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Abstract

This article will address the resolution of a new Cauchy problem: The cotangent fractional Cauchy problem
(CF-CP). First, we will conduct a theoretical study on ’existence and uniqueness’ using the fractional Gronwall
inequality. Next, we will formulate a decomposition formula for the CF-CP. Moreover, we present a numerical
method for solving the CF-CP. Finally, we will present numerical results to verify the reliability of the proposed
numerical method and validate the stability.
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1. INTRODUCTION

An equation featuring a fractional derivative (FD) that is non-integer in nature. can be used to simulate a frac-
tional order system (FOS) [25, 42]. Numerous systems, including dynamical systems in electrochemistry, physics,
viscoelasticity, biology, and chaotic systems, can be studied with the help of FOS [25, 40]. Moreover, the application
of fractional calculus in numerous theories of control, including stability [6, 26, 27, 41], finite-time stability [7, 18, 29],
stabilization [28, 35], observer design [15, 28], controllability [33, 34], and fault estimation [16, 17, 19], has been greatly
boosted by the progress of scientific and technical systems. On the other hand, fractional calculus has a wide range
of uses in disciplines such as fluid mechanics, physics, and more (see to [4, 23, 30, 31]).

Recent research highlights the importance of fractional Cauchy problems in modeling memory-dependent and com-
plex dynamic systems. In Luchko, 2023 [8], explicit solutions to fractional Cauchy problems using Dzherbashyan—Caputo
derivatives are developed, with connections to probabilistic frameworks. The abstract fractional Cauchy problem is
addressed in Kosti¢ et al ., 2021 [13], where existence and weak differentiability of solutions are studied in Banach
spaces. The work of Li et al., 2023 [14] introduces variable-order fractal derivatives to better model nonlocal and
evolving systems. In Ashyralyev et al., 2024 [2], the fractional Cauchy problem is explored in the context of the
multidimensional heat equation, using integral methods. Numerical solutions for the Helmholtz equation are proposed
in Boudjella, 2024 [20], where a regularized approach to the ill-posed Cauchy problem is presented. Further, Torres &
Trujillo, 2021 [21] study generalized initial and internal Cauchy-type conditions using Riemann—Liouville derivatives.
Lastly, El Kinani & Hbid, 2022[1] present a broader perspective on the application of fractional calculus in solving
inverse and direct problems related to Cauchy-type formulations. Together, these works deepen both the theoreti-
cal understanding and numerical treatment of fractional Cauchy problems across various mathematical and physical
contexts.
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Within this broad context, the Cotangent Fractional Cauchy Problem (CF-CP) presents a powerful and flexible
modeling tool. By incorporating a cotangent kernel, this formulation captures complex dynamical behaviors and
memory effects that classical integer-order derivatives cannot. The CF-CP framework is particularly suited for systems
exhibiting nonlocality or history dependence, offering enhanced modeling capabilities for phenomena where traditional
models fall short. It provides new avenues for both theoretical development and practical application of fractional
calculus, enriching its utility across scientific and engineering disciplines.

Integral inequalities serve as a powerful tool for analyzing both the quantitative and qualitative properties of
differential equations. With the growing demand across various applications, there has been a notable resurgence
of interest in researching these inequalities. Several studies have explored different methodologies to propose and
investigate these inequalities [9, 12, 24, 32, 44]. Among them. The Gronwall inequality is widely acknowledged as a
highly influential and consequential outcome in the literature.

Concurrently with the increasing interest in fractional differential equations theory, numerous studies have expanded
these mathematical inequalities to encompass fractional differential equations with both nonsingular and singular
kernels. Notably, Sadek [36] has introduced Riemann-Liouville (RL) and Caputo cotangent fractional derivatives,
incorporating exponential cotangent functions in their kernels. These derivatives offer advantages, including possessing
a semi-group property in their cotangent fractional integrals (FI), thereby generalizing existing RL and Caputo FI
and FD. The Laplace transform of cotangent fractional integrals and derivatives has been computed and applied to
solve linear CF-CP. Sadek et al. [38] have presented a new version of the Gronwall inequality within the context of
the cotangent FD, outlining its characteristics.

On a separate note, Ricardo et al. [3] have introduced a CF-CP dependent on the Caputo Katugampola derivative,
along with a numerical method for solving such equations.

Building upon the contributions of [36], [38] and [3], we propose a novel numerical technique for solving the CF-CP.
Our approach involves developing a decomposition formula for the cotangent Caputo derivative, from which we derive
theorems guaranteeing the solvability and singularity of the given CE-CP.

The organization of the paper is structured as: section 2 introduces foundational principles, section 3 delineates
the CF-CP, section 4 discusses the numerical method for addressing it, with a convergence analysis presented in two
stages in Theorems 4.1 and 4.2, and section 5 focuses on practical applications or case studies.

