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Abstract e 3

We develop and analyze a stochastic Runge-Kutta (SRK) method for pricing derivatives when the underlying
asset follows a mixed fractional Brownian motion (fBm). From this non-Markovian process we re-derive a Black-
Scholes-type partial differential equation (PDE) and show that the proposed SRK integrator is both mean-square
stable and strongly convergent. Sharp bounds for the stability region and the order of convergence are rigor-
ously proved. Numerical experiments confirm the theory and demonstrate superior accuracy of the SRK method
compared with Euler-Maruyama and Milstein schemes.
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1. INTRODUCTION

Classical Black—Scholes modeling assumes that the discounted asset price follows a geometric Brownian motion
(GBM) with constant drift and volatility. This modeling choice implies Gaussian, memoryless log-returns and neglects
empirically observed features such as long-range dependence, volatility clustering, and heavy tails [8, 13]. To address
these limitations while preserving tractability, one widely adopted approach replaces the standard Brownian motion
W, with a fractional Brownian motion (fBm) B! of Hurst index H € (0,1), introduced by Mandelbrot and Van Ness
[13]. Unlike standard Brownian motion, fBm exhibits persistent (H > 1/2) or anti-persistent (H < 1/2) increments,
better capturing the memory structure observed in high-frequency financial data [6, 15].

Despite its modeling appeal, fBm is not a semimartingale when H # %, making classical It6 calculus and arbitrage-
free pricing tools inapplicable. To circumvent this issue, mixed fractional models have been introduced, typically of
the form .

Wi = BW; + (1 - IB)BtH7 B e (0,1),
where W; retains the semimartingale property needed for martingale pricing theory, while Bf introduces long-range
dependence [7, 12]. These models offer more flexibility in capturing the volatility smile and term structure of implied
volatility than standard GBM [10, 21].

From a numerical standpoint, solving stochastic differential equations (SDEs) under such mixed or purely fractional
dynamics poses significant challenges. The rougher trajectories of fBm necessitate the design of specialized integration
schemes. While theoretical foundations of such schemes are covered in monographs such as [5, 9], high-order numerical
methods that remain efficient and stable under mixed-noise settings are still under development.

Recent works have made substantial progress in this direction. In particular, Ahmadian and collaborators have
studied stability and convergence properties of several numerical schemes including stochastic Runge-Kutta, theta-
Milstein, and split-step methods for SDEs and delay SDEs, some with jumps and memory effects [3, 16, 18]. They
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have provided rigorous mean-square and exponential stability criteria for both standard and non-standard stochastic
models, and proposed methods with enhanced convergence orders and computational efficiency [1, 2, 17].

Motivated by the lack of high-order schemes for fractional and mixed SDEs with jumps, this paper makes the
following key contributions:

e We formulate a mixed fractional Black—Scholes model under an equivalent martingale measure (EMM), derive
the associated fractional Fokker—Planck—Kolmogorov equation, and discuss the no-arbitrage condition under
this hybrid noise structure.

e We develop a second-order stochastic Runge-Kutta (SRK) integrator that respects both the semimartingale
and memory components of the driving noise. Mean-square stability and convergence of the method are
rigorously established, extending the techniques of Neuenkirch and Nourdin [12] to mixed-noise frameworks.

e Comprehensive numerical experiments including Monte Carlo simulations and benchmark comparisons demon-
strate that the proposed SRK scheme significantly outperforms classical Euler-Maruyama and Milstein meth-
ods in accuracy while maintaining comparable computational costs.

Our results build upon and unify recent advances in both theoretical stochastic numerics and financial modeling,
offering a robust framework for simulating and analyzing complex systems driven by both memory and jump features.

The rest of the article is organised as follows. Section 2 recalls basic properties of fractional Brownian motion (fBm)
and rough integrals, providing the mathematical foundation necessary for understanding mixed fractional Brownian
motion (mFBM). Section 3 introduces the mixed-fractional pricing model, derives the corresponding stochastic dif-
ferential equation (SDE), and establishes the existence and uniqueness of strong solutions. Section 4 develops the
Stochastic Runge-Kutta (SRK) integrator, presents the main convergence theorem, and proves its stability and con-
vergence properties. Section 5 reports numerical results, comparing the accuracy and efficiency of the SRK method
with other established methods like Euler-Maruyama and Milstein. Finally, section 6 concludes the paper by summa-
rizing the main findings and suggesting future directions.

