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Abstract

The examination of alternative methodologies for the formulation of parameter t constitutes a captivating area of

inquiry; we propose that certain modified Dai-Liao methods employing distinct parameter t under the modified

quasi–Newton equation merit exploration.
This paper presents an adaptive selection for the parameter of the Dai–Liao conjugate gradient method, derived

through the modified quasi–Newton equation. Consequently, we introduce a modified Dai-Liao conjugate gradi-
ent method. A noteworthy characteristic of the proposed methodology is the incorporation of both gradient and

function value information into the parameter t of the modified Dai-Liao conjugate gradient method. We establish

the global convergence properties of the modified Dai-Liao conjugate gradient method under certain appropri-
ate assumptions. Numerical results demonstrate that the modified Dai-Liao method is efficacious in practical

computations.
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1. Introduction

We employ the conjugate gradient methodology to formulate our solution to the unconstrained optimization prob-
lem:

Minf (x) , x ∈ Rn, (1.1)

where f is a smooth function, [5]. We commence by reviewing the conjugate gradient method (CG), which generates
a sequence of iterates through repetitive application of:

xk+1 = xk + αkdk, (1.2)

where αk denotes the step size and dk signifies the search direction, which is defined as follows:

dk+1 = −gk+1 + βksk, (1.3)

where the conjugate gradient methodology is characterized by the parameter βk, refer to [6, 10]. Although a portion
of these methodologies possesses theoretical significance, others demonstrate effectiveness in numerical applications.
The nonlinear conjugate gradient method was initially articulated by Hestenes-Stiefel [13], in which βk is expressed in
the subsequent manner:

βHS
k =

gTk+1yk

dTk yk
. (1.4)
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Step length αk is traditionally selected in iterative methodologies to satisfy specific criteria. The Wolfe conditions are
routinely utilized in the analysis of convergence and the implementation of conjugate gradient techniques among the
conditions delineated, and they must conform to the following stipulations:

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk, (1.5)

dTk g(xk + αkdk) ≥ σ dTk gk, (1.6)

where 0 < δ < σ < 1, see [16]. It is regrettable that in scenarios where the objective function is nonconvex and the
conventional Wolfe line search is utilized, none of the proposed methodologies can converge simultaneously.

One of the well-known conjugate gradient techniques created to enhance the efficiency of unconstrained nonlinear
optimization algorithms is the Dai-Liao approach, [2]. The drawbacks of conventional techniques, which don’t always
provide enough descent in the objective function value, prompted researchers Yuan-Hai Dai and Li-Qun Liao to suggest
it in 2001. In order to improve numerical stability and guarantee global convergence, this approach uses a novel formula
to calculate the beta coefficient, βk. The following ratio is used to calculate βk in the Dai-Liao method:

βDL
k =

gTk+1yk − tgTk+1sk

dTk yk
. (1.7)

Using this method eliminates the requirement for restart approaches while keeping an efficient fall direction. The fact
that this approach ensures a substantial drop at each iteration and achieves notable convergence even when other
approaches encounter challenges is one of its main advantages, [9]. According to numerical research, the Dai–Liao
approach is more stable and efficient than other conjugate gradient techniques, which makes it appropriate for a variety
of optimisation applications.

To augment the precision of the Conjugate Gradient (CG) method, scholars have integrated the modified secant
(quasi–Newton) equations into their analyses, [7, 11]. Consequently, numerous revised iterations of the Dai-Liao (DL)
method have been proposed within the academic literature, which leverage both the values of the cost function and
the gradient information, or demonstrate global convergence independent of convexity prerequisites, [8, 12]. Later,
numerous conjugate gradient algorithms grounded on various modified secant equations were examined, as noted in
[17].

In pursuit of achieving both global convergence utilizing the conventional Wolfe line search and the requisite descent
property for any line search, we introduce modifications to the conjugate gradient approach. Furthermore, a novel
framework is presented alongside the underlying inspiration.

