0+(t

ℓ−1
2 Qℓ(t2)κ1)− t2−α

1 Iζ0+(t
ℓ−1
1 Qℓ(t1)κ1)

∥∥∥∥2.
By applying the Lemma 2.17, we obtain

I1 ≤ 2E

∥∥∥∥t2−α
2 (RLD1−ζ

0+ (tℓ−1
2 Qℓ(t2)κ0))− t2−α

1 (RLD1−ζ
0+ (tℓ−1

2 Qℓ(t2)κ0))

∥∥∥∥2
+ 2E

∥∥∥∥t2−α
1 (RLD1−ζ

0+ (tℓ−1
2 Qℓ(t2)κ0))− t2−α

1 (RLD1−ζ
0+ (tℓ−1

1 Qℓ(t1)κ0))

∥∥∥∥2
= 2

∣∣∣∣t2−α
2 − t2−α

1

∣∣∣∣E∥∥∥∥RLD1−ζ
0+ (tℓ−1

2 Qℓ(t2)κ0)

∥∥∥∥2
+ 2t

2(2−α)
1 E

∥∥∥∥RLD1−ζ
0+ (tℓ−1

2 Qℓ(t2)κ0)− RLD1−ζ
0+ (tℓ−1

1 Qℓ(t1)κ0)

∥∥∥∥2
= I11 + 2t

2(2−α)
1 I12.
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We can observe that I11 → 0 as t2 → t1. According to Remark 2.16, we can derive

E

∥∥∥∥RLD1−ζ
0+ (tℓ−1

2 Qℓ(t2)κ0)− RLD1−ζ
0+ (tℓ−1

1 Qℓ(t1)κ0)

∥∥∥∥2
= E

∥∥∥∥CD1−ζ
0+ (tℓ−1

2 Qℓ(t2)κ0)− CD1−ζ
0+ (tℓ−1

1 Qℓ(t1)κ0)

∥∥∥∥2
= E

∥∥∥∥Iζ0+( d

dt2
(tℓ−1

2 Qℓ(t2)κ0)

)
− Iζ0+

(
d

dt1
(tℓ−1

1 Qℓ(t1)κ0)

)∥∥∥∥2
= E

∥∥∥∥∫ t2

0

gζ(t2 − s)
d

ds
(sℓ−1Qℓ(s)κ0)ds−

∫ t1

0

gζ(t1 − s)
d

ds
(sℓ−1Qℓ(s)κ0)ds

∥∥∥∥2
≤ 2E

∥∥∥∥∫ t2

t1

gζ(t2 − s)
d

ds
(sℓ−1Qℓ(s)κ0)ds

∥∥∥∥2
+ 2E

∥∥∥∥∫ t1

0

(gζ(t2 − s)− gζ(t1 − s))
d

ds
(sℓ−1Qℓ(s)κ0)ds

∥∥∥∥2.
These results could be obtained by using Lemma 2.16:

E

∥∥∥∥∫ t2

t1

gζ(t2 − s)
d

ds
(sℓ−1Qℓ(s)κ0)ds

∥∥∥∥2 ≤
(

M

Γ(2ℓ)

)2

E

∥∥∥∥∫ t2

t1

gζ(t2 − s)s2ℓ−2κ0ds

∥∥∥∥2
≤

(
Mtℓ−2

1

Γ(2ℓ)Γ(ζ)

)2(∫ t2

t1

(t2 − s)ζ−1ds

)2

E∥κ0∥2

=

(
Mtℓ−2

1

Γ(2ℓ)Γ(ζ + 1)

)2

(t2 − t1)
2ζE∥κ0∥2 → 0, as t2 → t1.

Noting that

((t2 − s)ζ−1 − (t1 − s)ζ−1)s2ℓ−2 ≤ (t2 − s)ζ−1s2ℓ−2, for a.e. s ∈ [0, t1).

Afterwards, applying Lemma 2.16 and Lebesgue’s dominated convergence theorem, we demonstrate

E

∥∥∥∥∫ t1

0

(gζ(t2 − s)− gζ(t1 − s))
d

ds
(sℓ−1Qℓ(s)κ0)ds

∥∥∥∥2
≤

(
M

Γ(ζ)Γ(2ℓ)

)2

E

∥∥∥∥∫ t1

0

((t2 − s)ζ−1 − (t1 − s)ζ−1)s2ℓ−2κ0ds

∥∥∥∥2 → 0, as t2 → t1.