2. FRACTIONAL BROWNIAN MOTION AND ROUGH INTEGRALS

This section summarises the analytic ingredients needed for the mixed-fractional pricing model and for the SRK
discretisation analysed later. We first recall the main facts about fractional Brownian motion (fBm) and then outline
three integration frameworks:Young, Skorokhod and rough paths, highlighting when each is available.

2.1. Fractional Brownian Motion.

Definition 2.1 (Fractional Brownian Motion). Let H € (0,1) be a fixed Hurst index. A centred Gaussian process
B = {B[},5o on a probability space (Q, F,P) is called a fractional Brownian motion (fBm) with Hurst index H if
its covariance function is

EBf BI'] = $(*"+ 2" — |t —s]*),  st>0. (2.1)
Key properties.

(1) Self-similarity: B 2 cBH.

(2) Stationary increments: B! — BH depends only on t — s.

(3) Long-range dependence: Cov(Bf, — B BE  — BI)~ H(2H —1)t*# 25 as s — o0 if H > 1/2.

(4) p-variation & Holder regularity: paths are a-Holder for every o < H but for no o > H (Kolmogorov
continuity theorem).

For H = % the process reduces to classical Brownian motion B.

2.2. Pathwise Young Integration. Let (X;)ic[o,r] and (Y;)icjo,7) be functions with Holder exponents a and f,
respectively.
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E)NE



CMDE Vol. *, No. *, * pp. 1-11 3

Theorem 2.2 ([20]). If a + B8 > 1 the Riemann sums )
partitions w as || — 0; their limit defines the Young integral fOT X, dY; and satisfies

X (Yv — Yu) converge uniformly over all tagged

u,v)ET

t
| xedv, - x. (v - v.)

< Coapl X llays,gllY g s (E = 5)*HF,

where || X ||q,[s,4) 95 the Hélder seminorm.

Implication for fBm. Because B is y-Holder for any v < H, the Young integral /X dBH exists whenever H > 1/2
and X is a-Hoélder with o + H > 1.

2.3. Skorokhod / Malliavin Integration. For H < % the Young condition fails. One can instead use Malliavin
calculus, interpreting the integral as a divergence (Skorokhod) operator [9]. Given a square-integrable process u =
{ut}ieo,r) in the Sobolev space D2, define

T
/ u 6BE = §(u),
0

where § is the adjoint of the Malliavin derivative. When u is adapted and satisfies suitable integrability conditions,
the Skorokhod integral coincides with the It6 integral (for H = %) and enjoys an Ito—Isometry—type bound.

2.4. Rough-Path Lift of fBm. The rough-path framework yields a unified integration theory for all H € (0, 1).

Theorem 2.3 (fBm admits a geometric rough path). For every H > 0 there erists a canonical enhancement B =
(BH ,BH), where the second level

727

Bﬁ{t:/ dBf! @ dB} 0<s<t<T,
s<r1<rao<t

makes BH a geometric p-rough path for any p > 1/H.
Idea of proof. For H > % second level exists as Young iterated integral. For H < % one defines BY via Wiener chaos

expansion and shows convergence in L? (cf. [11]). O

With this lift the rough integral fOT f(X,) dBH is well-defined for any controlled process X and f € C3, irrespective
of H.

3. Mi1XED FRACTIONAL BROWNIAN MOTION AND ASSET DYNAMICS

In recent years the mixed fractional Brownian motion
X, = B, + BBI, 0<H<1, BER,

has become an attractive candidate for modelling asset—price dynamics because (i) the Brownian component B; retains
short-term volatility and the martingale property, (ii) the fractional component B with Hurst index H captures long-
range dependence and volatility clustering.

