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Abstract

This paper presents a comprehensive investigation into the dynamic behavior of a time-delayed jerk model. The

study introduces an innovative approach to delayed feedback control, thoroughly examining the effects of delay
on the system’s dynamics. The findings reveal that the presence of delay can lead to the emergence of previously

unrecognized dynamic phenomena, such as Hopf, Bautin, and double-Hopf bifurcations. By employing the normal

form method, the coefficients for the normal forms of each bifurcation are determined, highlighting that the
inclusion of delay significantly increases the system’s complexity. Numerical simulations are conducted to validate

the effectiveness of the proposed delayed feedback control system, demonstrating its high accuracy in managing

complex and nonlinear dynamics. This study offers an in-depth analysis of the system’s dynamic behavior while
considering two distinct parameters, including co-dimension 1, co-dimension 2 analyses, and the basin of attraction.

Poincaré sections and Lyapunov exponents serve as essential tools for exploring the system’s dynamic behavior.

The findings of this research can assist designers and engineers in effectively addressing delay effects in the design
of mechanical and electrical systems, thereby enhancing the performance of dynamic systems.
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1. Introduction

In particle motion, the velocity vector and jerk vector are critically important concepts. The third derivative of
displacement concerning time, known as “jerk” (or the derivative of acceleration with respect to time) in physics, has
been somewhat overlooked. However, jerk plays a vital role in predicting high acceleration over short time intervals,
making it essential for the design of mechanisms involved in periodic motions. Additionally, the concept of jerk is
relevant in the design of transfer paths that transition gradually from straight sections to circular arcs in railway
tracks. Jerk is also significant in road engineering, particularly for determining appropriate curvatures and gradients.
By utilizing the third derivative of displacement with respect to time, optimal road gradients for vehicle movement can
be established, as well as ideal locations for traffic signs. The application of jerk ultimately contributes to enhanced
road safety.

In electronics, the third derivative of current with respect to time, referred to as “current jerk,” is instrumental
in designing electrical circuits by assessing the acceleration and variations in the speed of electric current. This
information enables electronic engineers to optimize circuit designs and mitigate potential interference and issues that
may arise during electrical data transmission. For example, in computer systems, incorporating current jerk into the
design of cache memories can lead to reduced latency in data access and improved overall system performance. This
approach significantly enhances the efficiency of processing units within computer systems. Therefore, analyzing and
applying current jerk in electrical circuit design is crucial for improving the efficiency and performance of electronic
and computer systems.
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In mechanics, ẋ denotes velocity, ẍ signifies acceleration, and
...
x represents jerk. The dynamics of a jerk system

are described by a third-order formula of motion that regulates the temporal evolution of a scalar variable x as
...
x = j(x, ẋ, ẍ).
In this particular context, the symbol j is designated as the jerk function. An example of a basic jerk system is the

Coullet system, which may be represented as
...
x +aẍ+ ẋ = g(x), in which the function g(x) is nonlinear. Jerk systems

can be expressed in the following manner as autonomous three-dimensional systems ẋ = y, ẏ = z, ż = j(x, y, z). Note
that distinct dynamics are determined solely by the third equation of the jerk system [23].

This work introduces a proposed jerk differential equation, which is represented as follows:

d3x

dt3
= −ax− b

dx

dt
− c

d2x

dt2
+ (

dx

dt
)2 + bx

dx

dt
, (1.1)

where the parameters a, b and c are real and a is not equal to zero.
As mentioned, in mechanical systems, the term “jerk” refers to the third derivative of x(t) with regard to t. In the

event that the state variables x and y have been established in the following manner: y =
dx

dt
, z =

d2x

dt2
. Therefore the

system described by Eq. (1.1) can be regarded as the following jerk system [3]:
ẋ = y,

ẏ = z,

ż = −ax− by − cz + y2 + bxy,

(1.2)

With initial conditions x(0) = x0, y(0) = y0, z(0) = z0. In many studies, it has been shown that jerk systems can be
chaotic (see [1, 7, 9, 12, 13, 24, 26]). It has been widely demonstrated that systems of nonlinear differential equations can
experience chaos. In 1963, Lorenz [16] presented a three-dimensional system described by a second-degree polynomial
and discovered the initial instance of a chaotic attractor. Subsequently, numerous systems, including Lorenz’s, the Lü
system [17] and [5, 8, 11], were developed and studied.

A chaotic system is a type of mathematical dynamical system that possesses at least one positive Lyapunov exponent.
A chaotic system is characterized by its extreme sensitivity to tiny changes in its initial conditions. For a system’s
behavior to be chaotic, its variables must include nonlinear terms and possess three characteristics: boundedness,
infinite repeatability, and sensitivity to initial conditions [25]. When chaos becomes detrimental, it needs to be
controlled. The primary objectives of chaos control are going to be the eradication of chaotic behavior and the
stability of the chaotic system at its equilibrium points for the system to be considered stable. On the other hand, due
to the occurrence of unexpected events, many of which arising from chaotic systems, controlling chaos is of paramount
importance. Control input is added to a chaotic system to eliminate chaos. In situations where chaos is beneficial,
chaos can intentionally be induced using the same control methods.

Many control techniques have been discovered and examined. One of the control methods is the delayed feedback
control method [2, 4].

Following the implementation of a time-continuous control system, researchers presented the delayed feedback
control approach in [30]. By selecting an appropriate time delay, when the desired state to be stabilized is reached, the
difference between the current state of the system and its delayed value will converge to zero. Therefore, the method is
non-invasive.Moreover, delayed feedback control does not necessitate a reference system, as the control force is derived
from the system’s intrinsic information. The application of the delayed feedback control method is more effective in
regulating chaos inside a continuous dynamic system, as indicated by the principles discussed in reference [32] and
other pertinent literature.

Making use of this concept, we incorporate a time-delayed force k(z(t − τ) − z(t)) into system (1.2), resulting in
the subsequent control system:

ẋ = y,

ẏ = z,

ż = −ax− by − cz + y2 + bxy + k(z(t− τ)− z(t)).

(1.3)
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With x(0) = x0, y(0) = y0, z(0) = z0. Stability and evaluation of Hopf, Bautin and double-Hopf bifurcations in a jerk
system (1.3) utilizing the delayed feedback control method are the subjects of this paper. For more information about
jerk systems, see [6, 10, 14, 15, 20–22, 27–29, 31].