2. PRELIMINARILY

In this portion, we introduce the conceptual framework and symbols for the cotangent FI and FD, as outlined in
prior literature [36-38].

Definition 2.1. Let E € L!([a,b]),0 > 0. The FI of = of order o is defined as:

¥
40 :W/a (€ — 5)7 1= (s)ds.

Definition 2.2. Let 0 € (n — 1,n) and = € AC"[a,b]. The Caputo F.Dof Z of order o, become

1 ‘ —o—1=(n—
T —o) / —-r)" 1=( 1)(7')d7',

where AC™[c,d] := {Z: [e,d] = R,E € C™ e, d] , E™~Y € AC[c,d]}

DIE(l) =

Definition 2.3. Let = € L!([a,b]),0 € R}, 0 < r < 1. The cotangent FI of = of order o is defined as:

1 b i
o,r= — —cot(Fr)(l—s)(p _ a—lE
ITTE(0) T ) /a e (L —s) (s)ds

sin(
= sin(Zr) =7 cot(F1) (Ig+ (ecot(%r)éa(g))> '

RN
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Definition 2.4. Counsider o € (n — 1,n) and r € (0,1]. The cotangent FD of RL type with order ¢ for a function x
is expressed as:

D" ¢ —cot(Er)(e—7) (p _ _\n—o—1m
sin(§r)"=oI'(n — o) /a © (€-7) =(r)dr
= D IOTE(D),
where, (DV"E) (¢) = cos(3r)E({) + sin(3r)Z'(¢) and (D™"E) (¢) = D" (D"17E) (0).
Remark 2.5. When r = 1, the result yields the RL-FD case [22, 39].

D7E(0) =

Definition 2.6. Consider o € (p— 1,p) and r € (0, 1]. The cotangent FD of Caputo type with order o for a function
= is expressed as:

p—1 k r'—
C no,r— o,r ~ (D ( ) k ,—cot(Zr)(f—a)
DIE() = DO | = _ : ,
HE0 ( X S o
Remark 2.7. When r = 1, the result yields the Caputo FD [22, 39].
Lemma 2.8. [36] Let 0 > 0,8 >0 and 0 <r < 1. Then,

—cot(T _ r'B) —cot(x _
o cot(5r)s(o _ \B—1) _ cot(Fr)s(o _ ,)\B+o 1.
s (e 2% (s — a) ) B+ 0) sin(%r)"e 25 (s — a)

Lemma 2.9. [36] Let 8 > 0,0 > 0. Then, for Z is continuous, we have
(I27I77E) (6) = (I7H7E) (0)
Lemma 2.10. [36] Let o > 0 and Z be integrable on € > a. Then, we have
(DT 17"E) (6) = E(0).
Lemma 2.11. Letr € (0,1],0 > 0,n = [0] + 1, and = € AC"[a, b], the Caputo cotangent FD of = of order o, become

“DgTEW) = (Ip~7"D™E) (¢)
B 1
~sin(Zr)T(n—o

FEspecially for o € (0,1) we find

4
) / e cot(5r)(£—) (g _ T)n—a—l (Dn,rE) (T)d’]’,

“DgTE() = (1,7 DVE) (0)

1 ¢ .
= —cot(Zr)(l—T)(p _ . Dl’TE d
Sin(gr)l—al"(l — o) /a e 2 (L—7) ( ) (T)dr
e~ cot(gr)t ¢ . - _
= cot(Er)r(p s T o= T
s, T (s 5z s GE ) ar

Remark 2.12. When r = 1, the result yields the Caputo FD in Definition 2.2.

Lemma 2.13. [38] Suppose o,r are positive constants. Let hy(£) and ho(£) be nonnegative functions locally integrable
on the interval [0, L), and let d(£) be a nonnegative, nondecreasing, and continuous function defined on € in the interval
[0, L) such that d(¢) < C, with C being a constant. Furthermore, consider that ha(f) increases monotonically for £ in
the interval [0,T).

ha(€) Shz(f)+sm(2 r)?L(e)d(€) (o I7" f) (),

then
hi1(0) < ho(£)E,(d(0)T(a),£), £€]0,L),
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where

(oo}
Zfak-i-l

=0
denote the Mittag-Leffler function with a single variable.

Theorem 2.14. [5] Consider Z as a Banach space where T C Z is both closed and convex. Suppose O is a relatively
open subset of T with 0 € O and N : O — T is a compact map. Then, either:

e N possesses a fized point within K ;
o there is a point u € 00 and 0 < A < 1 with u = AN (u).
3. Caputo CF-CP
Consider the following Caputo CF-CP:
cD7Tx(l) = f(¢,2(¢)), 0<o<1,7e(0,1], (3.1)
E(a) = 2, a € R, )
where D" is the Caputo cotangent derivative and f € C(J x R,R) with J = [a;, L].

Lemma 3.1. Let E be a continuous function defined on the interval [a, L] and taking values in R.