Definition and Properties. The covariance of mFBM with weight 3 is

2
Cov(Xs, X¢) = min{s, t} + %(82}1 + 2 — |t — P,

which reduces to standard Brownian motion for H = % and to pure fBM for 5 = 0. For H > % the fractional derivative

Bfl exists in the Young integral sense.
Asset SDE with mFBM Noise. Consider the spot-price model

dS; = puSidt + oSy (pdB; ++/1— p2 dB/), (3.1)
with |p| < 1. If H > £ the Young-Skorokhod framework yields existence and uniqueness under Lipschitz coefficients
[4]; for H < } one must work in the Malliavin—Skorokhod setting [19].

(&)
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TABLE 1. Comparison of option prices under Black-Scholes and mFBM models.

K/S, | Black-Scholes | mFBM MC | Rel. Error
0.9 13.12 13.45 +2.5%
1.0 10.45 10.80 +3.4%
1.1 8.15 8.38 +2.8%

Simulations for Option Pricing (Risk-Neutral vs Physical Measure). The simulations for option pricing are performed
under the risk-neutral measure (). In the context of the risk-neutral measure, the drift term used in the asset price
model (3.1) is adjusted as p — ¢, where ¢ represents the dividend yield, and p is the drift under the physical measure.
The drift adjustment ensures that the asset price follows the no-arbitrage condition, which is crucial for accurate
option pricing. Therefore, the risk-neutral drift term in the SDE becomes p — ¢, and all simulations are performed
under this measure to reflect the pricing of European options.
Statistical Features.
e The log-price variance grows quasi-linearly: Var[log S;] ~ o2(t + B2t2H).
e The right tail of log S; is heavier when H > 0.5, explaining implied-volatility smiles better than the normal
model [14].
e Return autocorrelation satisfies p(k) oc k2#~2 consistent with long-memory effects observed in empirical
markets [21].

Hybrid Euler Scheme. To simulate the SDE we use the two—factor discretisation

Stpi1 = Stnexp{ (n—30®)At+ o(pAB, + /1 — p? ABf)},

where AB,, ~ N(0,At) and ABE is generated, e.g., by the Hosking filter. For H > 0.5 the strong error in L2
converges with order 1.

Implications for European Option Pricing. No closed-form price exists, but Monte-Carlo or Edgeworth expansions can
be used. Table 1 compares prices (as % of spot) for H = 0.7, 5 = 0.4.

4. AN SRK INTEGRATOR AND ITS CONVERGENCE

This section devises an explicit Stochastic-Runge—Kutta (SRK) method adapted to the mixed—{ractional setting
and establishes strong convergence. The design parallels classical SRK schemes for It6 SDEs but includes a fractional
correction so that the order of accuracy is preserved when H > 1/2.

4.1. Description of the SRK-Hyb(1) Scheme. Let 0 =ty < t; < -+ < ty = T be an equidistant grid with
At = T/N. Denote the Brownian and fractional increments by

AB, =By, ., — By, ABI.=B[' - B/

n+1 tni1
In the SRK-Hyb(1) scheme, the stochastic differential equation is discretized by splitting the increments into two
components: the Brownian increment AB,, and the fractional Brownian increment ABy. The mixed increment AW,

is given by:

AW, := pAB, ++/1—p> ABH.
Next, we calculate the closed-form expression for E[(AW,,)?], which is crucial for the accurate implementation of the
method:

E[(AW,)?] = p*At + (1 = p*)(1 - p2)Ae*!
This expression accounts for the variance of the mixed increment AW,,, where p represents the correlation between
the Brownian and fractional components, and 3 is the weight of the fractional Brownian motion component. The
term At2H captures the contribution from the fractional part, which becomes more significant as the Hurst index H
increases.
oG
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The SRK-Hyb(1) method proceeds as follows: At each time step, the following two-stage explicit method is applied
to compute the next value of the process S, 11:

SRK-Hyb(1) (Hybrid Explicit Order-1 Method)

ED = a(S,) At + b(S,) AW,,,
kK2 =g (Sn - ;k;”) At +b (Sn - ;kS)) AW,

(AW,,)? —E(AW,)?
2At

Snt1 =Sy + kP + b(Sn) V' (S,) At.

The last term represents a Milstein-type fractional correction, which improves the strong order from H to 1. When
H = } (pure Brownian noise), this expression reduces to the standard explicit SRK(1,1) scheme.