This paper is structured as follows. Section 2 presents the stability analysis of the delayed jerk model. An
examination of stability and Hopf bifurcation is conducted for only one equilibrium point. In section 3, Bautin
bifurcation analysis for delay-free jerk model is provided. Bautin bifurcation scenarios together with computing the
second Lyapunov coefficient for delayed model are achieved in section 4. In furtherance of our analytical findings in
section 5, we have demonstrated the existence of double-Hopf bifurcation analysis in time delayed model. Moreover, the
coefficients of normal form for these bifurcations are calculated. Section 6 presents the system’s behavior, encompassing
co-dimension 2, co-dimension 1, and the basin of attraction. This section examines chaotic behavior, periodic and
quasi-periodic behaviors, and divergence. A summary is presented in section 7.

2. Stability Analysis of Free-delay Model (1.2)

Presently, we conduct an analysis of the entire system (1.2) that has one equilibrium point O = (0, 0, 0). At point
O, the Jacobian matrix of (1.2) is

A =

 0 1 0
0 0 1
−a −b −c

 ,

The characteristic equation, however, is

P (λ) = λ3 + cλ2 + bλ+ a,

when a > 0, c > 0 and bc−a > 0, equation possesses three negative real part roots, as determined by the Routh–Hurwitz
criterion. System (1.2) possesses a stable node or stable spiral. Additionally, the saddle-spiral of (1.2) can be observed
using the Routh–Hurwitz criterion, given that a > 0, c > 0, and bc− a < 0. As per the Routh–Hurwitz criterion, the
equilibrium stability region can be identified. Figure 1 illustrates the stability region of the equilibrium in (b, a) plane
for c = 2.5. The presence of a stable equilibrium is denoted by the gray area in this region. The black curve contains
one pair of entirely imaginary eigenvalues denoted by ±iω, ω > 0. The generic Hopf bifurcation points are represented
by minus sign symbol and plus sign symbol when both the genericity and transversality conditions for the eigenvalues
are met.

2.1. Normal form of the Hopf bifurcation. To facilitate further analysis, system (1.2) is subsequently reformulated
more concisely as:

Ẋ = F (X,µ), (2.1)

where X = [x, y, z]T , µ = (b, a) represents the bifurcation parameters utilized in the stability and bifurcation analyses,
while F (X,µ) represents the right-hand elements of Eq. (1.2). Throughout the paper for examining Hopf and double-
Hopf and Bautin bifurcation, the value c = 2.5 is employed in Eq. (1.2). Moreover, the variables for analysis are
chosen to be µ = µ(b, a, τ).

In this section, we utilize the method of multiple scales (MMS), a perturbation technique pioneered by Nayfeh [18, 19]
for studying nonlinear dynamical systems that exhibit complex temporal or spatial patterns. Unlike conventional meth-
ods, MMS introduces distinct variables for different time or spatial scales, allowing for a systematic examination of
their interplay and avoiding the emergence of problematic secular terms. By expanding the solution in terms of
a small parameter and treating the “fast” and “slow” variations independently, this approach decomposes compli-
cated problems into a sequence of simpler problems that can be solved step by step. As a result, MMS offers a
deeper insight into system behavior, accurately representing both rapid oscillations and slow changes in amplitude or
frequency—phenomena that are often difficult to capture with traditional techniques.

Instead of treating the solution as a function of just t, we define:

T0 = t, T1 = ε · t, T2 = ε2 · t, · · · , Tk = εk · t.
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(a) (b) (c)

Figure 1. a) The region of stability at origin for the delay-free system (τ = 0). The gray
region represents an asymptotically stable parameter domain of equilibrium. At (b, a, ω) =
(0.1543086, 0.3747494, 0.38716895), the selected simple point H (the black point) represents a generic
Hopf bifurcation. A Bautin point is denoted by GH (the orange point) that is situated on the bound-
ary point with (b, a, ω) = (0.5005005, 1.2512512, 0.7074605). At the Bautin point, the bifurcation
curve has negative and positive Lyapunov coefficients, determined by minus sign symbol and plus
sign symbol. b) The phase space corresponding to parameters in gray area of (a) near point H, show-
ing that equilibrium point is asymptotically stable. c) The phase space corresponding to parameters
in white area of (a) near H, as the equilibrium point becomes unstable, a limit stable cycle emerges.

The time derivative becomes:

d

dt
=

∂

∂T0
+ ε · ∂

∂T1
+ ε2 · ∂

∂T2
+ · · · .

The solution is expanded as a series in powers of ε:

X(t; ε) = X0(T0, T1, T2, . . .) + ε ·X1(T0, T1, T2, . . .) + ε2 ·X2(T0, T1, T2, . . .) +O(ε3).

By substituting this expansion into the differential equation and collecting terms by order of varepsilon, we solve
sequential equations for X0, X1, X2, · · · , ensuring the elimination of secular terms and capturing both rapid and slow
system behaviors. As per the MMS, the solution to Eq. (2.1) can be formally denoted by

X(t; ε) =

+∞∑
m=1

εmXm(T0, T1, T2, . . .). (2.2)

The perturbation analysis uses ε ≪ 1 and Tk = εkt. For the Hopf bifurcation, Eq. (2.2) is reducible to give:

X(t; ε) =
3∑

m=1

εmXm(T0, T2). (2.3)

No attention is given to the slow scale T1 as secular terms happen at the third-order layer. For the Hopf bifurcation
analysis, we put the parameter b with respect to the primary bifurcation parameter, and its perturbation around bc is
expressed as,

b = bc + ε2bε. (2.4)
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The coefficient bε is considered to be of O(1). By inserting Equations (2.3) and (2.4) into Eq. (2.1) and comparing
the coefficients of similar powers of ε, we obtain

O(ε) : D0X1 −AX1 = 0,

O(ε2) : D0X2 −AX2 =
1

2
B(X1, X1),

O(ε3) : D0X3 −AX3 = B(X1, X2) +B13(X1, µε) +
1

6
C(X1, X1, X1)−D2X1,

where Dk = ∂
∂Tk

, µ = µ(b) is a bifurcation parameter, A is the variation matrix of Eq. (2.1) evolved at O, and

[B(u, v)]i :=
3∑

j,k=1

∂2Fi(ξ, µ)

∂ξj∂ξk

∣∣∣
ξ=O,µ=µc

ujvk, i = 1, 2, 3

[C(u, v, w)]i :=
3∑

j,k,l=1

∂3Fi(ξ, µ)

∂ξj∂ξkξl

∣∣∣
ξ=O,µ=µc

ujvkwl, i = 1, 2, 3

[B13(u, v)]i :=
3∑

j,k=1

∂2Fi(ξ, µ)

∂ξj∂µk

∣∣∣
ξ=O,µ=µc

ujvk, , i = 1, 2, 3

are multilinear functions. The general solution to equation O(ε) is:

X1(T0, T2) = z(T2)qe
iωT0 + cc. (2.5)

The symbol cc represents the complex conjugate of the phrases that come before it. z represents the amplitude function
corresponding to iω. Let q ∈ C3 be the complex eigenvector such that,

Aq = iωq, Aq = −iωq,

additionally, the adjoint eigenvector p ∈ C3 possesses the following properties:

AT p = −iωp, AT p = iωp,

and possessing the following characteristics

⟨p, q⟩ = 1,

where ⟨p, q⟩ is the standard scalar product in C3. This normalization is possible since the eigenvalues ±iω are simple.
Equation (2.5) is substituted into the equation O(ε2) to produce

(D0 −A)X2 =
1

2
B(q, q)z2e2iω1T0 +

1

2
B(q, q)|z|2+cc. (2.6)

It is possible to formulate the specific solution of Eq. (2.6) as

X2 =k11z
2e2iω1T0 + k11|z|

2+cc. (2.7)

where

k11 =
1

2
(2iωI −A)−1B(q, q),

k11 =
−1

2
A−1B(q, q).

By substituting Eqs. (2.5) and (2.6) into O(ε3) equation and removing secular terms, the differential operator D2z is
obtained.

ż = ⟨p, g1⟩z + ⟨p, (g111 + g111)⟩z|z|
2, (2.8)
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where

g1 =B13(q, µϵ),

g111 =B(q, k11) +B(q, k11) +
1

6
C(q, q, q) +

1

6
C(q, q, q),

g111 =B(q, k11) +
1

6
C(q, q, q).

We deduce that

⟨p, (g111 + g111)⟩ =
1

2
⟨p, C(q, q, q) +B(q, (2iωI −A)−1B(q, q))− 2B(q, A−1B(q, q))⟩.

Equation (2.8) can be modified to represent the amplitude of the generic Hopf bifurcation by incorporating z = ρeiθ,
we get

ρ̇ = ℜ
(
⟨p, g1⟩

)
ρ+ ℜ

(
⟨p, (g111 + g111)⟩

)
ρ3. (2.9)

Furthermore, the phase equation is left out. It is possible to calculate the bifurcating response using Eq. (2.8), and
the stability of it is decided by the sign of variable l1 = ℜ

(
⟨p, (g111 + g111)⟩

)
. As an example of a Hopf bifurcating,

consider the point H in Figure 1 with (bc, a, ω) = (0.1543086, 0.3747494, 0.3871689). It can compute the third-order
coefficient in Eq. (2.8). At point H we get l1 = −0.0040035 and ℜ

(
⟨p, g1⟩

)
= −0.1955725 bε. The theoretical analysis

shows that the radius of Hopf bifurcation is ρx ≈ 2
√
−48.8493815 b+ 7.5378805. It demonstrates the existence of

periodic orbits and supercritical Hopf bifurcation. Therefore, cycle is present when b < bc (see Figure 1(b) and (c)).
In summary, our analysis of the Hopf bifurcation for the jerk model has identified the critical parameter where the

system transitions from stable equilibrium to sustained oscillatory behavior. These findings lay the groundwork for
understanding more intricate dynamical phenomena that can arise as system parameters are varied, especially in the
presence of nonlinear effects and time delay.

3. Bifurcation of the Bautin type in Free-delay Model (1.2)

Having established the conditions for Hopf bifurcation, we now proceed to investigate the Bautin bifurcation. This
represents a higher-order degeneracy where the criticality of the Hopf bifurcation changes, allowing for the emergence
of multiple limit cycles and more complex dynamic behavior. This analysis provides deeper insight into the richness
of the system’s oscillatory dynamics, particularly in regions where the first Lyapunov coefficient vanishes.

The determination of the stability and direction of the Hopf bifurcation, specifically whether it is supercritical or
sub-critical, is contingent upon the sign of coefficient l1 in Eq. (2.9). In Figure 1, a critical point GH is identified
with the coordinates (b, a, ω) = (0.5005005, 1.2512512, 0.7074605). This point is additionally denoted by an orange
point. The critical point GH clearly separates the curve into two separate sections by different symbols. The curve
with minus sign symbol is associated with the negative value of l1, leading to the occurrence of a supercritical Hopf
bifurcation. A stable cycle emerges from the equilibrium point where b is less than bc. In contrast, the plus sign curve
is associated with the positive value of l1, which gives rise to a sub-critical Hopf bifurcation and the presence of an
unstable periodic orbit for values of b greater than bc.

At the critical point GH where l1 = 0, higher-order terms are need inclusion of Eq. (2.8) to conduct a more
in-depth analysis. This situation is referred to the Bautin bifurcation, where two distinct periodic orbits can exist
simultaneously. To explore the progression of Bautin bifurcation, it is necessary to include the fifth-order term.
Subsequently, the solution to Eq. (2.1) is once again taken as

X(t; ε) =
5∑

m=1

εmXm(T0, T2, T4). (3.1)

Furthermore, the parameters (b, a) continue to be regarded as the bifurcation parameters. Within close range of the
Bautin bifurcation point GH, the perturbation parameters are mathematically represented as:

µ = µc + ε4µε. (3.2)
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Figure 2. Classifying around Bautin point GH.

By inserting Eqs. (3.1) and (3.2) into Eq. (2.1) and comparing the coefficients of similar powers of ε, up to O(ε5), by
setting µε = µε(bε, aε), we obtain

ρ̇ = I1(bε)ρ+ I111(µε)ρ
3 + I5ρ

5. (3.3)

The value of the third-order factor I111 can be ascertained by analyzing the bifurcation curve in (b, a) plane close by the
Bautin bifurcation point. The significance of the fifth-order term factor is approximately computed as I5 ≈ −0.0039198
and I1(µε) ≈ −0.1851714 bε around the Bautin point GH. It is evident that the trivial equilibrium of Eq. (3.3) is
represented by the solution ρ = 0, and the number of nontrivial equilibrium states, namely bifurcating limit cycles, is
two. Given that

I1(bε) + I111(µε)ρ
2 + I5ρ

4 = 0,

then

ρ2 =
−I111(µε)±

√
I2111(µε)− 4I1(bε)I5
2I5

.

Thus, the threshold curves, at which the two separate limit cycles converge at GH, ought to be derived as:

I2111(µε) = 4I1(bε)I5.