2. Robust Dai-Liao Method

The efficient convergence of the Conjugate Gradient method is contingent upon the maintenance of conjugacy
among the search directions. A fundamental mathematical principle that facilitates this preservation is known as the
curvature condition. Basim et al. [1] have proposed an enhanced iteration of this condition, which explicitly ensures
satisfactory performance, articulated as follows:

sTkBk+1sk ∼= 1/2sTk yk + (fk+1 − fk)− gTk sk. (2.1)

This condition is instrumental in the derivation of the Conjugate Gradient update formula, which subsequently en-
hances numerical stability and accelerates convergence. Initiating from Equation (2.1), we reformulate it algebraically
as follows:

dTk+1Bk+1sk ∼= [1/2 + ((fk+1 − fk)− gTk sk)/s
T
k yk]dk + 1Tyk. (2.2)

In [15], by applying Perry’s conjugacy condition (dTk+1yk = −gTk+1sk) in conjunction with Equation (2.1), we derive:

dTk+1Bk+1sk ∼= −[1/2 + ((fk+1 − fk)− gTk sk)/s
T
k yk]gk + 1Tsk. (2.3)

Perry’s condition underpins stable and efficient updates within the Conjugate Gradient method. By utilizing the
search direction articulated in 1.1, we attain:

(−gk+1 + βksk)
T yk ∼= −

[
1

2
+

(fk+1 − fk) + gTk sk
sTk yk

]
gTk+1sk. (2.4)
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This results in:

βk =
gTk+1yk −

[
1
2 +

(fk+1−fk)+gT
k sk

sTk yk

]
gTk+1sk

sTk yk
. (2.5)

Within the framework established by Dai and Liao, it can be articulated as follows:

βk =
gTk+1yk − tgTk+1sk

sTk yk
, (2.6)

with

tBK
k =

1

2
+

(fk+1 − fk) + gTk sk
sTk yk

, (2.7)

The new method is called Dai-Liao (BK).
The method is recognized as this derivation emphasizes the significance of the refined curvature condition in main-

taining conjugacy and refining the update formula. Contextualizing the result within the Dai-Liao framework bolsters
both theoretical comprehension and practical convergence in the conjugate gradient method.

Algorithm: Dai-Liao (BK).
Input: Initial approximation establish a minimal x0 ∈ Rn Tolerance ε.
Output: Minimizer x such that the gradient is approximately nullified.

(1) Execute the computation g0 = ∇f0, establish parameters d0 = −g0, and initialize values k=0.
(2) While the gradient’s norm ∥gk+1∥ > 0, then:

(a) Conduct a line search to ascertain the step size αk satisfying the Wolfe conditions.
(b) Revise the current estimate xk+1 = xk + αkdk.

(c) Calculate the new value tBK
k = 1

2 +
(fk+1−fk)+gT

k sk
sTk yk

, and subsequently determine the

β
Dai−Liao (BK)
k =

gT
k+1yk−tBKgT

k+1sk

sTk yk
.

(d) Modify the search direction accordingly dk+1 = −gk+1 + βksk.
(e) Increment the iteration index k + 1.

(3) Conclude the while loop.
(4) Return the ultimate iterate xk+1.

Theorem 2.1. The new research dk+1 generated using the new formula β
Dai−Liao (BA)
k achieves the regression prop-

erty.

Proof. Multiplying both sides of the search direction by gTk+1 and substituting formula β
Dai−Liao (BK)
k , this gives us:

dTk+1gk+1 = −∥gk+1∥2 +
gTk+1yk −

[
1
2 +

(fk+1−fk)+gT
k sk

sTk yk

]
gTk+1sk

sTk yk
sTk gk+1. (2.8)

Then we have:

dTk+1gk+1 = −∥gk+1∥2 +

[
gTk+1yk

sTk yk
− sTk gk+1

sTk yk

]
sTk gk+1. (2.9)

Equation (2.9) produces:

dTk+1gk+1 = −∥gk+1∥2 +
gTk+1yks

T
k gk+1

sTk yk
− (sTk gk+1)

2

sTk yk
. (2.10)

Taking advantage of Cauchy’s inequality wT v ≤ 1
2 (∥w∥

2 + ∥v∥2) and for simplicity, we define w = (yTk sk)gk+1 and

v = (sTk gk+1)yk. This gives us:

gTk+1yks
T
k gk+1

sTk yk
≤

1
2 [∥gk+1∥2(yTk sk)2 + (sTk gk+1)

2∥yk∥2]
(sTk yk)

2
. (2.11)



Unco
rre

cte
d Pro

of

4 W. A. MAJEED AND B. A. HASSAN

By combining inequality 2.11 with Equation (2.10) to become:

dTk+1gk+1 ≤ −∥gk+1∥2
1
2 [∥gk+1∥2(yTk sk)2 + (sTk gk+1)