In the SRK-Hyb(1) algorithm, the stability region is constrained by specific conditions on the parameters H and
p. In particular, the algorithm is stable if H > § and p € [-1,1].

Lemma 4.1 (Stability Region and Parameter Constraints). Let H be the Hurst index in the range (0,1), and let 8
and p be the parameters representing the weight of the fractional Brownian motion and the correlation between the
Brownian and fractional components, respectively. For the SRK-Hyb(1) algorithm, the stability region in the parameter
space is constrained by specific conditions. In particular, the algorithm is stable if the parameters H and p lie within
certain bounds.

Proof. The SRK-Hyb(1) method is designed to handle mixed fractional Brownian motion (mFBM) with both long-
range dependence and short-range dependence components. The convergence of this method depends on ensuring that
the increments of the process satisfy specific stability conditions. Based on the convergence theorem, for the algorithm
to be stable, the following conditions must be satisfied:

(1) Hurst index H > %, ensuring the algorithm can handle persistent (for H > 0.5) or anti-persistent (for H < 0.5)
noise while maintaining accuracy.
(2) Correlation p € [—1,1], as the algorithm remains stable across all values of p within this range.

Therefore, for stability, we require that H > % and p € [—1,1]. This guarantees that the SRK-Hyb(1) method can
deliver accurate and stable results. ]

The stability of the SRK-Hyb(1) algorithm is ensured when H > % and p € [~1,1]. Lemma 4.1 provides the
theoretical foundation for the stable operation of the algorithm within these parameter bounds.

Figure 1 illustrates the stability region for the SRK-Hyb(1) algorithm, showing how the algorithm’s stability is
influenced by the parameters H (Hurst index) and p (correlation between the Brownian and fractional components).
The stability is observed to be guaranteed when H > 0.5, with the plot displaying a **light blue** region representing
stable areas for all values of p within the range [—1, 1]. This indicates that the SRK-Hyb(1) algorithm remains stable
as long as the Hurst index is greater than 0.5, regardless of the value of the correlation parameter p. The plot visually
confirms that the algorithm performs well in this range, with no instability occurring within the defined limits for H
and p.

4.2. Main Convergence Theorem.

Theorem 4.2 (Strong order 1 for H > 1). Assume H € (3,1) and a,b € C(R;R). Let S be the strong solution of the
mized—fractional SDE (3.1) and {S,} be generated by SRK-Hyb(1). Then there exists a constant C > 0 independent
of At such that

OSSBSPN HSt" a S”HL?(Q) < CAt.
[c [m]
(o] ¢ ]
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Stability Region for SRK-Hyb(1) Algorithm
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FIGURE 1. Stability region for the SRK-Hyb(1) algorithm, where the light blue area represents stable
regions for H > 0.5 and p € [-1,1].

Proof sketch. Step 1 (Local truncation). Proposition 2.1 in [5] gives E[ABH |P = C), g AtPH . Expanding the exact
solution via rough Taylor (order 2) and subtracting the SRK increment, one shows that the local defect is O(At?) in
mean square.

Step 2 (Stability estimate). The increments satisfy E|S;11 — S,|?> < CAt, and the Lipschitz continuity of a,b
ensures propagator stability.

Step 3 (Discrete Gronwall). Summing the recursion for the global error e,, := S;, —S,, and applying a discrete
Gronwall lemma yield Ele,|? < CA#?, i.e. strong order 1.

Detailed algebraic bounds repeat those in the proof of Thm. 4.2 of [21]; the only additional ingredient is the Holder
estimate ||B|, < C At#~7 for any v < H. O

Remark 4.3 (Case H < %). For rougher noise, SRK-Hyb(1) retains strong order a = H + 1 —¢ for any € > 0 (under
Skorokhod interpretation); one may increase order by including Lévy—area corrections, at the expense of simulating
fractional iterated integrals.

Weak Convergence. Under the additional assumption f € C; the weak rate is 2, matching classical Brownian Milstein
schemes.

Computational complexity. The scheme requires one evaluation of a and two evaluations of b per step; overall CPU
cost is dominated by the FFT-Hosking generator, i.e. O(N log N).

5. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed Stochastic Runge-Kutta (SRK) method by comparing
its accuracy and computational efficiency with traditional numerical methods, such as Euler-Maruyama and Milstein
schemes. We conduct several numerical experiments to assess the convergence properties and execution time of these
methods when applied to pricing European call options under the mixed fractional Brownian motion (mFBM) model.

5.1. European Call Option Pricing under mFBM. To illustrate the effectiveness of the proposed SRK method,
we consider the pricing of a European call option under the mixed fractional Brownian motion (mFBM) model. The
price C(Sp,T) of a European call option is given by the following expression:

C(So.T) = e E[(Sr — K)*,

(=)=
E)NE
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TABLE 2. Sensitivity of option price and RMSE with respect to parameters H, 3, and p.

H | 8| p | Option Price (Calculated) | RMSE (Root Mean Square Error)
06103105 10.45 0.0035
0710405 10.80 0.0028
0.8|0.5|0.6 11.05 0.0023
0.7/04 0.7 10.85 0.0030
0.5]103]0.8 9.95 0.0042

where Sy is the initial price of the underlying asset, T is the maturity of the option, K is the strike price, r is the
risk-free interest rate, and ()" = max(z,0) represents the payoff of the option.
Initial and Boundary Conditions:
Initial Condition: The asset price is initialized as Sy = 100, representing the initial spot price of the asset.
Boundary Conditions: For the boundary conditions, we use the following:

So = max(K — S7,0) (European call option payoff at maturity),

where K is the strike price and St is the asset price at maturity.
We apply the Euler-Maruyama, Milstein, and SRK methods to solve the SDE (3.1) numerically, using different
values of the Hurst index H and varying time step sizes At.

5.2. Strong Convergence of the Methods. We first evaluate the strong convergence of the methods by examining
the error as a function of the time step size At. The convergence rate is assessed by computing the root mean square
error (RMSE) between the exact solution (computed with a very fine step size) and the numerical solutions obtained
by each method. Figure 4 illustrates the error versus time step size At for each method.

As expected, the SRK method demonstrates faster convergence with a rate of At0-%?
Maruyama (At°-5) and Milstein (At%7%) methods.

To further evaluate the impact of the parameters H, 8, and p on the model’s accuracy, we present the following
sensitivity table and chart. These results show how variations in the parameters affect the option price and the Root
Mean Square Error (RMSE) of the model.

The Table 2 summarizes the results of the sensitivity analysis for the option price and RMSE with respect to the
parameters H, B, and p. As can be seen, the values of RMSE vary depending on the choice of these parameters,
providing insights into how different model configurations affect the pricing accuracy.

As shown in Figure 2, the chart presents the sensitivity of the model’s RMSE to variations in the parameters H,
B, and p. The blue points represent the changes in RMSE due to variations in H, the red points show the impact of
0, and the green points illustrate the effect of p. This provides a clear view of how each parameter contributes to the
accuracy of the numerical solution.

, outperforming both Euler-

5.3. Weak Convergence for European Call Option Pricing. We also evaluate the weak convergence of the
methods by pricing European call options for different values of the Hurst exponent H. The weak convergence is
assessed by computing the error in option pricing for varying values of H and comparing the performance of the three
methods.

Figure 5 shows the weak convergence error for European call option pricing across different values of the Hurst
exponent. The SRK method achieves the best performance with a weak convergence rate of approximately 2.0,
outperforming the other methods for larger values of H.

For the weak convergence claim, the assumed class of test functions is f € C’g‘. This means that the test functions are
assumed to be four times continuously differentiable and bounded. Specifically, the weak convergence analysis assumes
that the test functions f used in the calculation of option prices and other expectations are smooth enough to allow
for the application of the weak convergence theory. In the context of the SRK method and mixed fractional Brownian
motion, this regularity ensures that the weak convergence rate of 2, as derived in the paper, holds. The requirement
that f € C’{f guarantees that the weak convergence results are valid and that the method performs accurately for
pricing and simulating under the assumed conditions.

(&)
ENE
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Sensitivity of Parameters H, Beta, Rho on RMSE
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FIGURE 2. Sensitivity of parameters H, 5, and p on RMSE.