Two emerging cycles vanish after colliding in the following curve

T = {(bε, aε) : I2111(µε)− 4I1(bε)I5 = 0}.
Figure 2 depicts the state of a stable equilibrium, while it also illustrates the presence of a stable limit cycle and an

unstable limit cycle. For better visualization of local bifurcation, the figure is centralized to the origin. If we go from
region I to II (from left to right), the stable equilibrium point becomes unstable and a stable limit cycle emerges. In
this case, a super-critical Hopf bifurcation occurs. Passing from region II to III, an unstable limit cycle is inserted.
Moreover, an unstable equilibrium point turns to stable though sub-critical Hopf bifurcation. In this region, there are
two cycles of contrasting stability, which vanish at the curve T via a fold bifurcation that results in a solitary stable
equilibrium in region I.

4. Stability Analysis and Bifurcation of the Bautin Type in Delay Model (1.3)

In order to enable more examination, system (1.3) is subsequently reformulated more concisely as:

Ẋ = F (X,Xτ , µ), (4.1)
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where X = [x, y, z]T , µ represents the bifurcation parameters utilized in the stability and bifurcation analyses, while
F (X,Xτ , µ) represents the right-hand elements of Eq. (1.3). For the succeeding numerical simulations, the following
parameters are utilized in Eq. (1.3):

k = −1, c = 2.5.

Throughout the paper for examining Hopf, double-Hopf, and Bautin bifurcation in delayed case, we set k = −1, c = 2.5.
Moreover, the variables for analysis are chosen to be µ = µ(b, a, τ). This section examines the impact of time delays
dynamic response of (1.3). Discrete delays are selected to emphasize the alterations in the dynamic behavior. The
equations for the bifurcation are calculated again using the MMS method.

The variational matrix of system (1.3) assessed at O is A0 +Aτe
−λτ , where

A0 =

 0 1 0
0 0 1
−a −b −c− k

 ,

and

Aτ =

 0 0 0
0 0 0
0 0 k

 .

The corresponding characteristic equation reads

D(λ, τ) = λ3 + (c+ k)λ2 + bλ+ a− kλ2e−λτ (4.2)

If all eigenvalues of Eq. (4.2) have negative real part, then the equilibrium point will be asymptotically stable for
τ > 0. By inserting the critical eigenvalue λ = iω, where ω > 0, into Eq. (4.2), and subsequently separating the real
and imaginary components, the result is

R(ω, b, a, τ) =k ω2 cos(ωτ)− (c+ k)ω2 + a

S(ω, b, a, τ) =− kω2 sin(ωτ)− ω3 + bω
(4.3)

and leads to the subsequent polynomial equation:

P (ω) = ω6 +
(
c2 + 2ck − 2b

)
ω4 +

(
−2ac− 2ak + b2

)
ω2 + a2 (4.4)

In situations that Eq. (4.4) contains at least one positive real root ω, then Eq. (4.2) possesses a set of entirely imaginary
roots ±iω, and the point O achieves local asymptotic stability for all values of τ inside the interval [0, τ∗). When the
value of τ exceeds τ∗, the system becomes unstable and there is a possibility of a Hopf bifurcation occurring at τ = τ∗.
The value of τ∗ is as follows:

τ∗ =
1

ω


arccos(

(c+ k)ω2 − a

k ω2
) + 2kπ, sin(ωτ) ≥ 0,

2π − arccos(
(c+ k)ω2 − a

k ω2
) + 2kπ, sin(ωτ) < 0, k = 0, 1, . . . .

The determination of the stability boundaries of the equilibrium under varying delays is possible using Eq. (4.3), as
illustrated in Figures 3–10. It is worth noting that choosing the value k = −0.5 can lead to experience a wider range
of stability region. When the value of k is set to −0.5, Figure 11(a) is generated. Moreover, considering parameters τ
as a bifurcation parameter yields Figure 11(b). When comparing the outcomes presented in Figure 1 to the stability
boundaries of the equilibrium illustrated in Figures 3-10, it becomes evident that the delay exhibits greater complexity.
The division of the stability region and the alteration of stability in specific localized regions are characteristics of
the novel feature. While the time delay increases, the stability region contracts. The whole Bautin points GHi and
double-Hopf points HHi for τ = 3, 6, and 12 are reported in Tables 1 and 2.
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(a) (b) (c)

Figure 3. The stability region at the equilibrium point for the system with delay (τ = 3). The gray
region represents a parameter domain where equilibrium exhibits asymptotic stability. At (b, a, ω) =
(5.9198396, 6.9979959, 2.8485025), the selected simple point H (the black point) represents a generic
Hopf bifurcation. The Bautin points GH1 and GH2 (the orange points) as well as double-Hopf HH1
(the yellow point) are reported in Table 1. The Bautin points separate the bifurcation curve into
negative and positive Lyapunov coefficients, determined by minus sign symbol and plus sign symbol.
b) The phase space corresponding to parameters in gray area of (a) near point H, showing that
equilibrium point is asymptotically stable. c) The phase space corresponding to parameters in white
area of (a) near H, as the equilibrium point becomes unstable, a limit stable cycle emerges.

(a) (b)

Figure 4. a, b) The time series corresponding to Figure 3(b) and Figure 3(c), respectively.

One of the more recent attributes is the emergence of intersections among the stability boundaries. The parameter
values indicate the presence of complex Hopf and double-Hopf phenomena. Delay Hopf bifurcations can be investigated
in a manner analogous to the Hopf bifurcation discussed in the preceding section. For the delay case, the coefficient
I111 in Eq. (3.3) will be computed to identify the presence of the Bautin bifurcation. The number of Bautin and
double-Hopf bifurcation points undoubtedly develop as the time delay increases.

4.1. The second Lyapunov coefficient in delay Bautin normal form. Bautin bifurcation may occur within the
stability boundaries illustrated in Figures 3, 5, and 6, similar to the delay-free scenario. The delay Bautin bifurcations
closely mirror the analysis presented in section 3. This section presents the computation of the coefficient I111(µε) of
the third-order component in Eq. (3.3) to identify Bautin bifurcations, with potential locations indicated by orange
points.The number of Bautin bifurcation appears increases with the extension of time delay. For instance, τ = 3.0
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Figure 5. The effect of system’s de-
lay (τ = 6) in stability region around
the interior equilibrium point is de-
picted. Parameters with asymptot-
ically stable interior equilibrium are
in gray. HHi and GHj are double-
Hopf and Bautin points in yellow
and orange color, respectively, and
reported in Table 1.

Figure 6. The effect of system’s
delay (τ = 12) in stability region
around the interior equilibrium point
is demonstrated. Parameters with
asymptotically stable interior equi-
librium are in gray. HHi and GHj
are double-Hopf and Bautin points,
and are reported in Table 2.

