
تعداد نشریات | 45 |
تعداد شمارهها | 1,418 |
تعداد مقالات | 17,437 |
تعداد مشاهده مقاله | 56,217,120 |
تعداد دریافت فایل اصل مقاله | 18,545,351 |
تأثیر کاربرد کود بستر کرم میلورم (Tenebrio molitor) و محلولپاشی روی لیگنوسولفونات بر کمیت و کیفیت دانه گندم | ||
دانش خاک و گیاه | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 29 مهر 1404 اصل مقاله (1.53 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/sps.2025.68906.1018 | ||
نویسندگان | ||
نیلوفر میرزابابایی؛ اکبر حسنی* ؛ احمد گلچین؛ محمد بابااکبری ساری | ||
گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران. | ||
چکیده | ||
افزایش کیفیت دانههای غذایی یکی از اهداف کشاورزی پایدار است. در این پژوهش برای بررسی تأثیر کود بستر کرم میلورم (Tenebrio molitor) و محلولپاشی روی لیگنوسولفونات بر رشد و تولید محصول، غلظت عناصر غذایی و نسبت مولی فیتیک اسید به روی دانه گندم (Triticum aestivum L.) رقم مهدوی، به صورت فاکتوریل در قالب طرح بلوکهای کامل تصادفی با سه تکرار در شرایط مزرعهای اجرا شد. تیمارها شامل چهار سطح کود میلورم (0، 500، 1000 و 1500 کیلوگرم بر هکتار) و سه سطح محلولپاشی روی لیگنوسولفونات (آب آبیاری به عنوان شاهد، محلولپاشی با غلظتهای 5/2 و 5 در هزار روی لیگنوسولفونات) بود. بر اساس نتایج به دست آمده، بیشترین محصول دانه (17/5 تن بر هکتار) و کاه (75/2 تن بر هکتار) مربوط به تیمار 1500 کیلوگرم بر هکتار کود میلورم و 5 در هزار محلولپاشی روی لیگنوسولفونات بود که نسبت به شاهد بهترتیب 43 و 93 درصد افزایش داشت. تعداد سنبله بارور، ارتفاع گیاه، طول سنبله و تعداد دانه در سنبله بر اثر اعمال تیمارهای کود میلورم و محلولپاشی افزایش یافت و تأثیر کود میلورم بیشتر از محلولپاشی بود. بیشترین وزن هزار دانه (33/43 گرم) در تیمار 1500 کیلوگرم بر هکتار کود میلورم همراه با محلولپاشی 5 در هزار روی لیگنوسولفونات مشاهده شد. کاربرد کود میلورم سبب افزایش نسبت مولی فیتیک اسید به روی شد (14 درصد) درحالیکه محلولپاشی با روی لیگنوسولفونات سبب کاهش آن شد (7 درصد). غلظت نیتروژن، فسفر، پتاسیم و روی دانه با محلولپاشی روی و مصرف کود میلورم افزایش یافت ولی غلظت آهن تغییر معناداری نکرد. بر اساس نتایج بهدست آمده از این پژوهش میتوان از کود میلورم و محلولپاشی روی لیگنوسولفونات برای بهبود کمیت و کیفیت دانه گندم استفاده کرد. | ||
کلیدواژهها | ||
پتاسیم؛ روی لیگنوسولفونات؛ فسفر؛ فیتیک اسید؛ مدیریت تلفیقی تغذیه گیاه؛ نیتروژن | ||
مراجع | ||
Abdoli, M. & Esfandiari, E. (2014). Effect of zinc foliar application on the quantitative and qualitative yield and seedlings growth characteristics of bread wheat (cv. Kohdasht). Iranian Dryland Agronomy Journal, 3(1), 77-90. (In Persian with English abstract). https://doi.org/10.22092/idaj.2014.100557 Alloway, B.J. (2008). Zinc in soils and crop nutrition (2th Ed.). Brussels: International zinc association (IZA), 136p. Brussels, Belgium and Paris, France. Álvarez-Fernández, A., Orera, I., Abadía, J., & Abadía, A. (2007). Determination of synthetic ferric chelates used as fertilizers by liquid chromatography-electrospray/mass spectrometry in agricultural matrices. Journal of the American Society for Mass Spectrometry, 18, 37–47. https://doi.org/10.1016/j.jasms.2006.08.018 Arévalo, H. A. A., Rojas, E. M. M., Fonseca, K. B. B., & Mejía, S. M. V. (2022). Implementation of the HACCP system for production of Tenebrio molitor larvae meal. Food Control, 138, 109030. https://doi.org/10.1016/j.foodcont.2022.109030 Askvik, K. M., Are Gundersen S., Sjöblom J., Merta J., & Stenius P. (1999). Complexation between lignosulfonates and cationic surfactants and its influence on emulsion and foam stability. Colloids Surf. A Physicochem. Eng. Asp. 159 