This implies that

I12 = E

∥∥∥∥RLD1−ζ
0+ (tℓ−1

2 Qℓ(t2)κ0)− RLD1−ζ
0+ (tℓ−1

1 Qℓ(t1)κ0)

∥∥∥∥2 → 0, as t2 → t1.

Thus, by I11 → 0 and I12 → 0 as t2 → t1, we derive

I1 = E

∥∥∥∥t2−α
2 (RLD1−ζ

0+ (tℓ−1
2 Qℓ(t2)κ0))− t2−α

1 (RLD1−ζ
0+ (tℓ−1

1 Qℓ(t1)κ0))

∥∥∥∥2 → 0, as t2 → t1.

Using similar methods for I1 → 0 as t2 → t1, we can obtain the following result:

I2 = E∥t2−α
2 Iζ0+(t

ℓ−1
2 Qℓ(t2)κ1)− t2−α

1 Iζ0+(t
ℓ−1
1 Qℓ(t1)κ1)∥2 → 0, as t2 → t1.

Therefore, we get

E∥(Ψ1z)(t2)− (Ψ1z)(t1)∥2 → 0, as t2 → t1.

Following the above described analysis, we may infer that the set {e : e(t) = (Ψ1z)(t) : z ∈ Bq} is equicontinuous.
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Part 2 : {e : e(t) = (Ψ2z)(t) : z ∈ Bq} is equicontinuous.
Based on Lemma 2.15, Equation (2.1), (A1) − (A2), and Hölder’s inequality, given that t1 = 0, 0 < t2 ≤ b, we
acquire

E∥(Ψ2z)(t2)− (Ψ2z)(0)∥2 ≤ 3E

∥∥∥∥t2−α
2

∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)Buϵ
κ(s)ds

∥∥∥∥2
+ 3E

∥∥∥∥t2−α
2

∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)f(s,κ(s))ds
∥∥∥∥2

+ 3E

∥∥∥∥t2−α
2

∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)h(s,κ(s))dW(s)
∥∥∥∥2

≤ 3

(
MMBt

2−α+ℓ
2

Γ(2ℓ)

)2
1

2ℓ

∫ t2

0

(t2 − s)2ℓ−1E∥uϵ
κ(s)∥2ds

+ 3

(
Mt2−α+ℓ

2

Γ(2ℓ)

)2
1

2ℓ

∫ t2

0

(t2 − s)2ℓ−1m1(s)Θ1(∥κ∥2C )ds

+ 3

(
Mt2−α

2

Γ(2ℓ)

)2

Tr(Q)

∫ t2

0

(t2 − s)2(2ℓ−1)m2(s)Θ2(∥κ∥2C )ds → 0, as t2 → 0.

When 0 < t1 < t2 ≤ b, we obtain

E∥(Ψ2z)(t2)− (Ψ2z)(t1)∥2 ≤ 3E

∥∥∥∥t2−α
2

∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)Buϵ
κ(s)ds− t2−α

1

∫ t1

0

(t1 − s)ℓ−1Qℓ(t1 − s)Buϵ
κ(s)ds

∥∥∥∥2
+ 3E

∥∥∥∥t2−α
2

∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)f(s,κ(s))ds

− t2−α
1

∫ t1

0

(t1 − s)ℓ−1Qℓ(t1 − s)f(s,κ(s))ds
∥∥∥∥2

+ 3E

∥∥∥∥t2−α
2

∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)h(s,κ(s))dW(s)

− t2−α
1

∫ t1

0

(t1 − s)ℓ−1Qℓ(t1 − s)h(s,κ(s))dW(s)
∥∥∥∥2

= 3J1 + 3J2 + 3J3,

where

J1 = E

∥∥∥∥t2−α
2

∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)Buϵ
κ(s)ds− t2−α

1

∫ t1

0

(t1 − s)ℓ−1Qℓ(t1 − s)Buϵ
κ(s)ds

∥∥∥∥2,
J2 = E

∥∥∥∥t2−α
2

∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)f(s,κ(s))ds

− t2−α
1

∫ t1

0

(t1 − s)ℓ−1Qℓ(t1 − s)f(s,κ(s))ds
∥∥∥∥2,

J3 = E

∥∥∥∥t2−α
2

∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)h(s,κ(s))dW(s)

− t2−α
1

∫ t1

0

(t1 − s)ℓ−1Qℓ(t1 − s)h(s,κ(s))dW(s)
∥∥∥∥2.