Figure 7. The widened region from Figure 6 related to the interior equilibrium point is demonstrated
for more clarity. HHi and GHj are double-Hopf and Bautin points, and are reported in Table 2.

is selected to illustrate Bautin bifurcation within the framework of delay. The Bautin point GH1 , illustrated in the
inset of Figure 3(a), is utilized to calculate the coefficient of the fifth-order term. The required fifth-order coefficient
I5 at this point to be approximately I5 ≃ −0.0618928. The negative value of I5 indicates that the Bautin bifurcation
scenario is super-critical. A detailed enumeration of the fifth-order coefficients related to the Bautin point is presented
in Table 3, alongside Tables 1 and 2.
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(a) (b)

(c) (d)

Figure 8. Stability region surrounding the interior equilibrium point for τ = 4, 5, 7, 8. Gray indicates
asymptotically stable interior equilibrium parameters. The orange and yellow points represent Bautin
and double-Hopf bifurcation points, respectively. The Bautin points divide the bifurcation curve into
negative and positive Lyapunov coefficients, determined by minus sign symbol and plus sign symbol.

5. Double-Hopf Bifurcation Analysis

Building on the insights gained from the Bautin bifurcation, we now turn our attention to the double-Hopf bifur-
cation. This phenomenon occurs when two pairs of complex conjugate eigenvalues simultaneously cross the imaginary
axis, leading to the possibility of quasi-periodic oscillations and intricate interactions between oscillatory modes.
Analyzing the double-Hopf bifurcation enables us to capture and characterize the emergence of even more complex
behaviors in the jerk model.

The discovery of crossings among the stability boundaries signifies the emergence of double-Hopf bifurcations, as
illustrated in Figures 3-10. These bifurcations are not achievable in the delay-free situation. We have chosen τ = 3,
which is represented in Figure 3 denoted by HH1 to illustrate double-Hopf bifurcation in the delay case. Another
example is associated by τ = 6, which is represented in Figure 5 denoted by HH3.
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(a) (b)

(c) (d)

Figure 9. The stability region surrounding the interior equilibrium point is shown for τ =
9, 10, 11, 17. The gray indicates asymptotically stable interior equilibrium parameters. The orange
and yellow points represent Bautin and double-Hopf bifurcation points, respectively. As the delay
increases, the stability regions are more complex.

For the point HH1 with τ = 3, the purely imaginary eigenvalues ±iω1 and ±iω2 are computed as:

ω1 ≈ 2.6902935, ω2 ≈ 1.9601691.

It represents the double-Hopf bifurcation condition. By choosing another τ (e.g. τ = 6), the purely imaginary
eigenvalues ±iω1 and ±iω2 for point HH3 are computed as:

ω1 ≈ 2.5225217, ω2 ≈ 1.7985402.

If qj , pj (j = 1, 2) are the right and left eigenvectors associated with ±iωj , i.e, are the solutions of the following
equations:

(A0 +Aτe
−iωjτ − iωjI)qj = 0,

((A0 +Aτe
iωjτ )T + iωjI)pj = 0,
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Figure 10. The increase of delay complicates the stability region around the interior equilibrium
point. This leads to discover more double-Hopf and Bautin points. Furthermore, the stability region
contains more interlocking loops.

Table 1. The critical points corresponding to the content of Figure 3 and Figure 5.

Point Type Coordinate
GH1 Bautin (b, a, ω) ≈ (0.6584389, 0.4919946, 0.9566369)
GH2 Bautin (b, a, ω) ≈ (3.9361702, 12.2596996, 2.3152550)
GH3 Bautin (b, a, ω) ≈ (0.2428285, 0.1280853, 0.5160221)
GH4 Bautin (b, a, ω) ≈ (1.1300867, 0.5283522, 0.7070055)
GH5 Bautin (b, a, ω) ≈ (1.4056037, 0.9366244, 0.7867121)
GH6 Bautin (b, a, ω) ≈ (0.4156104, 2.5296864, 1.3152771)
GH7 Bautin (b, a, ω) ≈ (2.2788525, 1.2168112, 1.5556488)
GH8 Bautin (b, a, ω) ≈ (3.9226150, 11.2955303, 2.1494908)
GH9 Bautin (b, a, ω) ≈ (6.5937291, 3.4182788, 2.6055112)
HH1 double-Hopf (b, a, ω1, ω2) ≈ (4.6104208, 9.2997995, 2.6902935, 1.9601691)
HH2 double-Hopf (b, a, ω1, ω2) ≈ (1.5106276, 1.3713428, 1.3713428, 0.8517666)
HH3 double-Hopf (b, a, ω1, ω2) ≈ (4.9958717, 4.1971342, 2.5225217, 1.7985402)

where ⟨pj , qj⟩ = 1, j = 1, 2. Then using the method of the multiple scales method

ż1 =
1

m1

(
(⟨p1, g1⟩ − ⟨p1, (iω1τεAτe

−iω1τc)q1⟩)z1

+ ⟨p1, (g111 + g111)⟩z1|z1|
2+⟨p1, (g122 + g122)⟩z1|z2|

2
)
,

ż2 =
1

m2

(
(⟨p2, g2⟩ − ⟨p2, (iω2τεAτe

−iω2τc)q2⟩)z2

+ ⟨p2, (g222 + g222)⟩z2|z2|
2+⟨p2, (g112 + g112)⟩z2|z1|

2
)
,
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Table 2. The critical points corresponding to the content of Figure 6 and . 7.

