 
				| تعداد نشریات | 45 | 
| تعداد شمارهها | 1,416 | 
| تعداد مقالات | 17,490 | 
| تعداد مشاهده مقاله | 56,503,137 | 
| تعداد دریافت فایل اصل مقاله | 18,746,020 | 
| تأثیر ضایعات چای بر برخی ویژگیهای شیمیایی یک خاک قلیایی با بافت لوم رسی | ||
| دانش خاک و گیاه | ||
| دوره 35، شماره 3، آبان 1404، صفحه 57-77 اصل مقاله (1.47 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/sps.2025.67742.1017 | ||
| نویسندگان | ||
| آزاده آبداری1؛ مهدی شرفا* 1؛ مصطفی مزرعتی2 | ||
| 1گروه علوم و مهندسی خاک، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
| 2گروه مهندسی نساجی، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران. | ||
| چکیده | ||
| افزایش مصرف کودهای شیمیایی و آفتکشها در کشاورزی باعث تخریب خاک و کاهش کیفیت تولیدات کشاورزی شده است. در این راستا، استفاده از ضایعات چای به عنوان یک منبع غنی از مواد آلی میتواند به حفظ خاک و افزایش باروری آن کمک کند. افزایش قابلتوجه ضایعات چای در کشور بهعنوان یک منبع آلی، پتانسیل بهبود ویژگیهای شیمیایی خاک را دارد. در این پژوهش، از یک نمونه خاک قلیایی با بافت لوم رسی به مقدار ۳ کیلوگرم و نسبتهای وزنی صفر، ۱، ۲ و ۴ درصد ضایعات چای برای بررسی تأثیر آنها بر ویژگیهای شیمیایی خاک استفاده شد. آزمایش در ستونهای پلاستیکی به قطر ۱۲ سانتیمتر و ارتفاع ۲۲ سانتیمتر انجام شد. پس از مقایسه نمونههای خاک قبل از انکوباسیون و بعد از یک دوره ۶ ماهه انکوباسیون در دمای ۲۵ درجه سلیسیوس و رطوبت ظرفیت مزرعهای (5/16 درصد حجمی)، نتایج نشان داد که افزودن ضایعات چای بر ویژگیهای شیمیایی خاک تأثیر معناداری داشت. بهطور خاص، تیمار ۴ درصد ضایعات چای بهترین نتایج را در کاهش pH و افزایش عناصر غذایی نشان داد. این یافتهها بیانگر پتانسیل بالای ضایعات چای به عنوان یک کود آلی مؤثر در بهبود کیفیت خاک و افزایش بهرهوری آن است. استفاده بهینه از این ضایعات میتواند به عنوان یک راهکار پایدار در مدیریت پسماندها و بهبود تولیدات کشاورزی مطرح شود. | ||
| کلیدواژهها | ||
| اسیدیتی خاک؛ زیستفراهمی؛ عناصر غذایی؛ کود آلی؛ مدیریت پسماند | ||
| مراجع | ||
| Abdolahi Arshad, M., Rangzan, N., & Nadian Ghomsheh, H. (2023). Effect of spent tea waste, compost and biochar on some growth parameters and concentration of nitrogen, phosphorus and potassium in spinach (Spinacia oleracea L.) under salinity stress. Journal of Plant Nutrition, 47(7), 1029–1044. https://doi.org/10.1080/01904167.2023.2292763 Abedini Abkeshri, H., Hashem Abadi, D., & Kavyani, B. (2014). Effect of root inoculation with phosphate-solubilizing bacteria in different planting substrates on some physiological indices and micro nutrient concentrations in Pelargonium peltatum cv. Red blizard. Journal of Plant Environmental Physiology, 9(36), 58-70. (In Persian with English Abstract) Ahmadidehaj, M., Qasemnejad, M., Zavarah, M., & Shiri, M. (2012). Effect of tea waste and zeolite as a soilless cultivation substrate on growth and quality of tomato fruit. Journal of Agricultural Science and Sustainable Production, 22(2), 56-65. (In Persian with English Abstract) Bakoğlu, A., & Çatal, M. İ. (2025). Impact of organic materials (tea waste and farm manure) on yield, protein content, fiber fractions, and mineral composition of tea plants in an organic system. Communications in Soil Science and Plant Analysis, 56(4), 1232-1246. https://doi.org/10.1080/00103624.2025.2452172 Blake, G. R., & Hartge, K. H. (1986). Bulk density. Pp. 363-382. In: A. Klute (Ed.), Methods of soil analysis. Part 1- Physical and mineralogical methods. Second ed., Agronomy Monograph 9, American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen- total. Pp. 595-624. In: A. L. Page, R. H. Miller, & D. R. Keeney (Eds.). Methods of soil analysis. Part 2, Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. Carter, M., Gregorich, E., Adl, S., Acosta-Mercado, D. R., Anderson, T., & Lynn, D. H. (2007). Soil sampling and methods of analysis. CRC Press, 1264 pages. Chatterjee, R., Gajjela, S., & Thirumdasu, R. K. (2017). Recycling of organic wastes for sustainable soil health and crop growth. International Journal of Waste Resources, 7(3). https://doi.org/10.4172/2252-5211.1000296 Gamage, D. N., Peiris, T., Kasthuriarachchi, I., Mohotti, K. M., & Biswas, A. (2025). Enhancing soil resilience to climate change: Long-term effects of organic amendments on soil thermal and physical properties in tea-cultivated Ultisols. Sustainability, 17(3), 1184. https://doi.org/10.3390/su17031184 Glab, T., Żabiński, A., Sadowska, U., Gondek, K., Kopeć, M., Mierzwa–Hersztek, M., & Tabor, S. (2018). Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma, 315(1), 27-35. https://doi.org/10.1016/j.geoderma.2017.11.034 Gulser, C., & Peksen, A. (2003). Using tea waste as a new casing material in mushroom (Agaricus bisporus (L.) Sing.) cultivation. Bioresource Technology, 88, 153–156. https://doi.org/10.1016/S0960-8524(02)00279-1 Hassanpour Asil, M., & Ramezan, D. (2013). Investigating the effect of scratching different cover soils on the production of button mushrooms. Iranian Journal of Horticultural Science, 44(4), 1-8. (In Persian with English Abstract) Karak, T., Paul, R., Kutu, F., Mehra, A., Khare, P., Dutta, A., Bora, K., & Boruah, R. (2017). Comparative assessment of copper, iron, and zinc contents in selected Indian (Assam) and South African (Thohoyandou) tea (Camellia sinensis L.) samples and their infusion: A quest for health risks to consumer. Biological Trace Element Research, 175, 475–487. https://doi.org/10.1007/s12011-016-0783-3 Kazemi, Sh., & Padash Dehkadeh, S. (2014). Study of the effects of silkworm manure compost on the growth characteristics of ornamental plant Syngonium podophyllum. In First National Congress on Flowers and Ornamental Plants, Karaj: National Research Institute of Flowers and Ornamental Plants, Mahalat, Iran. (In Persian with English Abstract) Kisinyo, P., et al. (2021). Carbon mineralization dynamics of organic materials and their usage in the restoration of degraded tropical tea-growing soil. Agronomy, 11(6), 1191. https://doi.org/10.3390/agronomy11061191 Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity- laboratory methods. Pp. 687-734. In: A. Klute (Ed.), Methods of soil analysis. Part 1, Physical and mineralogical methods. Second ed., Agronomy Monograph 9, American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. Koné, S. B., Dionne, A., Tweddell, R. J., Antoun, H., & Avis, T. J. (2010). Suppressive effect of non-aerated compost teas on foliar fungal pathogens of tomato. Biological Control, 52, 167-173. https://doi.org/10.1016/j.biocontrol.2009.10.018 Le, V. S., Lesueur, D., Herrmann, L., Hudek, L., Quyen, L. N., & Brau, L. (2021). Sustainable tea production through agroecological management practices in Vietnam: A review. Journal of Environmental Sustainability, 4, 589–604. https://doi.org/10.1007/s42398-021-00182-w Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030014x Luo, T., Zhu, Y., Lu, W., Chen, L., Min, T., Li, J., & Wei, C. (2021). Acidic compost tea enhances phosphorus availability and cotton yield in calcareous soils by decreasing soil pH. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 71(8), 657-666. https://doi.org/10.1080/09064710.2021.1933161 Mahaly, M., Senthilkumar, A. K., Arumugam, S., & Kaliyaperumal, C. (2018). Vermicomposting of distillery sludge waste with tea leaf residues. Sustainable Environment Research, 28, 223-227. https://doi.org/10.1016/j.serj.2018.06.002 Mendoza, C., & Torres, F. (2025). Nitrogen mineralization in soils amended with tea leaf waste. Journal of Soil Science and Plant Nutrition, 25(1), 150–163. Mezher, Z. Y., & Almehanya, F. H. (2024). Effect of potassium nitrate and black tea leaf waste on the chemical composition of wheat (Triticum aestivum L.). SABRAO Journal of Breeding and Genetics, 56(3), 1316–1323. http://doi.org/10.54910/sabrao2024.56.3.39 Morikawa, C. K., & Saigusa, M. (2008). Recycling coffee and tea wastes to increase plant available Fe in alkaline soils. Plant and Soil, 304(1-2), 249–255. https://doi.org/10.1007/s11104-008-9544-1 Morikawa, C. K., & Saigusa, M. (2011). Recycling coffee grounds and tea leaf wastes to improve the yield and mineral content of grains of paddy rice. Journal of the Science of Food and Agriculture, 91(11), 2108–2111. https://doi.org/10.1002/jsfa.4444 Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis Part 2, chemical and microbiological properties. Second ed., Agronomy Monograph 9, American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. Page, A. L., Miller, R. H., & Keeney, D. R. (1982). Methods of soil analysis Part 2, Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. Pakfetrat, S., Amiri, S., Radi, M., Abedi, E., & Torri, L. (2020). The influence of green tea extract as the steeping solution on nutritional and microbial