| تعداد نشریات | 45 |
| تعداد شمارهها | 1,433 |
| تعداد مقالات | 17,642 |
| تعداد مشاهده مقاله | 57,428,493 |
| تعداد دریافت فایل اصل مقاله | 19,181,758 |
تحلیل محاسباتی جداسازی سلولهای تومور در گردش در یک دستگاه میکروسیال با استفاده از تکنیک مبتنی بر الکتروکینتیک | ||
| مهندسی مکانیک دانشگاه تبریز | ||
| دوره 55، شماره 4 - شماره پیاپی 113، بهمن 1404، صفحه 101-109 اصل مقاله (984.05 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/jmeut.2025.66366.3532 | ||
| نویسندگان | ||
| رضا حاجی آقائی وفائی* 1؛ الناز پوررضا2 | ||
| 1دانشیار، دانشکده مهندسی برق، دانشگاه بناب، بناب، ایران | ||
| 2استادیار، دانشکده مهندسی برق، دانشگاه آزاد اسلامی، واحد ارس، جلفا، ایران | ||
| چکیده | ||
| تحلیل سلولی سرطان بهعنوان یک روش تحقیقاتی مهم برای پایش پیشرفت سرطان در مراحل مختلف، با اندازهگیری تراکم سلولهای تومور در گردش موجود در جریان خون، شناخته میشود. در میان طیف وسیعی از تکنیکهای میکروسیال معاصر، دیالکتروفورز (DEP) که بهعنوان یک پدیده الکتروکینتیک و یک روش تشخیص بدون برچسب شناخته میشود، مورد توجه ویژه پژوهشگران این حوزه قرار گرفته است. در این مطالعه، یک دستگاه میکروسیال مجهز به الکترودهای مثلثی شکل که با ولتاژ پایین حدود ۱ ولت کار میکند، پیشنهاد شده است که هدف آن جداسازی سلولهای تومور در گردش از زیرگروههای مختلف سلولهای سفید خون (WBCs) است. استفاده از ولتاژ پایین برای حفظ زیستپذیری سلولهای بیولوژیکی ضروری است، موضوعی که در کاربردهای پزشکی از اهمیت بالایی برخوردار است. در ادامه، از طریق یک تحلیل محاسباتی با استفاده از روش المان محدود، پروفایلهای پتانسیل الکتریکی، مسیر حرکت ذرات سلولی و نیروهای DEP اعمالشده بر این سلولها بهصورت شبیهسازیشده مورد بررسی قرار گرفتند. تاثیر تغییرات ولتاژ اعمالی بر الکترودهای میکرو کانال بر جداسازی سلولی، با شبیه سازی، مورد تجزیه و تحلیل قرار گرفتند. | ||
| کلیدواژهها | ||
| الکتروکینتیک؛ مکانیک سیالات؛ جداسازی دیالکتروفورزیز؛ میکروسیال؛ میدان الکتریکی | ||
| مراجع | ||
|
[1] Bakhshi MS, Rizwan M, Khan GJ, Duan H, Zhai K: Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells. Scientific Reports, 12(1), 2022: 17016. [2] Najafipour I, Sadeh P, Amani AM, Kamyab H, Chelliapan S, Rajendran S, Peñaherrera-Pazmiño AB, Jamalpour S: Dielectrophoresis-based Microfluidics for Detection and Separation of Circulating Tumor Cells. Sensors and Actuators Reports 2025:100304. [3] Jiang J, Cui X, Huang Y, Yan D, Wang B, Yang Z, Chen M, Wang J, Zhang Y, Liu G: Advances and Prospects in Integrated Nano-oncology. Nano Biomedicine & Engineering 2024, 16(2). [4] Chen M, Lin S, Zhou C, Cui D, Haick H, Tang N: From conventional to microfluidic: progress in extracellular vesicle separation and individual characterization. Advanced Healthcare Materials, 12(8) 2023: 2202437. [5] Tang H, Niu J, Pan X, Jin H, Lin S, Cui D: Topology optimization based deterministic lateral displacement array design for cell separation. Journal of Chromatography A, 1679, 2022: 463384. [6] Wang J, Cui X, Wang W, Wang J, Zhang Q, Guo X, Liang Y, Lin S, Chu B, Cui D: Microfluidic-based electrically driven particle manipulation techniques for biomedical applications. RSC advances, 15(1) 2025:167-198. [7] Nikiforov A, Lazareva E, Edemskaya E, Semenov V, Gareev K, Korolev D: Microfluidic synthesis of magnetite nanoparticles and its comparison with synthesis in a batch reactor. Colloid Journal, 86(4), 2024: 547-558. [8] Malick A, Barman B: Electroosmotic Flow Modulation through Soft Nanochannel Filled with Power-law Fluid under Impacts of Ion Steric and Ion Partitioning Effects. Colloid Journal, 86(4) 2024: 610-626. [9] Nguyen TH, Nguyen HT, Ngo NA, Nguyen MC, Bui Thu H, Ducrée J, Chu Duc T, Bui TT, Do Quang L: Numerical study on a facing electrode configuration dielectrophoresis microfluidic system for efficient biological cell separation. Scientific Reports, 14(1) 2024: 27627. [10] Poorreza E: Computer-Assisted Modeling and Simulation of a Dielectrophoresis-based Microseparator for Blood Cells Separation Applications. Chromatographia 2025:1-18. [11] Hoang B-A, Thanh HT, Nguyen T-H, Ngoc TP, Thu HB, Hoang NN, Bui TT, Duc TC, Do Quang L: Design and numerical study on a microfluidic system for circulating tumor cells separation from whole blood using magnetophoresis and dielectrophoresis techniques. Biochemical Engineering Journal, 186, 2022: 108551. [12] Farahinia A, Zhang W, Badea I: Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review. Journal of Science: Advanced Materials and Devices, 