Next, we prove J3 → 0 as t2 → t1, according to Lemma 2.17 and 2.15, obtaining

J3 ≤ 3E

∥∥∥∥t2−α
1

∫ t2

t1

(t2 − s)ℓ−1Qℓ(t2 − s)h(s,κ(s))dW(s)
∥∥∥∥2
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+ 3E

∥∥∥∥t2−α
1

∫ t1

0

(
(t2 − s)ℓ−1Qℓ(t2 − s)− (t1 − s)ℓ−1Qℓ(t1 − s)

)
h(s,κ(s))dW(s)

∥∥∥∥2
+ 3

(
t2−α
2 − t2−α

1

)2

E

∥∥∥∥∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)h(s,κ(s))dW(s)
∥∥∥∥2

≤ 3
3∑

i=1

J3i,

where

J31 =

(
Mt2−α

1

Γ(2ℓ)

)2

Tr(Q)

(∫ t2

0

(t2 − s)2(2ℓ−1)m2(s)Θ2(∥κ∥2C )ds−
∫ t1

0

(t2 − s)2(2ℓ−1)m2(s)Θ2(∥κ∥2C )ds

)
,

J32 = t
2(2−α)
1 E

∥∥∥∥∫ t1

0

(
(t2 − s)ℓ−1Qℓ(t2 − s)− (t1 − s)ℓ−1Qℓ(t1 − s)

)
h(s,κ(s))dW(s)

∥∥∥∥2,
J33 =

(
t2−α
2 − t2−α

1

)2

E

∥∥∥∥∫ t2

0

(t2 − s)ℓ−1Qℓ(t2 − s)h(s,κ(s))dW(s)
∥∥∥∥2.

We can deduce that limt2→t1 J31 = 0 and limt2→t1 J33 = 0. Then,

J32 = t
2(2−α)
1 E

∥∥∥∥∫ t1

0

∫ t2−s

t1−s

d

dt

{
tℓ−1Qℓ(t)h(s,κ(s))

}
dtdW(s)

∥∥∥∥2.
Moreover, Lemma 2.15 and Equation (2.1) implies that

J32 ≤ t
2(2−α)
1 E

∥∥∥∥ M

Γ(2ℓ)

∫ t1

0

∫ t2−s

t1−s

t2ℓ−2h(s,κ(s))dW(s)
∥∥∥∥2

≤
(

Mt2−α

(2ℓ− 1)Γ(2ℓ)

)2

Tr(Q)

∫ t1

0

(
(t2 − s)2ℓ−1 − (t1 − s)2ℓ−1

)2

m2(s)Θ2(∥κ∥2C )ds → 0, as t2 → t1.

Hence J3 → 0 as t2 → t1. Thus, we can prove J1 → 0 and J2 → 0 as t2 → t1 in a way similar to J3 → 0.
Consequently,

E∥(Ψ2z)(t2)− (Ψ2z)(t1)∥2 → 0, as t2 → t1.

According to the above analysis, lim
t2→t1

∥(Ψ2z)(t2) − (Ψ2z)(t1)∥ → 0 for t1, t2 ∈ [0, b]; therefore, T = {e : e(t) =

(Ψ2z)(t), z ∈ Bq} is equicontinuous.
Step 4 : We demonstrate that the Mönch’s condition is satisfied.
Let Ψ = Ψ1 +Ψ2 +Ψ3 +Ψ4, where

Ψ1z(t) = t2−αRLD1−ζ
0+ (tℓ−1Qℓ(t)κ0) + t2−αIζ0+(t

ℓ−1Qℓ(t)κ1),

Ψ2z(t) = t2−α

∫ t

0

(t− s)ℓ−1Qℓ(t− s)Buϵ
κm(s)ds,

Ψ3z(t) = t2−α

∫ t

0

(t− s)ℓ−1Qℓ(t− s)f(s,κm(s))ds,

Ψ4z(t) = t2−α

∫ t

0

(t− s)ℓ−1Qℓ(t− s)h(s,κm(s))dW(s).