E verifies (3.1) <= E wverifies integral Equation (3.2).
Where integral Equation define by:
1 bt
—cot(Zr)(L— s) o—1 ) 3.9
* e ). ¢ (¢ )7 F(5,2(5))ds (32)
Proof. Direct sens: Z solution to Eq. (3.2), show that: = satisfies problem (3.1):
“DgrE(e) =Dg” (2(6) ~ E(a)e™ M ENE)

L
=De (Sin(”rl)o]f‘(a)/ e G (1 —5) 1 f(s5,2(s))d )

=(D7" (I37 1)) (0)
=f(£,E(¢)).
On the other hand:

(a) :Eae—cot(%ﬂ(a—a)_’_.’l—/a —cot(Fm)(£— 6)( )‘7 1f( 7_‘( ))
a

sin(§r)°T(o)

E(é) ==, cot(Zr)(£—a)

(1]

then E is a solution to Eq.(3.1).
Reciprocally show that Z satisfies problem (3.1) then, = is a solution to Eq. (3.2) let

g(0) = f(¢,Z(¢))
= D" (2(0) — S(a)e HEE)
= DML (E(0) — E(a)em HEN ) (3.3)
Applying the operator I} to (3.3) we get
137g(0) = 177" (2(0) = E(a)e 3=}, (3.4)

Applying D1=7" to (3.4) we have

(=)=
E)NE
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a)e—cot(gr)(é—a) + D;—a,r];—a,rg<£)

a)ei cot(Zr)(£—a) + Dcll,rlg,rli,rg(g)
)6_ cot(5r)(f—a) + Dl’TIU’TIl’Tg(E)
)efcot(2 r)(£— a)+Iar (6)

Theorem 3.2. Suppose there exist g,h € C (J,Ry)such that
|f(6,2)] < g(0) + h(0)|E], Vee J and Z € R, (H1)
the Eq. (3.1) possesses at least one solution.

Proof. Consider the operator N : C([a, L], R) — C([a, L], R) as defined in Eq. (3.2). Qur objective is to demonstrate
that A fulfills the assumption of Schauder’s fixed point Theorem 2.14. The proof will be presented in multiple stages

o= cob(Er) L . o
NI(E) = Zpem N0 s [ et B0 0 7 (s 20

sin(gr)
Claim 1 N is a continuous operator. Let =, be a sequence such that Z;, — = € C([a, L], R), for all £ € [a, L]:

4
Sn<1>r<>/ e= HENE) (0 )7 (7, 5,(7)) — f(r,2(7))|dr.

Therefore, the continuity of the operator N follows from the continuity of f.
Claim 2 Show that NV (By) C B;; avec By, = {E € C([a, L], R), ||E]|le < h}
Let = € B, we show that NV (Z) € B;. For each ¢ € [a, L], we have

IV(E () = N(E)(©)

1 ¢ z
= <|= —cot(5r)(£—a) / —cot(5r)(£— T) o—1 dr.
NEO < [Zle + ), © (=) fr.Z(m)dr
From (H1), we find :
1 ¢ .
= <= —cot(Zr)(£—a) / —cot(Zr)(l—=T)p _ ~\o—1 =
NEO] < Zle b ST . © (=) (@1 (7) + ga(P)E(T)) dr

< |Bal + 17 (g1 (L) + bga(L)) -

Then, for any Z € By there exists | = |Z,| + 127" (g1(L) + bg2(L)) > 0, such that [|N(Z)|e <.
Claim 3 Establishing that the operator A/ transforms bounded sets into sets that are equicontinuous in terms of
C([CLL],R). Let ¢1,45 € [a,L], 1 < ¥y, and E € By. Then

NE@) = NE(E)] < [Eal o= (o — ) — =3 (6 )

+m/el

— e~ cot(5r)(£r—T) (61 _ T)cr—l

efcot(% Y(lo—T (g 77_) -1

[f(m, E(7)ldr

e~ OUENEB=T) () — )L f(1, E(7))||dr

From (H1), we get
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G1 + bGa

IN(E)0) = ME)Ea)| < [Bul[e= 570z —a) = =B —a)| + eriErs

4
/ 1 ‘67 cot(%r)(ézfr)(gz _ 7_)(771 — e~ cot(%r)(@lf-r)(gl _ 7_)U*l

a

i G1 + bGq
sin(5r)°T(o)
Where Gy = Zn%ax](gl(é)) and Gy = en%ax](gg (£)). As ¢1 — {5 the right-hand side of the above inequality
€ €

’67 cot(Fr)(la—T) (€2 _ 7_)071‘ )

L ,L

tends to zero.
Claim 4 We now show there exists an open set U C C([a, L],R) with = = MV/(E), for A € [0,1] and = € OU. Let
= € C([a, L], R) such that = = AN/ (E), for some A € [0, 1], Then, for any ¢ € [a, L], we have