2∥yk∥2]
(sTk yk)

2
− (sTk gk+1)

2

sTk yk
. (2.12)

According to Bechitz’s condition that it be yTk yk ≤ LsTk yk and by substituting it with the inequality 2.12, we have:

dTk+1gk+1 ≤ −1

2
∥gk+1∥2 +

[
1

2
L− 1

]
(sTk gk+1)

2

sTk yk
≤ 0. (2.13)

This completes the proof. □

3. Prerequisites required for establishing convergence

Convexity of the level set: The collection of points delineated by must be identified as a convex set:

L0 = {x/f(x) ≤ f(x0)} . (3.1)

Lipschitz continuity of the gradient: The gradient is required to exhibit Lipschitz continuity, which implies the existence
of a constant such that:(

∇f(o−)−∇f(v+)
)
≤ L∥o− − v+∥ , ∀o−, v+ ∈ L0. (3.2)

In light of these two prerequisites, it can be demonstrated that there exists a positive constant Π > 0 such that:

∥gk+1∥2 ≤ Π. (3.3)

See [14].
The theorem proposed by Dai et al. [3], plays a key role in analyzing the convergence behavior of optimization

algorithms like gradient descent and the conjugate gradient method. In essence, the theorem states that:∑
k≥0

1

∥dk+1∥2
= ∞, (3.4)

This means that:

lim inf
k→∞

∥gk+1∥ = 0. (3.5)

Theorem 3.1. Let the sequence {xk} be generated by Dai–Liao (BK), and suppose the Assumptions holds, If:

(∇f(x)−∇f(y))
T
(x− y) ≥ Φ∥y − y∥2. (3.6)

Then:

lim inf
k→∞

∥gk∥ = 0. (3.7)

Proof. The parameter delineated by Dai–Liao (BK) satisfies:

|βk| ≤
∣∣gTk+1yk

∣∣+ ∣∣sTk gk+1

∣∣
sTk yk

. (3.8)

Utilizing inequality 3.6 and the Lipschitz continuity property of ∇f , it follows that:

|βk| ≤
L∥gk+1∥∥sk∥+ ∥gk+1∥∥sk∥

Φ∥sk∥2
. (3.9)

The norm of the search direction update is given by:

∥dk+1∥ = ∥ − gk+1 + βkdk∥. (3.10)

Plugging 3.9 and 3.3 into 3.10 yields:

∥dk+1∥ ≤ Π+
ΠL∥sk∥+Π∥sk∥

Φ∥sk∥2
∥sk∥ ≤ (1 + C)Π, (3.11)
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Table 1. Table of problems, starting points and dimensions.

Problem Dim Function No. Starting Points
Freudenstein & Roth 100, 1000 1, 2 x0 = [0.5,−2, 0.5,−2, ........., 0.5,−2]
Trigonometric 100, 1000 3, 4 x0 = [0.2, 0.2, 0.2, 0.2, ........., 0.2, 0.2]
Extended Rosenbrock 100, 1000 5, 6 x0 = [−1.2, 1,−1.2, 1, .........,−1.2, 1]
Penalty 100, 1000 7, 8 x0 = [1, 2, 1, 2, 1, 2, ..............1, 2, 1, 2]
Perturbed Quadratic 100, 1000 9, 10 x0 = [0.5, 0.5, 0.5, 0.5, ........., 0.5, 0.5]
Extended Tridiagonal 1 100, 1000 11, 12 x0 = [2.0, 2.0, 2.0, .................2.0, 2.0]
Extended Three Expo 100, 1000 13, 14 x0 = [0.1, 0.1, 0.1, 0.1, ........., 0.1, 0.1]
Generalized Tridiagonal 2 100, 1000 15, 16 x0 = [−1,−1,−1, ...............− 1,−1]
Extended PSC1 100, 1000 17, 18 x0 = [3, 0.1, 3, 0.1, .........3, 0.1, 3, 0.1]
Extended Cliff 100, 1000 19, 20 x0 = [−1, 0,−1, 0, ........,−1, 0,−1, 0]
Extended Hiebert 100, 1000 21, 22 x0 = [0, 0, 0, .........................., 0, 0, 0]
Extended Tridiagonal 2 100, 1000 23, 24 x0 = [1, 1, 1, .........................., 1, 1, 1]
STAIRCASE S1 100, 1000 25, 26 x0 = [1, 1, 1, .........................., 1, 1, 1]
DIXON3DQ (CUTE) 100, 1000 27, 28 x0 = [−1,−1,−1, ...............− 1,−1]
SINCOS 100, 1000 29, 30 x0 = [3, 0.1, 3, 0.1, .........3, 0.1, 3, 0.1]
Generalized Quartet GQ2 100, 1000 31, 32 x0 = [1, 1, 1, .........................., 1, 1, 1]