Assume thatM ⊂ Bq is countable andM ⊂ co({0}∪Ψ(M)). We show that χ(M) = 0, where χ is the Kuratowski mea-
sure of noncompactness. We could say that M = {zm}∞m=1 without losing generality. Therefore Ψ(M) = {Ψzm}∞m=1

and its relative compactness implies that M is also relatively compact. It is clear that Ψ(M) is equicontinuous on P.
Utilizing, Lemma 2.8 and 2.15, (A1)(iii), and (A2)(iii), we derive

χ({zm(t)}∞m=0) = χ(z0(t) ∪ {zm(t)}∞m=1) = χ({zm(t)}∞m=1).
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χ({Ψ2z
m(t)}∞m=1) ≤ χ{t2−α

∫ t

0

(t− s)ℓ−1Qℓ(t− s)Buϵ
κm(s)ds}

≤ 2MMBt
2−α

Γ(β)

∫ t

0

(t− s)2ℓ−1χ

{
uϵ
κm(s)

}∞

m=1

ds

≤ 2b2−α+3ℓ

3ℓ

(
MMB

ϵ
1
2Γ(β)

)2[
2M

Γ(β)

∫ b

0

(b− s)β−1η1(s)ds

+
M

Γ(β)

(
2Tr(Q)

∫ b

0

(b− s)2(β−1)η22(s)ds

) 1
2
]
sup
℘∈P

χ({zm(℘)})∞m=1,

where

χ{uϵ
κm(s)}∞m=1 ≤ MMB(b− t)ℓ

ϵΓ(2ℓ)
χ

{
Eκ̃b +

∫ b

0

ϕ̃(s)dW(s)− RLD1−ζ
0+ (bℓ−1Qℓ(b)κ0)

− Iζ0+(b
ℓ−1Qℓ(b)κ1)−

∫ b

0

(b− s)ℓ−1Qℓ(b− s)f(s,κm(s))ds

−
∫ b

0

(b− s)ℓ−1Qℓ(b− s)h(s,κm(s))dW(s)

}∞

m=1

≤ MMB(b− t)ℓ

ϵΓ(2ℓ)

[
2M

Γ(β)

∫ b

0

(b− s)β−1η1(s)ds · sup
℘∈P

χ({zm(℘)})∞m=1

+
M

Γ(β)

(
2Tr(Q)

∫ b

0

(b− s)2(β−1)η22(s)ds

) 1
2

· sup
℘∈P

χ({zm(℘)})∞m=1

]
≤ MMB(b− t)ℓ

ϵΓ(2ℓ)

[
2M

Γ(β)

∫ b

0

(b− s)β−1η1(s)ds

+
M

Γ(β)

(
2Tr(Q)

∫ b

0

(b− s)2(β−1)η22(s)ds

) 1
2
]
sup
℘∈P

χ({zm(℘)})∞m=1.

χ({Ψ3z
m(t)}∞m=1) ≤ χ

{
t2−α

∫ t

0

(t− s)ℓ−1Qℓ(t− s)f(s,κm(s))ds

}∞

m=1

≤ t2−α 2M

Γ(β)

∫ t

0

(t− s)β−1χ(f(s, {sα−2zm(s)}∞m=1))ds

≤ t2−α 2M

Γ(β)

∫ t

0

(t− s)β−1η1(s)s
2−αχ({sα−2zm(s)}∞m=1)ds

≤ 2Mb2−α

Γ(β)

∫ b

0

(b− s)β−1η1(s)ds · sup
℘∈P

χ({zm(℘)})∞m=1.

χ(Ψ4z
m(t)}∞m=1) ≤ χ

{
t2−α

∫ t

0

(t− s)ℓ−1Qℓ(t− s)h(s,κm(s))dW(s)

}∞

m=1

≤ Mt2−α

Γ(β)

(
2Tr(Q)

∫ t

0

(t− s)2(β−1)[χ(h(s, {sα−2zm(s)}∞m=1))]
2ds

) 1
2

≤ Mt2−α

Γ(β)

(
2Tr(Q)

∫ t

0

(t− s)2(β−1)η22(s)s
2(2−α)[χ({sα−2zm(s)}∞m=1)]

2ds

) 1
2

≤ Mb2−α

Γ(β)

(
2Tr(Q)

∫ b

0

(b− s)2(β−1)η22(s)ds

) 1
2

· sup
℘∈P

χ({zm(℘)})∞m=1.
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Thus, we have

χ({Ψzm(t)}∞m=1) ≤ χ({Ψ1z
m(t)}∞m=1) + χ({Ψ2z

m(t)}∞m=1) + χ({Ψ3z
m(t)}∞m=1) + χ({Ψ4z

m(t)}∞m=1)

≤ 2b2−α+3ℓ

3ℓ

(
MMB

ϵ
1
2Γ(β)

)2[
2M

Γ(β)