= = —cot(5r)(l—a 1 ‘ —co r T o— =

E(O)] < [Bale™ = ENED 4 S / e ENED (@ — )71 f(r, E(7))dr
2 a

Then, by (H1) we find

— — G1 ¢ —cot(ZEr)(£—T) o—1
= < |= —_— 2 _
OIS Bl gt . © (-7 dr

g [ R
< |E“|sin(Gglr)ve cot(ENE= () — 0)7 By 441 (f Cot(gr)(é - a))
N Sm(;;yrw) /aé - cot(%r)(e—r)(g _ 7)0—1 12(r)|dr, (35)
where
Frir (cot(Gr)(e —a)) = i Ft Rl f)»'f

Conversely, we possess:

2
Fj+o+1)>TG+1) Vi>1 and F(j—l—a—l—l)ZF(?))F(j‘f‘l)aj:O»

thus:
T & (cot(Zr) (- a))"
Evom (COt(ir)(g - a)) - kzzo F(lc2+ o+1)
< 1 (cot(5r) (L — a))]C
TG &= I'(k+1)
1 cot %r —a
< @e (3r)(t—a) (3.6)
From (3.5) and (3.6), we obtain:
20 < 2l + 227 1o (2 (0))).

sin(57)70(3)

(=)=
E)NE
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From the Lemma 2.13, we get

=) < (|Ea| + ff(“)_r))) 2 <n<G>“ - “>>

(2
2 3
< (IEa|+ Gr(L —a)” )E < e ,(La)>
s1n(§r)‘7f(§) sin(5r)?
<M,
where
oo )\kéko—
F ko -l-l

Let U = {Z € C([a, L],R) : ||E]|loo < M’ + 1}, V_ € 8U = £ MN(E) VA € [0,1].
Based on Theorem 2.14, we conclude that N possesses a fixed point = within the closure of U, representing a solution
to Eq. (3.1). O
Theorem 3.3. Suppose there exists L > 0 such that

[f,t1) — f(L,t2)] < Lty — ta| for each £ € J and Vt1,t2 € R, (H2)
the problem (3.1) has a unique solution.

Proof. There is at least one solution to Eq. (3.1) based on (H2) and Theorem 3.2. We shall demonstrate the uniqueness
of this solution.
Let =1 and E3 two solutions of the Eq. (3.1). Then, by (H2) we get

1 £
[E2(f) — E2(0)] < W/ e~ cot(Fr)(f— s)( $)7 T 1 (5, Z1(5)) — £(5,E(s))| ds
14
< M/ e_COt(%T)(Z—S)(E— T)U_1|El(s) _ EQ(S)|d8

= g(0) +sin (37) T(@w (@ UZIE0) ~ y(O].

where g(¢/) =0 and w({) = #() From Theorem 2.14, we get = = y. O
0 ) sIn 27‘

4. NUMERICAL METHOD AND CONVERGENCE ANALYSIS

Theorem 4.1. Let m € N* | Z € AC?([a, L],R). We assume:

1 ~T(j+o-1)
sin(§r)1=oT'(2 — o) ;) T(o—1)5! "

I(j+o-1) .

=1,2,... 4.1
A3 TR o) 1 DY R -y
and functions V; : [a, L] — R by

Vi(l) = /ae(s - a)i_leCOt(%r)s (cos(gr)E(s) + sin(gr)E'(s)) ds.

m,j =

Then
Cnor= _ —o m - e =/ —cot(5r)L () _ —o—1iy).
DITE() = A (£ — a)* (Cos(gr)u(ﬁ)—ksm(gr)u (e))—e KDY Bl =) T + En(0),

with
lim &,(¢)=0, V{é€(a,lL]

m—r o0
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Proof. We have

—cot(5r)e
CDETE(l) = —

L
sin(5r)=oI'(1 - o) /a & (r)w(r)dr,

whrer /(1) = (£ — 7)77 and w(7) = e~ ©*E"7(cos(Zr)Z(7) + sin(Z7)Z/(7)), then integrating by parts, we get

CDU,TE(g) _ e~ cot(5r)e
“ sin(5r)1=oI'(2 — o)

ect(Emay _ gyl=e (cos(gr)E(a) + sin(gr)E’(a))

e~ cot(5r)l

L
+ S ETE o) / = T)l—adii (=t E7 (cos(GrIE(T) +sin(5r)E (7)) ) dr.