Point Type Coordinate
GH10 Bautin (b, a, ω) ≈ (0.0993987, 0.0364729, 0.2690649)
GH11 Bautin (b, a, ω) ≈ (0.5306613, 0.2048096, 0.3836429)
GH12 Bautin (b, a, ω) ≈ (0.5707414, 0.4236472, 0.4477269)
GH13 Bautin (b, a, ω) ≈ (0.0208416, 0.4096192, 0.7203660)
GH14 Bautin (b, a, ω) ≈ (0.6364729, 0.3030060, 0.7871791)
GH15 Bautin (b, a, ω) ≈ (1.6671114, 0.8565710, 1.3064622)
GH16 Bautin (b, a, ω) ≈ (1.7324883, 1.1767845, 0.9091838)
GH17 Bautin (b, a, ω) ≈ (0.2801867, 1.7851901, 1.2000490)
GH18 Bautin (b, a, ω) ≈ (1.5223482, 0.7605070, 0.8733113)
GH19 Bautin (b, a, ω) ≈ (1.8959306, 6.2201467, 1.6076898)
GH20 Bautin (b, a, ω) ≈ (3.2735156, 1.6731154, 1.8292806)
GH21 Bautin (b, a, ω) ≈ (4.1420947, 11.0473649, 2.1060386)
GH22 Bautin (b, a, ω) ≈ (5.4402935, 2.7698465, 2.3528133)
HH4 double-Hopf (b, a, ω1, ω2) ≈ (0.5722861, 0.3042921, 0.7813242, 0.4146577)
HH5 double-Hopf (b, a, ω1, ω2) ≈ (1.5867933, 0.8554277, 1.3020431, 0.8820757)
HH6 double-Hopf (b, a, ω1, ω2) ≈ (3.0090022, 1.6984246, 1.8188278, 1.3846791)
HH7 double-Hopf (b, a, ω1, ω2) ≈ (3.4763690, 4.4471117, 2.2839871, 1.4851096)
HH8 double-Hopf (b, a, ω1, ω2) ≈ (3.0335083, 5.6204051, 2.2595078, 1.5321319)
HH9 double-Hopf (b, a, ω1, ω2) ≈ (4.9502375, 2.8657164, 2.3376988, 1.8983146)
HH10 double-Hopf (b, a, ω1, ω2) ≈ (5.8587146, 6.4396099, 2.8118369, 1.9759818)
HH11 double-Hopf (b, a, ω1, ω2) ≈ (4.8679669, 10.5476369, 2.7583929, 2.0707125)

Table 3. The second Lyapunov coefficient associated with the Bautin points

Point Coordinate 2nd Lyapunov coef. Type
GH1 (b, a, ω, τ) ≈ (0.6584389, 0.4919946, 0.9566369, 3) −0.0618928 Super-critical
GH2 (b, a, ω, τ) ≈ (3.9361702, 12.2596996, 2.3152550, 3) −12.5456216 Super-critical
GH3 (b, a, ω, τ) ≈ (0.2428285, 0.1280853, 0.5160221, 6) −0.0532859 Super-critical
GH4 (b, a, ω, τ) ≈ (1.1300867, 0.5283522, 0.7070055, 6) 1.6047136 Sub-critical
GH5 (b, a, ω, τ) ≈ (1.4056037, 0.9366244, 0.7867121, 6) 0.9863922 Sub-critical
GH6 (b, a, ω, τ) ≈ (0.4156104, 2.5296864, 1.3152771, 6) 0.0057265 Sub-critical
GH7 (b, a, ω, τ) ≈ (2.2788525, 1.2168112, 1.5556488, 6) −0.8181691 Super-critical
GH8 (b, a, ω, τ) ≈ (3.9226150, 11.2955303, 2.1494908, 6) −0.2522125 Super-critical
GH9 (b, a, ω, τ) ≈ (6.5937291, 3.4182788, 2.6055112, 6) −2.9387006 Super-critical
GH10 (b, a, ω, τ) ≈ (0.0993987, 0.0364729, 0.2690649, 12) −0.0333619 Super-critical
GH11 (b, a, ω, τ) ≈ (0.5306613, 0.2048096, 0.3836429, 12) 15.4021195 Sub-critical
GH12 (b, a, ω, τ) ≈ (0.5707414, 0.4236472, 0.4477269, 12) −0.0036876 Super-critical
GH13 (b, a, ω, τ) ≈ (0.0208416, 0.4096192, 0.7203660, 12) −0.0144418 Super-critical
GH14 (b, a, ω, τ) ≈ (0.6364729, 0.3030060, 0.7871791, 12) −0.14129137 Super-critical
GH15 (b, a, ω, τ) ≈ (1.6671114, 0.8565710, 1.3064622, 12) −0.4352336 Super-critical
GH16 (b, a, ω, τ) ≈ (1.7324883, 1.1767845, 0.9091838, 12) 1.0345635 Sub-critical
GH17 (b, a, ω, τ) ≈ (0.2801867, 1.7851901, 1.2000490, 12) −0.0005606 Super-critical
GH18 (b, a, ω, τ) ≈ (1.5223482, 0.7605070, 0.8733113, 12) 1.1036741 Sub-critical
GH19 (b, a, ω, τ) ≈ (1.8959306, 6.2201467, 1.6076898, 12) −0.0161390 Super-critical
GH20 (b, a, ω, τ) ≈ (3.2735156, 1.6731154, 1.8292806, 12) −1.0078734 Super-critical
GH21 (b, a, ω, τ) ≈ (4.1420947, 11.0473649, 2.1060386, 12) −0.0558478 Super-critical
GH22 (b, a, ω, τ) ≈ (5.4402935, 2.7698465, 2.3528133, 12) −1.8190023 Super-critical

where

g1 = B13(q1, µε) +B23(q1, µε)e
−iω1τc ,

g2 = B13(q2, µε) +B23(q2, µε)e
−iω2τc ,

m1 = ⟨p1, (τcAτe
−iω1τc + I)q1⟩,

m2 = ⟨p2, (τcAτe
−iω2τc + I)q2⟩,
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(a) (b)

(c) (d)

Figure 11. a) The stability region corresponding to value k = −0.5 can lead to experi-
ence a wider range of stability region. b) Considering τ as one of the bifurcation parameters
yields another experience of stability region. A critical double-Hopf point HHτ is determined at
(b, τ) = (3.2545090, 3.6993988). c) The phase space corresponding to parameters near point HHτ ,
showing a torus. d) The phase space corresponding to parameters in asymptotic (gray) area of (b)
marked by ⋆ at (b, τ) = (4, 3.5).

in which µ = µc + ε2µε, µε = µε(bε, aε, τε), µc = µc(bc, ac, τc), and

[B13(u, v)]i :=

3∑
j,k=1

∂2Fi(ξ, ξτ , µ)

∂ξj∂µk

∣∣∣
ξ=O,ξτ=O,µ=µc

ujvk, , i = 1, 2, 3

[B23(u, v)]i :=
3∑

j,k=1

∂2Fi(ξ, ξτ , µ)

∂(ξτ )j∂µk

∣∣∣
ξ=O,ξτ=O,µ=µc

ujvk, , i = 1, 2, 3
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Furthermore, additional coefficients are determined via Taylor expansion. This equation can be rewrite as:

ż1 = C1(µε)z1 + C111z1|z1|
2+C122z1|z2|

2,

ż2 = C2(µε)z2 + C112z2|z1|
2+C222z2|z2|

2,

By substituting zi = ρie
iθ, i = 1, 2, one can express the complex amplitudes as:

ρ̇1 = L1ρ1 + L111ρ
3
1 + L122ρ1ρ

2
2,

ρ̇2 = L2ρ2 + L222ρ
3
2 + L112ρ

2
1ρ2,

(5.1)

where Li = ℜ(Ci(µε)) and Lijk = ℜ(Cijk). As such, one can derive the equilibrium points of Eq. (5.1):

E0 =
(
0, 0

)
, E1 =

(√−L1

L111

, 0
)
, E2 =

(
0,

√
−L2

L222

)
,

E3 =
(√ L2L122 − L1L222

L111L222 − L112L122

,

√
L1L112 − L2L111

L111L222 − L112L122

)
.