where C = (L+ 1)/Φ. As a result, we have:∑
k≥1

1

∥dk+1∥2
≥

(
Φ

Φ+ L+ 1

)
1

Π

∑
k≥1

1 = ∞. (3.12)

Based on the equations 3.4 and 3.5, we obtained:

lim inf
k→∞

∥gk∥ = 0. (3.13)

□

4. Numerical Results

We test the effect of new algorithm on numerical problems, and the unconstrained optimization problems, [1] are
listed in Table 1. We will report on various numerical implementations variable counts of n = 100 and 1000 of our
presented method (BK algorithm) with the modified HS on these problems and compare its performance with the HS
algorithm for the problems. In this part of the numerical experiment, we introduce the stopping rules, dimensions, and
some parameters as follows, δ1 = 0.001 and δ2 = 0.9, with the termination criterion as defined by ∥gk+1∥ ≤ 10−6. The
comparison data can be shown as follows: NI: number of iterations. IS: number of restarts. NF: Number of function
evolution.

One adaptive choice for the parameter of the Dai–Liao conjugate gradient method is suggested in this paper, which
is obtained with modified quasi-Newton equation. So we get a modified Dai-Liao conjugate gradient method.

The aforementioned results were subjected to further scrutiny utilizing a performance profile instrument as de-
lineated by Dolan and More [4]. This analytical tool operates as a cumulative distribution function, depicting the
likelihood that a specified methodology will proficiently resolve a problem within multiple iterations of the optimal
performance recorded. The x-axis of the resultant curve illustrates the performance ratio, while the y-axis signifies
the proportion of test problems resolved within that ratio. Any algorithm whose curve is positioned above those of its
competitors is deemed superior, indicating that the algorithm tackles a larger percentage of functions with enhanced
efficiency.

Figure 1 illustrates the performance profile curve of the proposed algorithm in juxtaposition with the classical
HS algorithm based on the NI metric, thereby clarifying the convergence rate of each algorithm. The curve reveals
that the proposed Dai-Liao (BK) method surpassed the classical HS algorithm, as it achieved a higher cumulative
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Table 2. Test results for method Dai-Liao (BK) with HS method.

P.No. N
HS Dai-Liao (BK)