Applying the theorem of generalized binomial

(=) 7=U-a)" (1 T a>10

{—a
Efal"irk+ail s—a\"
— T(o—1k! \t-a/)

By substituting the previously mentioned equality into the FD expression, we arrive at

c e~ cot(Gr)l
DITE(l) =
a =0 sin(§r)1=oI'(2 — o)

n e~ cot(gr)t / (0 — a)i=e Nk+o—-1)(T—a F
sin(5r)1=oT'(2 — o) Fe—1k! \L—a

i cot(§r)T ﬁ = s T N
x = (e (cos(5)E(r) + sin( 2r)_ (7)) dr + Enl0),

ecot(gr)a(g _ a)l_”(cos(gr)a(a) + sin(gr)E'(a))

where
P ik G e s~ Dli+o—1) (s—a\’
m(€) = sin(Z r)l=o(2 — )/a( —a) . (o —1)i! ([—a)
y % (ecot@r)f(cos(gr)a(f)+sin(gr)5/(7))) dr.
Then

“DETE) = rmymerg =gy W' (os(5rZ0) +sin(G= @)
G Tlito-l) [
+ sin(Zr)1-oT(2 — )(6 ) Z I(o —1)il(£ — a)? /a ( )

Setting u(T)
get

(=)=
E)NE

L (eot(57)7 (cos(Zr)Z(r) + sin(Zr)Z'(7))), and by integrating by parts, we
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o, r—= 1 —0o T \= . T =
CDITE(l) = — —a)t (cos(ir):(a)+sm(§r):’(a))
sin(Zr) "T(2-o0)
i+o—1) e~ oot(5)¢ T (b—a)tet ot 1 eot(x
o o i— e (5 )T
<1+Z (o —1)i > I'(2 — o) sin( “;F z—l)!/Ll(T %)
x (cos(5r)E(r) + sin(5 1) (r))dr + En (z)
On the other side, we show that
mgrﬂoo Em(T) =0, V7 € [a, L]
We have
i T(i+o—1) (s—a\'| i Fo-1)(o-Dox..x(@+(i-2)| (s-a ‘
: [(o—1)i! \l—a) | . Fo—1)x1x2x..x(i—1)xi {—a
1=m-+1 1=m-+1
< Z (0‘—1) y (U+1> " <0+1) N <0+(z'—2)>'
, 1 2 3 i
1=m-+1
(oo} [ 2 o
< > (1-0)x 1 -
1=m-+1 k=

2
Z
(oo}
S E €1n 1*0 2

e

{(20) ]
e(2=0)(1-0) 5 ¢ k=2

< i (e(zfo)(lfa) xe[*@*")l“(i)])

1=m+1
0 6(270)(170) o

=S

1=m+1
/00 e(1=0)"+(1-0)
<f &7

e(1=0)*+(1-0)

= ml-o(1-0)’

Z’270

H'M

8270 dS
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then
(170)2+(1fa') —cot(Zr)l

|gm(€)| < mi- 0(1 — 0') Sll’l( )1 UF( )

x/ld
o |d

— (e 37 (cos(Fr)E(r) + sin(57)E (7))

(¢ —a)=c

dr.

The inequality above tends to 0 on the right side for any ¢ € [a, L] as m — co.

Using Lemma 2.9, we can express Equation involving integrals (3.2) as follows:
. 1 ¢ .
=) =5, —cot(Zr)l / —COt(E’I")T _ o =
() = Zae + @ ), ¢ (=)~ F(r 2(r)dr
= Zae L 2T (4, E(0)
= e UGN L [0 £ (0 E(0)); withd=1—0
_ Ea67 cot(5r)l + Iclfz},erl,r Ig,rf(& E(f))

Lemma 2.11 note f(£)
= Sy~ CUENC 4 eDIf(f)
2 Do (1 (0, 2(0)

. 1 ¢ .
Eae—cot(zr)Z+CDi—a,r< (E )/ e—cot(§ r)(— ‘r)( ) o'f(
2

. 1 ¢
-3 —cot(Fr)l cpl-or —cot(Zr)(£— 7') o
r D! <sm<gr> e -7 s

[I]

())T)
())T>~

(5) = Eqe I 4 L (s — a)7 f(8,5()) — = 33" By (s — a)7FDils) + En(s),

[I]

Applying the decomposition formula provided in Theorem 4.1, we discover:

[1]

k=1
where
o 1 " I'(k —o)
~ sin(Zr)°T(1+ o) 1;) T(=o)k!’
s I'(k—o) B m
B = sin(5r)°T(14 o)I'(—o)(k — 1) k=12...,m
and

Vi(s) = / (1 — a)F et BT (7, =(7))dr.

We consider the formula for the approximate solution, denoted as =,,, by

m

En(s) = Zge” @ ENE=D) L A (5 —a) f(5,Em(s)) —e UGN B (s — a)7 TV (s),
k=1
where

Bsle) = [ e (1,2 )

The expression é;(s) is similar to &,,, and furthermore, it satisfies inequalities (4.2)

(=)=
E)NE
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% (ecot(%r)T((l —r)ZE(r) + rE’(T)))

Theorem 4.2. Let f : [a,L] x R — R be a function that fulfills condition (H2). For m € N, let E and E,, as in Eq.
(4.3) and Eq. (4.5). Suppose that

. 602+ae— cot(5r)s L
|Em(s)| < )(s - a)"/ dr.
a

om? sin(5r)°I'(1+ o

1
a<L<a+ sin(gr) <F<1L+U)) . (4.6)
Therefore, Z,,(£) tends to E(L) as m tends to oo.
Proof. Let
ez, = max |=,,(¢) —Z(0)].