(5.2)

E0 represents the equilibrium of Eq. (5.1) with no action, whereas E1 and E2 represent periodic behaviors with
frequencies of ω1 and ω2, accordingly. E3 denotes a quasi-periodic motion of Eq. (5.1). The Jacobian matrix of
Eq. (5.1) is provided as follows:

Aρ =

[
L1 + 3L111ρ

2
1 + L122ρ

2
2 − λ 2L122ρ1ρ2

2L112ρ1ρ2 L2 + L112ρ
2
1 + 3L222ρ

2
2 − λ

]
(ρ1,ρ2)

.

Analyzing the eigenvalues of Aρ at the equilibrium allows one to ascertain the stability of the equilibrium points.

Example 5.1. To analyze the double-Hopf bifurcations in system (1.3), the constant delay of τ = 3 is utilized as
an illustration. The parameter µ0(b0, a0, τ0) is assumed to be constant at (b0, a0, τ0) ≈ (4.6104208, 9.2997995, 3); this
value corresponds to the intersection point HH1 in Figure 3 as well. It is possible to derive the coefficients of Eq. (5.1)
that correspond to the bifurcation point HH1, and the equilibrium points specified in Eq. (5.2) are as follows:

L1 ≈ −0.4517428 τε − 0.0107214 aε − 0.1367348 bε,

L111 ≈ 0.3103871,

L122 ≈ 1.0896151,

L2 ≈ 0.5328539 τε + 0.0346225 aε + 0.0805686 bε,

L112 ≈ −0.3938235,

L222 ≈ −0.4391840,

E0 = (0, 0),

E1 = (
√
1.4554174 τε + 0.0345422 aε + 0.4405300 bε, 0),

E2 = (0,
√
1.2132817 τε + 0.0788338 aε + 0.1834507 bε)),

E3 = (
√

1.3053578 τε + 0.1127618 aε + 0.0947307 bε,
√
0.0427459 τε − 0.0222815 aε + 0.0985041 bε).

The numerical simulation corresponding near the point HH1 is depicted in Figure 12(a).

Example 5.2. To analyze another double-Hopf bifurcation in system (1.3), the constant delay of τ = 6 is utilized as
an illustration. The parameter µ0(b0, a0, τ0) is assumed to be constant at (b0, a0, τ0) = (4.9958717, 4.1971342, 6); this
value corresponds to the intersection point HH3 in Figure 5 as well. It is possible to derive the coefficients of Eq. (5.1)
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(a) (b)

Figure 12. a) The phase space near the point HH1, b) The phase space near the point HH3.

that correspond to the bifurcation point HH3, and the equilibrium points specified in Eq. (5.2) are as follows:

L1 ≈ −0.0584179 τε + 0.0171727 aε − 0.0600969 bε,

L111 ≈ 0.3242904,

L122 ≈ 1.2688926,

L2 ≈ 0.0656549 τε + 0.0198472 aε + 0.0200129 bε,

L112 ≈ −0.3791212,

L222 ≈ −0.2626690,

E0 = (0, 0),

E1 = (
√
0.1801409 τε − 0.0529547 aε + 0.1853182 bε, 0),

E2 = (0,
√
0.2499532 , τε + 0.0755599 aε + 0.0761908 bε),

E3 = (
√

0.1716783 τε + 0.0750089 aε + 0.0242716 bε,
√
0.0021627 τε − 0.0327036 aε + 0.0411586 bε).

The confirmation of the phase space for this scenario is depicted in Figure 12(b).

6. Analysis of the Model’s Performance with Two Distinct Variables

Comprehending the dynamic behavior within the state-parameter space is essential for the most effective layout
and motion regulation of systems. This section presents a detailed analysis of the system’s two-parameter dynamics,
focusing on two primary indices: Lyapunov exponents and Poincaré sections. The analysis of various system responses
within the two-parameter plane indicates that the intricacy of the evolutionary process might markedly increase
with increased delay. The path-following method and time-domain integration technique are utilized to analyze the
intricacies inherent in processes of evolution. The modifications of the basin of attraction are analyzed in the initial
conditions plane to illustrate the observed multi-stability phenomena and turbulent transitions.

Monitoring global system dynamics within parameter and state spaces defined by inherent time delay is essential
for improving understanding of the system. This section is based on numerical simulation, concentrating on the
computation and identification of global dynamic behaviors in the comprehensive evolution of nonlinear dynamic
systems with delay, and demonstrates complex dynamic interrelations. In dynamical systems characterized by temporal
delays and significant nonlinearity, accurate analytical solutions are largely unattainable, making direct numerical
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integration a crucial method for addressing complex functional differential equations. This section employs the fourth-
order Runge-Kutta method in conjunction with a fixed step size 0.01 and linear interpolation technique to address the
delayed differential equation.

Lyapunov exponent functions serve as a dependable measurement for the quantitative classification of various
system responses. In an autonomous dynamical system, a negative largest Lyapunov exponent (LLE) indicates that
the system is in a state of equilibrium. When positive LLE occurs, chaotic oscillation arises in the system’s response.
In the situation that LLE is equal to zero, the system will exhibit periodic or quasi-periodic action. LLE has garnered
significant interest owing to its improved effectiveness in identifying various dynamic responses. The calculation of
LLE is performed using the subsequent formula:

LLE = lim
n−→∞

lim
ε−→0

1

nh

n∑
i=1

ln
di
ε
,

where h represents the integral step size and n signifies the total number of iterations. d0 specifies the initial distance
between two proximate phase trajectories, whereas the notation ε signifies the initial distance between two adjacent
phase trajectories. di denotes the evolutionary distance between two trajectories at the i-th iteration. In this paper,
ε and h are set to 10−5 and 0.01, respectively.

LLE will assist the difference between equilibrium points and chaotic actions. Equilibrium points occur when the
Lyapunov Exponent (LLE) is less than a small positive constant, while chaos is signified by an LLE above that small
positive constant. Periodic responses are deemed simple if the absolute quantity of LLE is below than or equal to
small positive constant. Supplementary system responses, including extended periodic and quasi-periodic feedback,
are categorized and shown employing different colors for clarity.

