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Abstract

The main emphasis in conjugate gradient methods is usually on the conjugate formula. This research introduces a

novel coefficient for the conjugate gradient approach, based on Perry’s conjugacy condition and a quadratic model,
aimed at addressing image restoration difficulties. The algorithms demonstrate global convergence and possess the

essential property of descent. The new approach showed a considerable enhancement through numerical experi-

mentation. It has been proven that the inventive conjugate gradient method performs superiorly compared to the
traditional FR conjugate gradient technique. The new method displayed a significant improvement through numer-

ical testing. It has been illustrated that the innovative conjugate gradient technique outperforms the conventional

FR conjugate gradient method.
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1. Introduction

Several large-scale nonlinear optimization problems have been shown to be effectively addressed by gradient ap-
proaches, a type of first-order methodology. Utilizing these methods is common in image processing applications,
[1].

Adaptive median filter and variational approach advantages are incorporated in a two-phase strategy in [2, 3]. For
salt-and-pepper noise, an adaptive median filter is used in the first stage [22]. Assume that A = {1, 2, 3, . . . ,M} ×
{1, 2, 3, . . . , N} is the X index set and that X is the actual image. The set of noise pixel indices discovered during the
first stage should be represented by N ⊂ A. Reducing the functional as much as feasible is now the difficulty.

fα(u) =
∑

(i,j)∈N

[
|ui,j − yi,j |+

β

2
(2× S1

i,j + S2
i,j)

]
(1.1)

An edge-preserving potential function φα =
√
α+ x2, α > 0 , a regularization parameter β, and

S1
i,j = 2

∑
(m,n)∈Pi,j∩Nc

φα(ui,j − ym,n),

S2
i,j =

∑
(m,n)∈Pi,j∩N

φα(ui,j − ym,n),

are used to increase a system’s accuracy. Let yi,j stand for the observed pixel value of the image at position (i, j),
ui,j = [ui,j ](i,j)∈N for a lexicographically organized column vector of length c and Pi,j for the collection of the four

closest neighbors of the pixel at location (i, j) ∈ A. c provides the number of elements in N. As shown in [3, 22],
the term U-Y in Equation (1.1) allows for the identification of noisy pixels while adding a little bias to the repair of
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damaged pixels. It suggests that the term should be excluded from the computation and that the only consideration
should be the functional of the next form.

fα(u) =
∑

(i,j)∈N

[
(2× S1

i,j + S2
i,j)
]
. (1.2)

The conjugate gradient (CG) method is a useful iterative approach for removing impulse noise:

f(u∗) = min
x∈RN

f(u), (1.3)

One type of iterative technique that creates a series with the following format is the conjugate gradient approach:

uk+1 = uk + αkdk, (1.4)

where dk represents the search direction and αk represents the step size obtained from a dependable precise line search.
The is expressed as:

αk = − gTk dk
dTkQdk

. (1.5)

See [12]. Step length is specified as follows in the Wolfe scenario:

f(uk + αkdk) 6 f(uk) + δαkg
T
k dk, (1.6)

dTk g(uk + αkdk) > σ dTk gk, (1.7)

where 0 < δ < σ < 1. More details can be found in [19]. Using the conjugate gradient approach, the search direction
may be established using the following formula:

dk+1 = −gk+1 + βkdk, (1.8)

where βk is a scalar. There are two types of formulas available, namely the Dai-Yuan (DY) method [4] and the
Fletcher-Reeves (FR) method [6]. These formulas can be expressed as follows:

βFRk =
‖gk+1‖2

‖gk‖2
, βDYk+1 =

‖gk+1‖2

dTk yk
. (1.9)

Several studies have been conducted to examine the properties of convergence exhibited by conjugate gradient
methods. This research was initiated by Zoutendijk [23], who demonstrated that the FR approach achieves global
convergence when accurate line searching is performed. Several researchers have developed new equations for conjugate
gradient coefficients that have shown excellent numerical performance and can lead to a global solution. Although this
is just a prototype, the conjugate gradient technique has evolved with more advanced adaptations. Various methods
have been employed to develop conjugate gradient algorithms with the essential property of adequate descent. Wu
and Chen [21] provide examples of CG approaches, which are as follows:

βWC
k =

yTk+1gk+1

dTk yk
+

2(fk − fk+1) + gTk sk
dTk yk

. (1.10)

Both in their theoretical and practical applications, these strategies are outstanding. Conjugate gradient technique
and Wu and Chen algorithm differ primarily in how the search direction is computed. Regarding the optimization
techniques and references, please see [7, 12, 15, 17] for more details.