(€la,L]

It follows from Eq. (4.3) and Eq. (4.5) that
Enll) = E(0)] £ An(l = a)7 | (6 En(0) = FEED)] + e E S Bl (0= )7 Vien(0) = Ve(0)| + 1En(0)]
k=1

As a result of the relations outlined below,
|, Em(0) — f(LE(0)] S LIEm(f) — E(0)] < Lez,,,

— —~ ¢ ”
Vo) =) < [ (7 = @1t I (1,20 () — ()

a

=m

¢
< Lez eCOt(%T)Z/ (r —a)*ldr

Le= ecot(%r)l

< f(ﬁ—a)k,

and

1 ~L(i=0)
sin(5r)°T(14 o) jz::O [(—0)j!

< 1 I'm+1-o0)
~ sin(§r)ol'(1 +a)|I(=0)| ol'(m+1)
< 1 I'm+1-o0)
“sin(§r)T'(1+0)l(1—-0) T(m+1)

1 F'm+1-o0)

~ omsin(§r)? I'(m+1)

By the Euler’s reflection formula and Equation 3 in [11]
T e =~ Les, (£ —a)° " T(k—o)
_ o—k _ < m
; ‘Bm,k) (¢ —a) ‘Vk,m(é) Ve(0)| < sin(Zr)7L(1+ 0)|T(—o)] ; k!
Lez,, (¢ —a)° F(m+1—0)+| (—o)|

= sin(Zr)T(1 + o)L (=) | oT(m+ 1) ?
< Lez, ({—a)? [ 1 I'(m+1-0) 1
- or T(m+1) INCE N

sin(5r)?
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we conclude that

Em(l) — E(O)] < —Em_ (1~ a) [

sin( %)

2 T(m+1-o0) 1
om ol'(m—+1) o(l+o0)

] 18 (0)

for all ¢ € [a, L]. Taking the maximum, over ¢ € [a, L], on both sides of the inequality, we get

ez, <

m

Lez,, 2T (m+1-o0) 1 }

W(T—a)7 Lm Fm 1) +F(1+0) + max]|€m(€)|. (4.7)

L€la,L
It is obvious that:
Tim_[£,,(0)] = 0.
Furthermore, due to the application of Stirling’s formula (refer to, [43]), we obtain

lim 'm+1-o0)

=0.

Therefore, setting m — oo in (4.7) we get

L
li = |1— L—-—a)| <0
miso CZm sin(§r)°T(14 o) (L=a) } -
and by the definition of I , we must have ez, — 0 from where Z;,(¢) tends to Z(£). O

Theorem 4.3. Let m € N, A, and By, i, i = 1,2,...,m are defined in Eq. (4.1). Let

1
A (0 —a)l=7sin (gr)

f16,Y) = [f(Z,Yl) +Y [B,ml sin (gr) (6 —a)"7 — Apn(f —a)' 7 cos (fr)]

+e~ cot(Fr)e Z Bm,z(g o a)lfafiyé +sin (fr) e~ cot(%r)(ffa)BmJ(g _ CL)UEQ‘| ,
=2

2
! —a k—1 . ) B _
fr(6,Y) = A((f_)a)l_g X |6 Y2)e 4 B (€= a) ™ sin (Tr) [V B — Z e, (a)]
+3 Bt —a)' 7Y Yk € {2,.m).
=2

The numerical solution of the problem (3.1) is equivalent to solve the following ordinary differential equation:

Y(6) = F(L,Y(0)),
~—(f)a

Y(a) — 0 c Rmxl’ (4'8)
0

where

F,Y() = ) , and numerical solution is Z = Y7.
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Proof. Let Z, = and e, be two functions defined by:

Zyz=(s) = cos(gr)E(s) + sin(gr)E’(s),
er(f) — ecot(%r)f,
according to the Theorem 4.1, we have

°DITE) = Am(l —a)' 77 Z,.=(0) — e (—F) i Bl —a) " V() + £ (0)
k=0

A A (0= a) "7 Zp2(0) = ex(—0) Y B i(£ = a)' =7 FVi(0),

k=0

and V; is defined as being the solution of the equation

Vi(s) = (s —a)'en(s)Zrz(s),

Vi(a) =0, i=1,..,m.
According to problem (3.1) and approximation Eq. (4.9), we obtain

A (€= 0)' "7 Z,2(0) = en(~0) 3 B (€ — @) 7 FVi(0) = J(LE(D)),

k=1
on the other hand Eq. (4.10), we have
/
‘(¢
Zos(t) = — 20 i€ {1,..m},

B (6 —a)~ter()’
from Eqgs. (4.12) and (4.13) we establish

A= a0 () 3 Bk (E ) 0) = £ ()

T=ate, 2
Al = >(£_V)“)(€) — (0B a(£ — @) 7sin(2r) [E(0)es () ~ Zue ()]
Ser(—0) S Bl - )0 = FLE (),
then -
V10 = e L Z0)er ) + Bt~ )7 sin(5) [E(0er(6) — Zaes )]
+ ]izsm,k(e —a)'TTMVL(0). Vie{1,..,m}.