∫ b

0

(b− s)β−1η1(s)ds

+
M

Γ(β)

(
2Tr(Q)

∫ b

0

(b− s)2(β−1)η22(s)ds

) 1
2
]
sup
℘∈P

χ({zm(℘)})∞m=1

+
2Mb2−α

Γ(β)

∫ b

0

(b− s)β−1η1(s)ds · sup
℘∈P

χ({zm(℘)})∞m=1

+
Mb2−α

Γ(β)

(
2Tr(Q)

∫ b

0

(b− s)2(β−1)η22(s)ds

) 1
2

· sup
℘∈P

χ({zm(℘)})∞m=1

≤ 2b3ℓ

3ℓ

(
MMB

ϵ
1
2Γ(β)

)2[
2Mb2−α

Γ(β)

∫ b

0

(b− s)β−1η1(s)ds

+
Mb2−α

Γ(β)

(
2Tr(Q)

∫ b

0

(b− s)2(β−1)η22(s)ds

) 1
2
]
sup
℘∈P

χ({zm(℘)})∞m=1

+

[
2Mb2−α

Γ(β)

∫ b

0

(b− s)β−1η1(s)ds

+
Mb2−α

Γ(β)

(
2Tr(Q)

∫ b

0

(b− s)2(β−1)η22(s)ds

) 1
2
]
sup
℘∈P

χ({zm(℘)})∞m=1

≤
(
2b3ℓ

3ℓ

(
MMB

ϵ
1
2Γ(β)

)2

+ 1

)[
2Mb2−α

Γ(β)

∫ b

0

(b− s)β−1η1(s)ds

+
Mb2−α

Γ(β)

(
2Tr(Q)

∫ b

0

(b− s)2(β−1)η22(s)ds

) 1
2
]
sup
℘∈P

χ({zm(℘)})∞m=1

≤ K∗ sup
℘∈P

χ({zm(℘)})∞m=1.

Therefore, from the Mönch’s condition, we get

χ(M) ≤ χ(co{0} ∪Ψ(M)) = χ(ΨM) ≤ K∗χ(M).

Since K∗ < 1, we get χ(M) = 0. As a result, M is relatively compact. We may determine that Ψ has a fixed point z
in M by using Lemma 2.20. The proof is concluded. □

Theorem 3.3. Assume (A1) − (A2) are fulfilled. Furthermore, the control system Eq. (1.1) is approximately con-
trollable on P provided the functions f and h are uniformly bounded.

Proof. For each Ψ in Bq, consider κϵ(·) to become a fixed point. Utilizing the stochastic Fubini theorem, it is easy to
see that

κϵ(b) = κ̃b − ϵ(ϵI + Γb
0)

−1

{
Eκ̃b +

∫ b

0

ϕ̃(s)dW(s)− RLD1−ζ
0+ (bℓ−1Qℓ(b)κ0)

− Iζ0+(b
ℓ−1Qℓ(b)κ1)−

∫ b

0

(b− s)ℓ−1Qℓ(b− s)f(s,κϵ(s))ds

−
∫ b

0

(b− s)ℓ−1Qℓ(b− s)h(s,κϵ(s))dW(s)

}
.

(3.6)
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By the assumptions on f and h, we get the sequences {f(s,κϵ(s))} and h(s,κϵ(s)) are uniformly bounded on P. The
subsequences represented by {f(s,κϵ(s))} and h(s,κϵ(s)) that weakly converge to f(s) and h(s). From the above
equation, we have

E∥κϵ(b)− κ̃b∥2 ≤ 6E

∥∥∥∥ϵ(ϵI + Γb
0)

−1

(
Eκ̃b − RLD1−ζ

0+ (bℓ−1Qℓ(b)κ0)− Iζ0+(b
ℓ−1Qℓ(b)κ1)

)∥∥∥∥2
+ 6E

(∫ b

0

∥∥∥∥ϵ(ϵI + Γb
0)

−1ϕ̃(s)

∥∥∥∥2
L0

2

ds

)

+ 6E

(∫ b

0

(b− s)ℓ−1

∥∥∥∥ϵ(ϵI + Γb
0)

−1Qℓ(b− s)[f(s,κϵ(s))− f(s)]

∥∥∥∥ds)2

+ 6E

(∫ b

0

(b− s)ℓ−1

∥∥∥∥ϵ(ϵI + Γb
0)

−1Qℓ(b− s)f(s)

∥∥∥∥ds)2

+ 6E

(∫ b

0

(b− s)ℓ−1

∥∥∥∥ϵ(ϵI + Γb
0)

−1Qℓ(b− s)[h(s,κϵ(s))− h(s)]

∥∥∥∥2
L0

2

ds

)

+ 6E

(∫ b

0

(b− s)ℓ−1

∥∥∥∥ϵ(ϵI + Γb
0)

−1Qℓ(b− s)h(s)

∥∥∥∥2
L0

2

ds

)
.