Building on the Taylor series, we develop a new class of formula and analyze and report on their theoretical
characteristics and numerical performance.
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2. A New Parameter For βk .

Using the Taylor series, we obtain the new conjugate gradient formula, which as:

f(x) = f(xk+1)− gTk+1sk +
1

2
sTkQ(uk+1)sk, (2.1)

where Q is Hessian matrix. The derivative can be determined through the following calculation:

gk+1 = gk +Q(uk+1)sk. (2.2)

By utilizing (2.2) in (2.1), yield:

sTkQ(uk)sk = 2( fk − fk+1) + 2 yTk sk + 2 gTk sk. (2.3)

As a result, after certain algebraic alteration, implying:

sTkQ(uk)sk = 1/2 yTk sk + ( fk+1 − fk)− gTk sk. (2.4)

The parameter derived through Perry’s conjugecy condition will be defined as:

dTk+1yk = −sTk gk+1. (2.5)

We obtained results by utilizing (1.8), (2.3), and (2.5), yield:

βkd
T
k yk = gTk+1yk − gTk sk − 1/2yTk sk − ( fk+1 − fk) + gTk sk. (2.6)

As resulted:

βk =
gTk+1yk

dTk yk
+
−1/2yTk sk + ( fk − fk+1) + gTk sk

dTk yk
− gTk sk
dTk yk

. (2.7)

The methods created by the parameter previously stated are called the BBF.

Algorithm 1 BBF algorithm.

1: Initialization. Given x0 ∈ Rn, set k = 0, d0 = −g0
2: Should ‖gk‖ 6 ε then stop.
3: Calculate αk by (1.6) and (1.7).
4: Assume xk+1 = xk + αkdk , and calculate βk by (2.7).
5: Calculate dk+1 = −gk+1 + βkdk.
6: Set k = k + 1 and go to stage 2.

3. Global convergence:

Examining the methods global convergence properties is the goal of this section. First, we take the following action.
Hypotheses

(1) The Ω = {u : u ∈ Rn, f(u) 6 f(u1)} has a boundary in the level set.
(2) The Lipchitz condition is satisfied by the gradient g(u) in a neighborhood Λ in Ω in the following way:

‖g(t1)− g(t2)‖ 6 L ‖t1 − t2‖ , ∀t1, t2 ∈ Λ. (3.1)

Based on Assumption 1 above, there has to be a µ > 0 such that:

(∇f(r1)−∇f(r2))T > µ‖r1 − r2‖2 , ∀ r1, r2 ∈ Rn. (3.2)

See [13, 14].

Theorem 3.1. Upon generating {xk} and {dk} using a new approach. Then:

dTk+1gk+1 6 −c‖gk+1‖2. (3.3)
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Proof. After that, gT0 d0 = −‖g0‖2 if k = 0. For every k , let dTk gk < 0. After multiplying (1.10) by gk+1,, we get:

dTk+1gk+1 = −gTk+1gk+1 + βks
T
k gk+1. (3.4)

Using (2.2), and changing (2.7) to (3.4), we get:

dTk+1gk+1 = −‖gk+1‖2 +

(
gTk+1yk

sTk yk
− sTk gk+1

sTk yk

)
sTk gk+1. (3.5)

It suggests:

dTk+1gk+1 = −‖gk+1‖2 +
gTk+1yks

T
k gk+1

sTk yk
− (sTk gk+1)

2

sTk yk
. (3.6)

Utilizing the Cauchy-Schwartz inequality wT v 6 1
2 (‖w‖2+‖v‖2, where w = (yTk sk)gk+1 and v = (sTk gk+1)yk we obtain:

gTk+1yks
T
k gk+1

sTk yk
6

1
2

[
‖gk+1‖2(yTk sk)

2
+ (sTk gk+1)

2‖yk‖2
]

(sTk yk)
2 . (3.7)

As we plug in (3.7) into (3.6) we get:

dTk+1gk+1 6 −‖gk+1‖2 +
1/2

[
‖gk+1‖2(yTk sk)

2
+ (sTk gk+1)

2‖yk‖2
]

(sTk yk)
2 − (sTk gk+1)

2

sTk yk
. (3.8)

By utilizing (3.1) in (3.8), it guarantees:

dTk+1gk+1 6 −
1

2
‖gk+1‖2 +

[
1

2
L− 1

]
(sTk gk+1)

2

sTk yk
. (3.9)

Thus, as follows:

dTk+1gk+1 6 −c‖gk+1‖2. (3.10)

Thus, it has been proved. �

Any conjugate gradient method combined with a Wolfe line search yields convergence. All it requires to be weak is
for the Zoutendijk condition [5, 23].