By replace Z, = to Eq. (4.12), we derive the following result

1
A (¢ —a)l=7 sin (gr)

=(0) =

ter(—0) Y B — a)' = FV(0) + sin (gr) er(a— 0)Bu 1 (£ — a)"Ea] ,
k=2

from Eqgs. (4.14) and (4.15), we obtain the system (4.8).

{f(ﬁ, 2(0)) + E(0) [Bm,l sin (gr) (6 —a)™" — Ap (£ — a)'~7 cos (

13

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

2]
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5. NUMERICAL TESTS
In this section, we present two numerical illustrations aimed at validating the theoretical findings outlined in the
preceding section 4.
TEST 1

Let 0 <o <1 and r € (0,1]. Let’s examine Initial condition issue of Cauchy type outlined below.

o — sin(57)°T'(3) _ cot(Zr —
ODYTE(l) = EEO emeot(Gl(p - 1) e [1,2], (5.1)
=(1) =0.
Now the existence of solution of Eq. (5.1), let (¢, X) € [1,2] x R:
(3 .
FEXIS s (=177 <p0) +a(OIX].

'3 —o)
So there exists p,q € C([1,2], RT) with p(¢f) = %(f —1)277, q(¢) = 0 such as:
[£(6, X)| < p(f) + q(0)] X],

then from the Theorem 3.2, the problem (5.1) has at least one solution. Now for the uniqueness of solution of Eq.
(5.1), let (£, X,Y) € [1,2] x RxR
[, X)— f(6,Y)=0<L|X-Y]|, with L=1>0.
According to Theorem 3.3, the issue (5.1) possesses a singular solution. From the Theorem 3.3, then the problem
(5.1) has a unique solution.
The system’s precise solution is expressed as Z(¢) = e~ ©°43M¢(¢ — 1)2. Employing the Explicit Euler method in
Matlab, we conduct the numerical solution. Below, you’ll find two Figures 1 depicting the exact and approximate

solutions across a range of m values: m = {2,4,6,8,16,32}, within the interval [1,2]. Evaluation of the maximum
absolute error Em is performed using the subsequent formula:

En,=|E-E
m — —m|o0

and the order of convergence implies the following formula:

Order = log, ( B ) .

E 2m

To assess the stability of our model described in Eq. (5.1) against variations in initial conditions, we introduced a
minor yet representative perturbation to the initial condition of the Cauchy problem (5.1). This involved modifying
the initial state. to Z*(1)'= 0.0001, thereby creating a disturbed system. We quantified the error magnitude E,, =
IZ — E;ulloo by comparing = and =, for the original (undisturbed) system. Additionally, we computed perturbed
absolute error EP, for the perturbed system by contrasting the exact solution with its approximate counterpart =2,.
Additionally, in the final column of Table 2, we determined the absolute difference AD = |EP, (¢) — E,(¢)| between
the approximate solutions of the unperturbed and perturbed systems, Z,,(¢) and Z2, (¢), respectively. The data within
Table 2 unmistakably illustrates that the solutions from the perturbed system closely coincide with the exact solution,
thereby validating the model’s stability. Figure 2 provides a graphical depiction of The disparity between the accurate
solution = and the approximated solution =, for ¢ within the interval [1, 2] associated with Eq. (5.1).

TEST 2

Let 0 < 0 <1 and r € (0,1]. Let’s examine Initial condition issue of Cauchy type outlined below:

(5.2)

CDFTE() = E(0) + riglay e BT —em 3R e (0,1],
2(0) = 0.
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FIGURE 1. The approximate solution for various values of m = {2, 4,6, 8,16, 32}, within the interval
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=16
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(b) r=10.6; y =0.9

[1,2] for Test 1.

TABLE 1. The error E,, and the convergence orders for Eq. (5.1) With ¢ and r varying.

X< X+

(3
<p(0) +4(O)|X].

c=07,7=05 =097 =085 o=057=1
m E,, Order E,, Order E,, Order
2 0.0076 0.0171 0.0588
4 0.0039 0.9563 0.0098 0.8060 0.0266 1.1439
8 0.0018 1.1058 0.0051 0.9420 0.0107 1.3015
16 0.0008 1.1563 0.0024 1.0823 0.0040 1.4043
32 0.0003 1.0299 0.0009 1.3705 0.0015 1.3821
Now the existence of solution of Eq. (5.2), lets (¢, X) € [0,1] x R:
r
(3) 6270 +£2

— o)

15
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TABLE 2. Absolute error for different values of ¢ € [1,2] with m =6, r = 0.5, and o = 0.7 for Test 1.