Alongside Lyapunov exponents, the Poincaré section is commonly employed to identify diverse system responses.
The presence of multiple irregular discrete points in the Poincaré section indicates chaotic oscillations. Upon observing
a closed curve in the Poincaré section, the system demonstrates quasi-periodic oscillations. A periodic oscillation is
evident in the system response when a finite number of points are examined on the cross-section. This section
designates the Poincaré section as the locus of zero angular velocity, defined as follows:

P =
{
(x0, y0, z0, . . . , xnτ

, ynτ
, znτ

) ∈ R3(nτ+1) : y0 = 0, ẏ0 > 0
}
,

where nτ = τ
h . The Poincaré section is typically used for categorizing various periodic behaviors in a two-parameter

structure and for illustrating a single-parameter bifurcation diagram.
Our study partitions the (b, a) two-parameter plane to enhance computing efficiency. The LLE and the number of

intersection points on the Poincaré section are computed and subsequently used to categorize the system’s motion, with
results depicted in Figures 13-15. Ten colors represent various types of motion: “D” indicates diverging responses, “C”
denotes chaotic motions, “A” signifies asymptotic stability around equilibrium points, “P-1” through “P-6” correspond
to period 1 to 6 responses, respectively, as well as “P>” refers to extended periodic and quasi-periodic motions.

The previous sections reveal that the equilibrium point may lose its stability primarily due to Hopf bifurcation.
Moreover, the complex structures depicted in the white region of the two-parameter plane related to Figure 1(a)
and Figures 3–10 for some τ are also identified and depicted in Figures 13–15. The numerical findings depicted in
the figures yield novel insights with different patterns. Multiple kinds of periodic responses, chaotic movements, and
divergence are presented. In addition chaotic motion, more periodic responses can be seen in the two-parameter plane,
where equilibrium becomes unstable.

To enhance understanding of the two-parameter results obtained, it is essential to conduct a single-parameter
bifurcation analysis to locate the bifurcations. Figures 13(b) and (c), as well as Figure 14(b) illustrate the co-dimension
1 for various values of τ when the bifurcation parameter b is selected. For τ = 0 and a = 1.05, the co-dimension 1
is illustrated in Figure 13(b). The figure illustrates that the system demonstrates intricate behavior. The red dots
represent the relevant outcomes based on the chosen Poincaré section showing only minimum Z values. For a slightly
greater value of a (a = 1.1), a divergence behavior is identified in Figure 13(c).

The basin of attraction for various initial points is illustrated in Figures 16–17. For parameters (b, a, τ) =
(0.097, 1.078, 0), P-4 type of periodic response and divergence behaviors emerge in spiral pattern. The equilibrium
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(a)

(b) (c)

Figure 13. a) Co-dimension 2 plane for τ = 0 with parameters (b, a). b) Co-dimension 1 bifurcation
diagram in the case of (a, τ) = (1.05, 0) showing only minimum Z values, c) Co-dimension 1 bifurcation
diagram in the case of (a, τ) = (1.1, 0) showing only minimum Z values together with the phase space
at coordinate (b, a, τ) = (0.164, 1.1, 0) near the equilibrium point demonstrating a period 4 bifurcation.

points are depicted with red dots. As the starting point shifts away from the equilibrium point concerning X and
Z, the system begins to diverge. The same pattern is emerged with parameters (b, a, τ) = (0.1, 1.078, 0), except the
higher periodic behavior (P>) is occurred.

Figure 17 illustrates the basin of attraction for different values of parameters and τ , showing periodic, quasi-periodic,
chaotic, and divergence behavior of the system.

7. Conclusion

Primarily, this paper intends to demonstrate how delay affects the jerk model, with a particular focus on the role
of bifurcations in shaping the system’s response. An analysis was carried out to compare the operation of systems
with and without delays. The results indicated that the appearance of delay brings novel phenomena, such as a
reduction of the region of stability and an escalation in the richness of stability boundary structures. Utilizing the
method of multiple scales, the coefficients of the Hopf, Bautin and double-Hopf bifurcation in the normal form are
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(a)

(b)

Figure 14. a) Co-dimension 2 plane for τ = 5 with parameters (b, a), b) Co-dimension 1 bifurcation
diagram in the case of (a, τ) = (1.95, 5) together with the phase space near the equilibrium point
demonstrating an asymptotically, period 1, and period 2 bifurcation.

computed. Several Bautin and double-Hopf points accumulate within a range of delay levels. As the delay value
increases, an increasing number of Bautin and double-Hopf points are identified. Two of the double-Hopf bifurcation
points are regarded as taste. These points are validated through the utilization of numerical simulations. A thorough
analysis of the system’s dynamic behavior regarding two parameters has been conducted, encompassing co-dimension 1,
co-dimension 2, and the basin of attraction, employing Lyapunov exponents and Poincaré sections. The bifurcation
analysis of the time-delayed jerk system provides valuable physical insights into how dynamic behaviors emerge and
evolve in systems. The identification of Hopf bifurcations marks the transition from steady and predictable motion,
where velocity, acceleration, and jerk settle to constant values, to sustained oscillatory dynamics, manifesting as
rhythmic fluctuations in these physical quantities. The presence of Bautin bifurcations reveals regions in parameter
space where multiple oscillatory states can coexist. This indicates that the system may exhibit either small or large
amplitude oscillations in velocity, acceleration, and jerk depending on initial conditions. The discovery of double-
Hopf bifurcations, enabled by the inclusion of time delay, points to the possibility of even more complex behaviors,
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(a) (b)

(c) (d)

Figure 15. Co-dimension 2 plane with parameters (b, a) for a) τ = 3, b) τ = 7, c) τ = 9, d) τ = 11.

such as quasi-periodic or modulated oscillations, where multiple frequencies interact and produce intricate patterns
in the system’s motion. As the delay increases, the system becomes more susceptible to instability and chaotic
responses, making the velocity, acceleration, and jerk increasingly unpredictable. These findings underscore the critical
importance of understanding and controlling bifurcation phenomena in practical applications, as they directly impact
the stability and safety of systems subject to delayed feedback and nonlinear effects.
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(a)

(b)

Figure 16. Basin of attraction together with the phase space for a) (b, a, τ) = (0.097, 1.078, 0), b)
(b, a, τ) = (0.1, 1.078, 0)
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(a)

(b) (c)

Figure 17. Basin of attraction for a) (b, a, τ) = (1.4711, 0.33, 0) with phase space, b) (b, a, τ) =
(1.261, 0.2462, 0), c) (b, a, τ) = (3.6, 2.24, 5).
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