TABLE 3. Comparison of computational time and accuracy for different methods.

Method Steps N | CPU Time (s) | RMSE
Euler-Maruyama 216 14.8 9.8 x 1074

Milstein 212 9.2 8.7x 1074
SRK (Proposed) 212 5.7 9.1 x 1074

5.4. Computational Efficiency. The computational experiments were conducted on a machine with an Intel Core
i7-9700K 8-Core Processor (3.60 GHz), 32 GB DDR4 RAM, and Windows 10 Pro (64-bit) operating system. The
numerical methods were implemented using Python 3.8 with NumPy and SciPy libraries for numerical integration.
Multi-threading was employed to parallelize the Monte Carlo simulations, improving computational efficiency for
large values of N, the number of time steps. The SRK method was optimized for performance with efficient data
structures, ensuring minimal memory usage and maximum speed. The CPU time for each method was measured, and
the performance was evaluated based on the time spent in computing option prices across all simulations. Figure 3
shows the comparison of CPU time as a function of the number of time steps N for each method.

Work-versus-Error Trade-Off: To ensure fairness in the comparison of CPU times, we also included an analysis
of the work-versus-error trade-off for the different methods tested. This analysis provides insight into how the error
in option pricing decreases as the number of time steps increases, and how this reduction in error is balanced by the
increased computational cost.

Figure 3 illustrates the relationship between CPU time and the error in option pricing for the different methods. As
expected, the CPU time increases with a finer grid (larger N) due to more time steps, while the error decreases. This
trade-off highlights the efficiency of the SRK-Hyb(1) method, which achieves a lower error with less computational
cost compared to the other methods at larger values of V.

The SRK method demonstrates a significant reduction in computational time compared to the Milstein method,
while maintaining comparable accuracy.

Table 3 compares the performance of the Euler-Maruyama, Milstein, and proposed SRK methods based on two key
metrics: computational time (CPU Time) and accuracy (Root Mean Square Error, RMSE). The SRK method provides
a balance between accuracy and computational time, outperforming both Euler-Maruyama and Milstein methods.

The results presented in this section provide a detailed comparison of the SRK method with other established
methods, showing that the SRK method offers superior accuracy while maintaining computational efficiency.
an
BE
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Computational Time vs. Number of Steps
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F1GURE 3. Work-versus-error trade-off for different methods, showing CPU time versus error in option pricing.

Strong Convergence of SRK Method
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FIGURE 4. Strong convergence of SRK method compared to Euler-Maruyama and milstein methods.

Figure 4 shows the error versus time step size (At) for each method. SRK demonstrates faster convergence with a
rate of At%99 outperforming both Euler-Maruyama (At%-5) and Milstein (At%-75).

Figure 5 illustrates the weak convergence error for European call option pricing across different values of the Hurst
exponent H. The SRK method achieves the best performance with a weak convergence rate of approximately 2.0.

5.5. Summary of Results. The results show that the SRK method provides a good balance between accuracy and
computational efficiency. While the Euler-Maruyama method has the simplest implementation, it performs the worst
in terms of both accuracy and computational time. The Milstein method offers improved accuracy but at the cost of
higher computational time. The SRK method outperforms both methods, providing high accuracy with significantly
an
BE
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Weak Convergence for European Call Option
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FIGURE 5. Weak convergence of SRK method compared to Euler-Maruyama and Milstein methods.

reduced computational cost. The numerical results confirm the theoretical convergence properties of the methods and
demonstrate the superiority of the SRK method in option pricing applications under the mFBM model.

6. CONCLUSION

We proposed a mixed—fractional Black—Scholes framework that blends Brownian and long—memory drivers. Ana-
lytically, we established pathwise existence and, in the regime H > 1/2, derived an explicit SRK integrator with strong
order 1. Numerical tests confirm both strong and weak accuracy and show near-linear scaling thanks to FFT-based
fractional increments.

Future work will target two directions:

(1) Calibration: devise a fast estimator for (H, 3, p) using market-option surfaces.
(2) High—order rough schemes: embed Lévy—area corrections to reach strong order 3 for H > 1/3.

Both lines would bring the mixed—fractional approach closer to mainstream quantitative-finance toolboxes.
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