‘ = E, = EP, AD

1.1 0.0032 0.0001 0.0035 0.0001 0.0002
1.2 0.0118 0.0003 0.0120 0.0001 0.0002
1.3 0.0241 0.0005 0.0242 0.0004 0.0001
1.4 0.0388 0.0008 0.0389 0.0007 0.0001
1.5 0.0548 0.0011 0.0549 0.0010 0.0001
1.6 00714 0.0014 0.0714 0.0013 0.0001
1.7 0.0879 0.0017 0.0879 0.0016 0.0016
1.8 0.1038 0.0020 0.1039 0.0019 0.0001
1.9 0.1189 0.0023 0.1189 0.0022 0.00004
2.0 0.13280 0.0025 0.1328 0.0024 0.00004

TABLE 3. The error E,, and the convergence orders for Eq (5.2) with o and r varying.

o =0.65,7r =0.45 oc=0.81r=0.7 oc=05r=1
m E,, Order E,, Order E,, Order
2 0.0391 0.0450 0.1181
4 0.0207 0.9195 0.0250 0.8468 0.0566 1.0616
8 0.0097 1.0866 0.0126 0.9893 0.0238 1.2498
16 0.0044 1.1463 0.0060 1.0457 0.0094 1.3290
32 0.0024 0.8387 0.0034 0.81845 0.0038 1.2943

So there exists p,q € C([0,1],RT) with p(¢) = Fé@y)@*" +¢% and q(¢) = 1 such as:

[£(6, X) < p(€) + ()| X],

then from the Theorem 3.2, the problem (5.2) has at least one solution. Now for the uniqueness, let (¢, X,Y) €
0,1]] x RxR
6, X)— f,Y)|=|X=-Y|<LIX-Y| with L=1>0.

Based on Theorem 3.3, the problem (5.2) possesses a unique solution. The system’s exact solution is given by
2(0) = e~ 372, Herein, we depict two graphs (Figure 3) illustrating both the exact and approximate solutions
across various values of m = {2,4,6,8,16,32} within the interval [0, 1]. To gauge the stability of our model described
by Eq. (5.2) against fluctuations in initial conditions, we introduced a minor yet representative perturbation to the
initial condition of the Cauchy problem (5.2). By adjusting =Z*(0) = 0.0001, we induced a perturbed system. AF
was determined by contrasting = with =, for the original system, unperturbed. Additionally, we assessed FE,, in the
perturbed system by comparing its approximate solution =P, with the exact solution =. Furthermore, Table 4 encap-
sulates AD between the approximate solutions Z,, and ZP of the unperturbed and perturbed systems, respectively.
The data in Table 4 compellingly indicates that the solutions derived from the perturbed system closely approximate
the exact solution, thereby affirming the model’s stability. Figure 4 visually represents the absolute difference between

the exact solution and the approximate solution for ¢ within the interval [0,1] associated with the system (5.2) for
Test 2.

6. CONCLUSION

In this work, we have introduced and investigated a novel class of fractional Cauchy problems involving the Caputo
cotangent derivative. We established theoretical results on the existence and uniqueness of solutions using a tailored
version of the fractional Gronwall inequality. Furthermore, a numerical scheme was developed and supported by a
thorough convergence analysis. The numerical experiments conducted validated the efficiency, accuracy, and stability
of the proposed method.

(=)=
E)NE
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FIGURE 2. The absolute error for various values of m = {2,4,6,8, 16,32}, within the interval [1, 2]
for Test 1.

As a direction for future research, a promising extension would be to generalize the studied cotangent fractional
Cauchy problem to systems of coupled fractional differential equations, particularly in multidimensional settings or
with variable coefficients. Such a development would broaden the scope of applications, especially in modeling complex
physical phenomena with memory effects, as encountered in viscoelastic materials, biomedical engineering, and delayed

dynamical systems.
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TABLE 4. Absolute error for different values of ¢ € [0,1] with m =6, r = 0.7, and o = 0.8 for Test 2.

¢ Zn En, =P, EE. AD

0.1 0.0094 0.000I 0.0098 0.0001 0.00036
0.2 0.0356 0.0007 0.03605 0.0003 0.00036
0.3 0.0760 0.0015 0.0763 0.0011 0.00037
04 0.1280 0.0027 0.1284 0.0023 0.00039
0.5 0.1898 0.0043 0.1902 0.0038 0.00041
0.6 0.2592 0.00615 0.2597 0.0057 0.00043
0.7 0.3348 0.0083 0.3353 0.0079 0.00045
0.8 04150 0.0109 04154 0.0104 0.00048
0.9 04984 0.0137 04989 0.0132 0.00051
1 0588 0.0169 0.5843 0.0163 0.00054
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