For all t ∈ [0, b], the operator ϵ(ϵI + Γb
0)

−1 → 0 strongly as ϵ → 0+ and ∥ϵ(ϵI + Γb
0)

−1∥ ≤ 1. Thus, by the Lebesgue’s
dominated convergence theorem, we obtain E∥κϵ(b) − κ̃b∥2 → 0 as ϵ → 0+. This demonstrates that the system
Eq. (1.1) is approximately controllable. □

4. Example

Consider the following equation
∂β,ℑ
t κ(t, z) = ∂2

zκ(t, z) +Bu(t, z) + f1(t,κ(t, z)) + h1(t,κ(t, z))dW(t)dt , t ∈ (0, b], z ∈ [0, π],

κ(t, 0) = κ(t, π) = 0, t ∈ (0, b],

(I2−γ
0+ κ)(0, z) = κ0(z), (I2−γ

0+ κ)′(0, z) = κ1(z), z ∈ [0, π],

(4.1)

where ∂β,ℑ
t represents the Hilfer fractional partial derivative of order β ∈ (1, 2), ℑ ∈ [0, 1], α = β + ℑ(2 −

β), f1(t,κ(t, z)), h1(t,κ(t, z)) fulfill (A1) and (A2), respectively.

Let Z = L2([0, π]) and definedA fulfillsAκ = d2

dt2κ, D(A) = {κ ∈ Z : κ(0) = κ(π) = 0;κ′′ ∈ Z; κ′,κ′′ are absolutely continuous}.
Furthermore, A is an infinitesimal generator of a strongly continuous cosine family {C(t)}t≤0 that is uniformly bounded.

Let Λm(z) =
√

2
π sin(mπz), indicating that −m2, m ∈ N are eigenvalues of A, and that {Λm}∞m=1 is an orthonormal

basis of Z. Then,

Aκ = −
∞∑

m=1

m2⟨κ,Λm⟩Λm, κ ∈ D(A);

where the inner product in Z is denoted by ⟨·, ·⟩. Based on [23], we may get

C(t)κ =
∞∑

m=1

cos(mπt)⟨κ,Λm⟩Λm, S(t)κ =
∞∑

m=1

1

m
sin(mπt)⟨κ,Λm⟩Λm, κ ∈ Z.

Describe an infinite-dimensional space U by

U =

{
u =

∞∑
m=2

umΛm(z)

∣∣∣∣ ∞∑
m=2

u2
m < ∞

}
.
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Then, norm in U is specified by ∥u∥ =

( ∞∑
m=2

u2
m

) 1
2

. Define a linear operator B : U → Z by

(Bu)(z) = 2u2Λ1(z) +
∞∑

m=2

unΛn(z), for u =
∞∑

m=2

unΛn(z) ∈ U.

According to [32], we get

Qℓ(t)κ =
∞∑

m=1

tℓEβ,β(−m2tβ)⟨κ,Λm⟩Λm, ℓ =
β

2
,

where Eβ,β(z) =
∞∑

m=0

zm

Γ(β(m+1)) represents the Mittag-Leffler function. Let κ(t)z = κ(t, z). Therefore, the problem

Eq. (4.1) can be written in the abstract form of problem Eq. (1.1) in Z. As a result, all the conditions of Theorem
3.3 are fulfilled. Therefore, Eq. (4.1) is approximately controllable on P.

5. Conclusion

In this work, we discussed the approximate controllability of Hilfer fractional stochastic evolution equations of order
β ∈ (1, 2) and type [0, 1]. The Kuratowski measure of noncompactness, the fixed point approach, and the results and
concepts from fractional calculus are applied to establish the main conclusions. In particular, for f(t, ·) and h(t, ·),
the Lipschitz condition does not need to be satisfied. To illustrate the importance of our main results, an example
was given at the end. The approximate controllability of Sobolev-type Hilfer fractional stochastic evolution equations
with infinite delay of order β ∈ (1, 2) will be investigated in the future.
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