| تعداد نشریات | 45 |
| تعداد شمارهها | 1,419 |
| تعداد مقالات | 17,505 |
| تعداد مشاهده مقاله | 56,566,550 |
| تعداد دریافت فایل اصل مقاله | 18,771,987 |
A Non-standard Finite Difference Method for Convection-diffusion Singularly Perturbed Integro-differential Equations | ||
| Computational Methods for Differential Equations | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 19 مهر 1404 اصل مقاله (3.05 M) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22034/cmde.2025.65288.2991 | ||
| نویسندگان | ||
| P Antony Prince؛ L Govindarao؛ Sekar Elango* | ||
| Department of Mathematics, Amrita School of Physical Science, Coimbatore, Amrita Vishwa Vidyapeetham, India. | ||
| چکیده | ||
| This paper tackles singularly perturbed second-order ordinary differential equations and parabolic partial differential equations with the Fredholm integral term. A non-standard finite difference method is applied the derivative terms, the trapezoidal rule treats the integral term and the backward Euler method deals with the temporal derivative phrase. The approximate numerical technique for the second-order Fredholm integro-ordinary differential (convection-diffusion type) equations provides a convergence rate of order one. The time-dependent parabolic Fredholm integro-partial differential (convection-diffusion type) equations possess a convergence rate of order one. Specific numerical examples are provided to illustrate the effectiveness of the theoretical findings. | ||
| کلیدواژهها | ||
| Singular perturbation؛ Convection diffusion؛ Fitted operator؛ Fredholm integral؛ Boundary layer | ||
|
آمار تعداد مشاهده مقاله: 73 تعداد دریافت فایل اصل مقاله: 115 |
||