NI NR NF NI NR NF

1
100 102 95 2709 F F F
1000 14 8 32 12 7 27

2
100 19 10 35 18 10 34
1000 39 22 67 35 20 62

3
100 34 18 72 33 17 69
1000 35 19 77 35 19 78

6
100 9 6 25 9 6 25
1000 92 84 2256 55 47 993

7
100 102 33 155 97 26 151
1000 352 100 543 335 86 526

15
100 10 5 21 10 5 21
1000 14 7 27 13 7 26

16
100 13 8 23 12 7 18
1000 52 45 1225 39 36 974

17
100 42 17 62 40 15 61
1000 67 26 102 60 23 94

22
100 8 6 17 8 6 17
1000 26 25 505 7 5 15

26
100 9 7 23 15 11 53
1000 37 35 844 46 42 1070

29
100 83 52 182 79 50 174
1000 79 50 171 79 50 171

35
100 36 13 59 37 13 60
1000 37 14 59 44 24 73

53
100 477 130 746 435 133 681
1000 F F F F F F

56
100 523 152 813 468 131 744
1000 F F F F F F

69
100 8 6 17 8 6 17
1000 26 25 505 7 5 15

70
100 34 10 55 31 8 53
1000 38 12 93 32 8 57

performance in a more expeditious manner. This finding suggests that the proposed algorithm necessitates fewer
iterations to attain convergence across the majority of test functions. In contrast, the classical HS curve is observed
to lag, implying that it typically requires a larger number of iterations, which may adversely affect computational
efficiency. In a similar context, the examination of the secondary performance curve, which assessed the number of
restarts requisite for convergence, further substantiates the proposed algorithm’s enhanced efficacy, as it successfully
resolves a greater proportion of problems with fewer restarts. The findings suggest that the classical HS algorithm
consumes a substantially longer duration to achieve the same cumulative fraction of resolved functions, indicating
that it may encounter increased challenges in sustaining stable convergence and necessitates more frequent restarts.
Lastly, the findings related to function evaluations, as illustrated in Figure 3, exhibited a direct relationship with
the computational cost associated with an optimization algorithm. Nevertheless, the curve further reinforces the
efficiency of the proposed algorithm, as its trajectory (the red line) consistently exceeds the green line, signifying
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Figure 1. Performance profiles for iter.

Figure 2. Performance profiles for Res.
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Figure 3. Performance profiles for Fval.

that the proposed algorithm reliably demands fewer function evaluations to reach an optimal solution. Considering
that function evaluations frequently constitute the most resource-intensive component of an optimization process,
this outcome accentuates the computational superiority of the proposed Dai-Liao (BK) method in comparison to the
classical HS algorithm.

5. Conclusions

In this work, we derive a new conjugate gradient technique of the Dai–Liao type for unconstrained optimization
problems. The suggested techniques add a new secant equation to the conjugacy condition of Dai and Liao that was
previously used in [2]. When using the strong Wolfe line search, we demonstrate the techniques’ global convergence
under specific assumptions. The suggested techniques can exceed a number of current approaches in terms of resilience
and efficiency, as shown by numerical trials.
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[4] E. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91
(2002), 201–213.

[5] B. A. Hassan and A. A. Saad, Elastic conjugate gradient methods to solve iteration problems, J. Interdiscip. Math.,
26(6) (2023), 1207–1217.

[6] B. A. Hassan and A. A. Saad, Explaining new parameters conjugate analysis based on the quadratic model, J.
Interdiscip. Math., 26(6) (2023), 1219–1229.



Unco
rre

cte
d Pro

of

REFERENCES 9

[7] B. A. Hassan and A. A. A. Abdullah, Improvement of conjugate gradient methods for removing impulse noise
images, Indones. J. Electr. Eng. Comput. Sci., 29(1) (2023), 245–251.

[8] B. A. Hassan and H. A. Alashoor, Pediment new parameters for a conjugate gradient method and using it in
restoring distorted images, Proc. 8th Int. Conf. Contemporary Information Technology and Mathematics (ICCITM
2022), Univ. Mosul, Mosul, Iraq, (2022), 385–390.

[9] B. A. Hassan and H. A. Alashoor, Involving new coefficients conjugate gradient method for restoring distorted
images, Proc. 8th Int. Conf. Contemporary Information Technology and Mathematics (ICCITM 2022), Univ.
Mosul, Mosul, Iraq, (2022), 380–384.

[10] B. A. Hassan, H. N. Jabbar, and Y. A. Laylani, Upscaling parameters for conjugate gradient method in uncon-
strained optimization, J. Interdiscip. Math., 26(6) (2023), 1171–1180.

[11] B. A. Hassan and H. M. Sadiq, Efficient new conjugate gradient methods for removing impulse noise images, Eur.
J. Pure Appl. Math., 15(4) (2022), 2011–2021.

[12] B. A. Hassan, I. A. R. Moghrabi, and I. M. Sulaiman, New conjugate gradient image processing methods, Asian-
Eur. J. Math., (2023), 1–14.

[13] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur.
Standards, 49 (1952), 409–436.

[14] G. Li, C. Tang, and Z. Wei, New conjugacy condition and related new conjugate gradient methods for unconstrained
optimization, J. Comput. Appl. Math., 202(2) (2007), 523–539.

[15] A. Perry, Technical Note – A modified conjugate gradient algorithm, Appl. Math. Oper. Res., 26(6) (1978), 1073–
1078.

[16] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev., 11 (1969), 226–235.
[17] L. Zhang, W. J. Zhou, and D. H. Li, A descent modified Polak–Ribière–Polyak conjugate gradient method and its

global convergence, IMA J. Numer. Anal., 26 (2006), 629–640.


	1. Introduction
	2. Robust Dai-Liao Method
	3. Prerequisites required for establishing convergence
	4. Numerical Results
	5. Conclusions
	References