6(3), 2021: 303-320. [13] Khashan S, Odhah AA, Taha M, Alazzam A, Al-Fandi M: Enhanced microfluidic multi-target separation by positive and negative magnetophoresis. Scientific Reports 2024, 14(1):13293. [14] Asgharivaskasi R, Mashayekhi V, Nazari M, Zareian-Jahromi E: Magnetic particle separation using current-carrying plates: a novel geometry in magnetophoresis. Sensors and Actuators A: Physical, 365, 2024: 114897. [15] Bogatyr V, Biebricher AS, Bergamaschi G, Peterman EJ, Wuite GJ: Quantitative acoustophoresis. ACS Nanoscience Au, 2(4), 2022: 341-354. [16] Poorreza E, Vafaie RH, Mehdipoor M, Pourmand A, Ghavifekr HB: Microseparator based-on 4-phase travelling wave dielectrophoresis for lab-on-a-chip applications. 2013. [17] Lerner M, Bakina O, Kazantsev S, Glazkova E, Svarovskaya N: Silver-Containing bicomponent nanoparticles: Relationship between morphology and electrokinetic potential. Colloid Journal, 85(4), 2023: 520-530. [18] Sherif S, Ghallab YH, Ismail Y: Comprehensive characterization of a microfluidic platform for DEP manipulation and bio-impedance detection using multi-sized polystyrene microbeads. Microfluidics and Nanofluidics, 29(2), 2025:11. [19] Bangaru AVB, Williams SJ: Numerical Simulation Noise and Its Significant Impact on the Dielectrophoretic Motion of Particles Near the Electrode Edges. Electrophoresis 2025. [20] Li H, Bashir R: Dielectrophoretic orientation, manipulation and separation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. MRS Online Proceedings Library (OPL) 2002, 729:U4. 7. [21] Gascoyne P, Mahidol C, Ruchirawat M, Satayavivad J, Watcharasit P, Becker FF: Microsample preparation by dielectrophoresis: isolation of malaria. Lab on a Chip 2002, 2(2):70-75. [22] Jiang L, Liang F, Huo M, Ju M, Xu J, Ju S, Jin L, Shen B: Study on three-dimensional dielectrophoresis microfluidic chip for separation and enrichment of circulating tumor cells. Microelectronic Engineering, 282, 2023:112100. [23] Valijam S, Salehi A, Andersson M: Design of a low-voltage dielectrophoresis lab-on-the chip to separate tumor and blood cells. Microfluidics and Nanofluidics, 2023, 27(3):22. [24] Uddin MR, Chen X: Enhancing cell separation in a hybrid spiral dielectrophoretic microchannel: Numerical insights and optimal operating conditions. Biotechnology Progress 2024:e3437. [25] Basabe-Desmonts L, Ramstrom S, Meade G, O’neill S, Riaz A, Lee L, Ricco A, Kenny D: Single-step separation of platelets from whole blood coupled with digital quantification by interfacial platelet cytometry (iPC). Langmuir, 26(18), 2010:14700-14706. [26] Çetin B, Li D: Dielectrophoresis in microfluidics technology. Electrophoresis 2011, 32(18):2410-2427. [27] Zhang Y, Chen X: Blood cells separation microfluidic chip based on dielectrophoretic force. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2020, 42:1-11. [28] Turcan I, Olariu MA: Dielectrophoretic manipulation of cancer cells and their electrical characterization. ACS Combinatorial Science, 22(11), 2020:554-578. [29] Li Y, Wang Y, Pesch GR, Baune M, Du F, Liu X: Rational design and numerical analysis of a hybrid floating cIDE separator for continuous dielectrophoretic separation of microparticles at high throughput. Micromachines, 13(4), 2022:582. [30] Piacentini N, Mernier G, Tornay R, Renaud P: Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 2011, 5(3). [31] Park S, Zhang Y, Wang T-H, Yang S: Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab on a Chip, 11(17), 2011: 2893-2900. [32] Varmazyari V, Habibiyan H, Ghafoorifard H, Ebrahimi M, Ghafouri-Fard S: A dielectrophoresis-based microfluidic system having double-sided optimized 3D electrodes for label-free cancer cell separation with preserving cell viability. Scientific reports, 12(1), 2022:12100. [۳۳] پوررضا الف، داداش زاده گرگری ن، مدلسازی و شبیه سازی یک جداکننده مبتنی بر دی الکتروفورز ولتاژ پایین با متمرکزکننده های الکترودی برای جداسازی سلولهای خون. مهندسی مکانیک دانشگاه تبریز. (۲۰۲۵)۵۴(۴) ۲۹-۳۸ DOI .2025.63028.3451jmeut10.22034/ [۳۴] اطهری ح، نقیلو الف، امامی س، زینالی ح، عبدالهی و، ارتقا کیفیت اختلاط در ریز مخلوط کن های غیر فعال با بهره گیری از جانمایی بهینه موانع با داده های فازی، مهندسی مکانیک دانشگاه تبریز. 52(3) (2022) 299-308. DOI .2022.50737.3071jmeut10.22034/ | ||
|
آمار تعداد مشاهده مقاله: 19 تعداد دریافت فایل اصل مقاله: 5 |
||