characteristics of germinated wheat. Food Chemistry, 127288. https://doi.org/10.1016/j.foodchem.2020.127288 Rhoades, J. D. (1982). Soluble salts. In A. L. Page (Ed.), Methods of soil analysis Part 2, chemical and microbiological properties (pp. 167-178). American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. Saberi, S., Minaei, S., Almasi, M., & Barghai, A. (2012). Effect of tea waste application as compost on some physical properties of soil. In: First National Conference on Strategies for Achieving Sustainable Development, Ministry of Interior, Tehran, Iran. (In Persian with English Abstract) Sembiring, M., Mukhlis, M., Razali, R., & Hidayat, B. (2025). Exploring the diversity of cellulolytic microorganisms from tea factory waste and evaluating their potential in breaking down tea waste. Biodiversitas Journal of Biological Diversity, 26(1). https://doi.org/10.13057/biodiv/d260137 Seth, D., Athparia, M., Singh, A., Rathore, D., Venkatramanan, V., Channashettar, V., Prasad, S., Maddirala, S., Sevda, S. & Kataki, R. (2023). Sustainable environmental practices of tea waste- A comprehensive review. Environmental Science and Pollution Research, 32, 1-19. https://doi.org/10.1007/s11356-023-30848-3 Sial, T., Liu, J., Zhao, Y., Khan, M., Lan, Z., Zhang, J., Kumbhar, F., Akhtar, K., & Rajpar, I. (2019). Co-application of milk tea waste and NPK fertilizers to improve sandy soil biochemical properties and wheat growth. Molecules, 24, 423. https://doi.org/10.3390/molecules24020423 Street, R., Szakova, J., Drabek, O., & Mladkoval. (2006). The status of micronutrients (Cu, Fe, Mn, Zn) in tea and tea infusions in selected samples imported to the Czech Republic. Czech Journal of Food Sciences, 24, 62–71. https://doi.org/10.17221/3301-CJFS Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38. https://doi.org/10.1097/00010694-193401000-00003 Wang, S., Li, T., Zheng, Z., & Chen, H. (2019). Soil aggregate-associated bacterial metabolic activity and community structure in different aged tea plantations. Science of the Total Environment, 654, 1023–1032. https://doi.org/10.1016/j.scitotenv.2018.11.145 Wang, S., Zhang, Z., & Ye, S. (2020). Response of soil fertility characteristics in water-stable aggregates to tea cultivation age in hilly region of southern Guangxi, China. Catena, 191, 104578. https://doi.org/10.1016/j.catena.2020.104578 Wang, Z., Ahmad, W., Zhu, A., Zhao, S., Ouyang, Q., & Chen, Q. (2024). Recent advances review in tea waste: High-value applications, processing technology, and value-added products. Science of the Total Environment, 946, 174225. https://doi.org/10.1016/j.scitotenv.2024.174225 Wulansari, R., et al. (2021). Evaluation growth of tea seedling and population of azotobacter sp. from application compost of green tea factory waste. International Journal of Natural Resource Ecology and Management, 6(3), 119–125. https://doi.org/10.11648/j.ijnrem.20210603.17 Yaylalı Abanuz, G., & Tüysüz, N. (2009). Heavy metal contamination of soils and tea plants in the eastern Black Sea region, NE Turkey. Environmental Earth Sciences, 59, 131-144. https://doi.org/10.1007/s12665-009-0154-2 Yin, J., Wang, J., Zhao, L., Cui, Z., Yao, S., Li, G., & Yuan, J. (2025). Compost tea: Preparation, utilization mechanisms, and agricultural applications potential–A comprehensive review. Environmental Technology & Innovation, 104137. https://doi.org/10.1016/j.eti.2025.104137 Yıldırım, G. H., Ay, E. B., & Şahin, M. D. (2025). The effects of tea wastes prepared using different composting methods on the seedling growth and selected biochemical properties of maize (Zea mays var. Indurata). Food Science & Nutrition, 13(8), e70670. https://doi.org/10.1002/fsn3.70670 Zhang, S., Yamashita, H., & Ikka, T. (2025). Exploring from soil acidification to neutralization in tea plantations: Changes in soil microbiome and their impacts on tea quality. Reviews in Agricultural Science, 13(1), 66-80. https://doi.org/10.7831/ras.13.1_66 Zhao, J.-J., Huang, X.-H., Hua, L.-L., Zhou, S.-S., Jiang, W., Tang, Y.-C., & Qian, J. (2022). Effects of tea residue biochar on phosphorus adsorption-desorption in soil. Polish Journal of Environmental Studies, 31(3), 2461–2471. https://doi.org/10.15244/pjoes/143357 
 
 
 | ||
| آمار تعداد مشاهده مقاله: 30 تعداد دریافت فایل اصل مقاله: 16 | ||