89–101. https://doi.org/10.1016/S0927-7757(99)00165-X Bai, Y. (2015). Ecological functioning of bacterial chitinases in soil. Universiteit Leiden (dissertation) Barragán-Fonseca, K. Y., Nurfikari, A., Van De Zande, E. M., Wantulla, M., Van Loon, J. J., De Boer, W., & Dicke, M. (2022). Insect frass and exuviae to promote plant growth and health. Trends in Plant Science, 27(7), 646-654. https://doi.org/10.1016/j.tplants.2022.01.007 Benedicto, A., Hernández-Apaolaza, L., Rivas, I., & Lucena, J. J. (2011). Determination of 67Zn distribution in navy bean (Phaseolus vulgaris L.) after foliar application of 67Zn–lignosulfonates using isotope pattern deconvolution. Journal of Agricultural and Food Chemistry, 59(16), 8829-8838. https://doi.org/10.1021/jf2002574 Blakstad, J. I., Strimbeck, R., Poveda, J., Bones, A. M., & Kissen R. (2023). Frass from yellow mealworm (Tenebrio molitor) as plant fertilizer and defense priming agent. Biocatalysis and Agricultural Biotechnology, 53, 102862. https://doi.org/10.1016/j.bcab.2023.102862 Cakmak I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil, 302, 1-17. https://doi.org/10.1007/s11104-007-9466-3 Febles C. I., Arias A., Hardisson A., Rodrıguez-Alvarez C., & Sierra A. (2002). Phytic acid level in wheat flours. Journal of Cereal Science, 36(1), 19-23. https://doi.org/10.1006/jcrs.2001.0441 Feiziasl , V., & Valizadeh, Gh. (2004). Effects of phosphorus and zinc fertilizer applications on nutrient concentrations in plant and grain yield in cv. Sardari "Triticum aestivum" under dryland conditions. Iranian Journal of Crop Sciences, 6(3), 223- 235. (In Persian with English abstract). https://doi.org/20.1001.1.15625540.1383.6.3.5.4 Fescemyer, H. W., Sandoya, G. V., Gill, T. A., Ozkan, S., Marden, J. H., & Luthe, D. S. (2013). Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut. Insect Biochemistry and Molecular Biology, 43(3), 280-291. https://doi.org/10.1016/j.ibmb.2012.12.008 Gargari, B. P., Mahboob, S., & Razavieh, S. V. (2007). Content of phytic acid and its mole ratio to zinc in flour and breads consumed in Tabriz, Iran. Food Chemistry, 100(3), 1115-1119. https://doi.org/10.1016/j.foodchem.2005.11.018 Gonzalez, D., Obrador, A., López Valdivia, L. M., & Álvarez, J. M. (2008). Effect of zinc source applied to soils on its availability to navy bean. Soil Science Society of America Journal, 72, 641–649. Https://doi.org/10.2136/sssaj2007.0099. Haug, W., & Lantzsch, H. J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products. Journal of the Science of Food and Agriculture, 34(12), 1423-1426. https://doi.org/10.1002/jsfa.2740341217 Houben, D., Daoulas, G., Faucon, M. P., & Dulaurent, A. M. (2020). Potential use of mealworm frass as a fertilizer: Impact on crop growth and soil properties. Scientific Reports, 10(1), 4659. https://doi.org/10.1038/s41598-020-61765-x Ikkonen, E. N., & Jurkevich, M. G. (2021). Effect of lignosulfonate application to sandy soil on plant nutrition and physiological traits. In IOP Conference Series: Earth and Environmental Science, 862(1), IOP Publishing. https://doi.org/10.1088/1755-1315/862/1/012079 Jalilian, J., Khade, A., & Pirzad, A. (2014). Effect of Fe and Zn spraying on some characteristics of mungbean using chemical and organic fertilization. Journal of Crops Improvement, 16(3), 725-732. https://doi.org/10.22059/jci.2014.53272 Kalra, Y. (Ed.). (1997). Handbook of reference methods for plant analysis. CRC press. Kaya, M., Küçükyumuk, Z. & Erdal, I. 2009. Phytase activity, phytic acid, zinc, phosphorus and protein contents in different chickpea genotypes in relation to nitrogen and zinc fertilization. African Journal of Biotechnology, 8, 4508-4513. Li, M., Wang, S., Tian, X., Zhao, J., Li, H., Guo, C., Chen, Y. & Zhao, A. (2015). Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P. Journal of Cereal Science, 61, 26-32. https://doi.org/10.1016/j.jcs.2014.09.009 Li, K., Xing, R., Liu, S., & Li, P. (2020). Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. Journal of Agricultural and Food Chemistry, 68(44), 12203-12211. https://doi.org/10.1021/acs.jafc.0c05316 Li, L., Zhao, Z., & Liu, H. (2013). Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronautica, 92(1), 103-109. https://doi.org/10.1016/j.actaastro.2012.03.012 Malakouti, M., J. (2011). Towards improving the quality of consumed breads in Iran, a review. Journal of food science and technology, 8(32), 11-21. (In Persian with English abstract) https://fsct.modares.ac.ir/article-7-1738-en.html Martin-Ortiz, D., Hernandez-Apaolaza, L., & Garate, A. (2009). Efficiency of a NPK fertilizer with adhered zinc lignosulfonate as a zinc source for maize (Zea mays L.). Journal of agricultural and food chemistry, 57(19), 9071-9078. https://doi.org/10.1021/jf9017965 Mehdiniya Afra, J., & Manavi Amri, SS. (2015). The effects of interaction between the elements phosphorous and zinc are some traits of soybean cultivars of Sari. Iranian Journal of Dynamic Agriculture, 11(4), 309-315. (In Persian with English abstract). Mikkelson, D., & Brandon, D. (1975). Zinc deficiency in California rice. California Agriculture, 29(9), 8-9. Motalebifard, R. (2017). Effects of Zinc and phosphorus Levels on Yield, Nutrients Uptake and Zinc Recovery and Agronomic Efficiency in Potato. Journal of Water and Soil, 31(3), 886-899. (In Persian with English abstract). https://doi.org/10.22067/JSW.V31I3.54513 Motesharezadeh, B., & Savaghebi, Gh., R. (2012).The effect of balanced fertilization on nutrients’ concentration and phytic acid to zinc molar ratio in Iranian red been (Phaseolus calcaratus L.) cultivars at different stages of seed development. Journal of Science and Technology of Greenhouse Culture, 3(1), 73-84. (In Persian with English abstract) https://doi.org/20.1001.1.20089082.1391.3.1.6.4 Nyanzira, A., Machona, O., Matongorere, M., Chidzwondo, F., & Mangoyi, R. (2023). Analysis of frass excreted by Tenebrio molitor for use as fertilizer. Entomology and Applied Science Letters, 10(1-2023), 29-37. https://doi.org/10.51847/xBw1ooFqXN Parzivand, A., Ghooshchi, F., Momayezi, M.R., & Tohidi Moghaddam, H.R. (2011). Effects of zinc spraying and nitrogen fertilizer on yield and some seed qualitative traits of wheat under drought stress conditions. Journal of Crop Production Research (Environmental Stresses in Plant Aciences), 3(1), 55-69. (In Persian with English abstract). https://sid.ir/paper/182247/en Poveda, J. (2021). Insect frass in the development of sustainable agriculture. A review. Agronomy for Sustainable Development, 41(1), 5. https://doi.org/10.1007/s13593-020-00656-x Poveda, J., Jiménez-Gómez, A., Saati-Santamaría, Z., Usategui-Martín, R., Rivas, R., & García-Fraile, P. (2019). Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Applied Soil Ecology, 142, 110-122 https://doi.org/10.1016/j.apsoil.2019.04.016 Rodella, A. A., & Chiou, D. G. (2009). Copper, zinc, and manganese mobilization in a soil contaminated by a metallurgy waste used as micronutrient source. Communications in soil science and plant analysis, 40(9-10), 1634-1644. https://doi.org/10.1080/00103620902831941 Rumbos, C. I., Karapanagiotidis, I. T., Mente, E., Psofakis, P., & Athanassiou, C. G. (2020). Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Scientific Reports, 10(1), 11224. https://doi.org/10.1038/s41598-020-67363-1 Ryan, M. H., McInerney, J. K., Record, I. R., & Angus, J. F. (2008). Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. Journal of the Science of Food and Agriculture, 88(7), 1208-1216. https://doi.org/10.1002/jsfa.3200 Sánchez Jiménez, S., & Lucena, J. J. (2015). Characterization of zinc fertilizers. Adjustment to the European and Spanish regulations (in Spanish). Phytoma, 272, 47–52. Shewry P. R. (2009). Wheat. Journal of experimental botany, 60(6), 1537-1553. https://doi.org/10.1093/jxb/erp058 Shoormij, F., Mirlohi, A., Saeidi, G., Kadivar, M., & Shirvani, M. (2023). Wheat grain quality changes with water stress, zinc, and iron applications predicted by the solvent retention capacity (SRC). Journal of Cereal Science, 111, 103665. https://doi.org/10.1016/j.jcs.2023.103665 Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual review of entomology, 58(1), 563-583. https://doi.org/10.1146/annurev-ento-120811-153704 Verardi, A., Sangiorgio, P., Della Mura, B., Moliterni, S., Spagnoletta, A., Dimatteo, S., & Errico, S. (2025). Tenebrio molitor Frass: A Cutting-Edge Biofertilizer for Sustainable Agriculture and Advanced Adsorbent Precursor for Environmental Remediation. Agronomy, 15(3), 758. https://doi.org/10.3390/agronomy15030758 Vitosh, M. L., Warncke, D. D., & Lucas, R. E. (1994). Secondary and Micronutrients for Vegetable and Field Crops. Extension Bulletin E-486, Michigan State University Extension Service, 18 p. Weaver, C. M., & Kannan, S. (2001). Phytate and mineral bioavailability. pp. 227-240. In: Food phytates. CRC Press. Welch R. M., & Graham R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55(396), 353-364. https://doi.org/10.1093/jxb/erh064 World Health Organization. (1996). Trace elements in human nutrition and health. WHO Library Cataloguing in Publication Data, 105-122. Zahedifar, M., Karimian, N., Ronaghi, A., Yasrebi, J. and Emam, Y. (2011). Phosphorus and Zinc Distribution in Different Parts and Various Growth Stages of Wheat under Field Conditions. Water and Soil, 25(3). https://doi.org/10.22067/jsw.v0i0.9624 Zhang, B., Gu, L., Dai, M., Bao, X., Sun, Q., Qu, X., & Zhen, W. (2024). Estimation of grain filling rate and thousand-grain weight of winter wheat (Triticum aestivum L.) using UAV-based multispectral images. European Journal of Agronomy, 159, 127258. https://doi.org/10.1016/j.jclepro.2024.142608 Zim, J., Aitikkou, A., EL Omari, M. H., EL Malahi, S., Azim, K., Hirich, A., & Oumouloud, A. (2022). A new organic amendment based on insect frass for zucchini (Cucurbita pepo L.) cultivation. Environmental Sciences Proceedings, 16(1), 28, 1-4. https://doi.org/10.3390/environsciproc2022016028 Zunzunegui, I., Martín-García, J., Santamaría, Ó. & Poveda, J. (2024). Analysis of yellow mealworm (Tenebrio molitor) frass as a resource for a sustainable agriculture in the current context of insect farming industry growth. Journal of Cleaner Production, 460, 142608. https://doi.org/10.1016/j.jclepro.2024.142608 | ||
آمار تعداد مشاهده مقاله: 9 تعداد دریافت فایل اصل مقاله: 2 |