Lemma 3.2. Applying Wolfe conditions with descents search direction yields any iteration technique with αk. Then:∑
k>0

1

‖dk+1‖2
=∞. (3.11)

Then

lim
k→∞

inf ‖ gk‖ = 0. (3.12)

Theorem 3.3. Global convergence of the BBF Algorithm occurs whenever our assumptions are true:

lim
k→∞

inf ‖ gk‖ = 0. (3.13)

Proof. Yet it remains true from (1.10), that

‖dk+1‖ =
∥∥−gk+1 + βBBF

k sk
∥∥ . (3.14)

Utilizing (2.2), to insert (2.7) into (3.14), suggests:

‖dk+1‖ =

∥∥∥∥∥−gk+1 +
gTk+1yk

dTk yk
sk −

sTk gk+1

dTk yk
sk

∥∥∥∥∥ . (3.15)
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After applying (3.1) and (3.2), it becomes as follows:

‖dk+1‖ ≤ ‖gk+1‖+
‖gk+1‖L ‖sk‖2

µ ‖sk‖2
+
‖gk+1‖ ‖sk‖2

µ ‖sk‖2

≤
(

1 +
L

µ
+

1

µ

)
‖gk+1‖ (3.16)

≤
[
µ+ L+ 1

µ

]
‖gk+1‖ .

As a result,∑
k>1

1

‖dk‖2
>

(
µ

µ+ L+ 1

)
1

Γ

∑
k>1

1 =∞. (3.17)

Based on Lemma 3.2, this study determines that lim
k→∞

inf ‖gk‖ = 0. �

4. Numerical Results

In this study, we present a set of numerical findings that demonstrate the effectiveness of new method in eliminating
salt-and-pepper impulse noise. We compare the results obtained from the new approach to those obtained from the
FR method in our experimental analysis [18]. The entire process is carried out using the MATLAB r2017a software.
Subsequently, a computer executes the generated codes. The criteria used to determine the termination of both
techniques are as follows:

‖f(uk)‖ 6 10−4(1 + |f(uk)|) and
|f(uk)− f(uk−1)|

|f(uk)|
6 10−4. (4.1)

The test photographs include Lena, House, the Cameraman, and Elaine. Along with the test text, we assess the
restoration performance qualitatively using the PSNR (peak signal to noise ratio) in a manner that can be compared
to previous studies [3, 22]. The definition of restoration performance is as follows:

PSNR = 10 log10

2552

1
MN

∑
i,j

(uri,j − u∗i,j)
2 . (4.2)

The original picture’s pixel values and the restored image’s pixel values are denoted by uri,j and u∗i,j , respectively.
This study examines the number of iterations (NI) and function evaluations (NF) required to complete the denoising
process, as well as the resulting PSNR of the generated image. The FR technique takes a considerable amount of
time to finish, while the novel technique is significantly faster. This can be seen from the data presented in Table
1. Additionally, the PSNR values achieved using both the new approach and the FR method are relatively similar.
There are also several published studies in the field of optimization, such as [8–11, 16].

5. Conclusions

We not only discussed a newly developed conjugate gradient equation, but we also explored the conjugate gradient
method known as BBF. By applying specific search parameters, we successfully identified the global convergence of the
Wolfe line. It has been demonstrated that employing BBF can significantly reduce the amount of simulation iterations
and function evaluations without compromising the quality of the image.
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Figure 1. Demonstrates the results of algorithms FR and BBF of 256×256 Lena image.

Figure 2. Demonstrates the results of algorithms FR and BBF of 256×256 House image.



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-9 7

Figure 3. Demonstrates the results of algorithms FR and BBF of 256×256 Elaine image.

Figure 4. Demonstrates the results of algorithms FR and BBF of 256×256 Cameraman image.
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Table 1. Numerical results of FR and BBF algorithms.

Image Noise level r (%)
FR-Method BBF-Method

NI NF PSNR (dB) NI NF PSNR (dB)
Le 50 82 136 30.5529 67 101 30.3957

70 101 155 27.4811 105 157 27.4181
90 88 121 22.8583 84 122 22.7627

Ho 50 72 116 31.2044 57 84 30.5442
70 90 133 27.9865 73 107 27.0004
90 65 91 23.0052 63 89 25.0004

El 50 35 56 33.9192 41 61 33.8763
70 38 61 30.2169 39 59 30.1604
90 45 72 25.8098 46 72 25.4898

c512 50 85 134 26.8395 45 64 26.3998
70 102 152 25.3062 54 75 24.9998
90 121 162 24.3962 56 77 24.8998
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