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Abstract

In this article, we introduce a new method for increasing the accuracy of the fifth-order WENO scheme. Recently,

some methods were developed to increase the accuracy near discontinuities. We use the idea of these methods
and the mapped WENO schemes to increase the accuracy both in smooth regions and near discontinuities. We

also present some numerical experiments including the linear wave equation and Euler equations of gas dynamics
to confirm the theoretical results. The results show that the introduced scheme attains better resolution at the

smooth parts of the solution, while keeping the same non-oscillatory behavior of the WENO schemes at shocks

and discontinuities.

Keywords. WENO schemes, Mapping function, Conservation laws.

2010 Mathematics Subject Classification. 65M22.

1. Introduction

Weighted essentially non-oscillatory (WENO) schemes are a class of high-order schemes used for solving problems
which contain both smooth and discontinuous regions such as hyperbolic conservation laws. These schemes were first
introduced in [15, 16]. For instance, the fifth-order WENO scheme is obtained by a convex weighted combination
of three third-order stencils. In smooth regions the weights of these stencils are such that a fifth-order stencil is
achieved, while near discontinuities the smoothest third-order stencil is selected. Gradually different modifications
and improvements over the original scheme were proposed in the literature. Henrik et al. [14] introduced mapped
WENO schemes (WENO-M). They noted that the fifth-order WENO method is only third-order accurate at critical
points in smooth regions. They used a mapping function to the original weights so that the new weights satisfied
the sufficient condition to achieve the optimal order of accuracy at or near critical points. This work made a basis
for some other research [12, 13, 20, 22]. Recently, Amat et al. in a series of papers [5–9] introduced a new WENO
interpolation capable of raising the order of accuracy close to discontinuities for some applications such as data
interpolation and signal processing. Their idea was to use the highest-order stencil as long as the stencil does not
contain any discontinuity. They used their new WENO algorithm for the numerical solution of conservation laws in
[4], though the improvement over the classic WENO scheme is very small.

In this manuscript, we introduce a new method to improve the work of Amat et al. [4]. The idea is to use a
combination of the third- and fourth-order smoothness indicators. Also, for further improvement a mapping function
as in [14] is utilized to increase the accuracy in smooth regions and at the same time improve the accuracy near
discontinuities. Also, to ensure the fifth-order accuracy for smooth solutions, the convergence order of the new
schemes are numerically verified as it is customary in the literature of numerical solution of various partial differential
equations [1–3, 11].

The manuscript is organized as follows. In section 2, we give a brief description of the WENO schemes and also
the WENO-M scheme [14] and Amat et al. algorithm [4]. The main part of this work will be presented in section 3.
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In section 4, the new scheme is assessed by numerical simulation of the linear advection equation and Euler equations
of gas dynamics. Finally, the concluding remarks are given in section 5.

2. WENO schemes

In this section, we describe the WENO schemes for discretizing the governing equation of a conservation law.
Consider the following equation:

ut + fx = 0, (2.1)

where u is the conservative variable and f = f(u) is the flux function. We consider a uniform grid in the x-direction
and define the grid points as xi = i∆x where ∆x is the grid size. The flux derivative is discretized in the conservative
form as

f ′(xi) =
fi+ 1

2
− fi− 1

2

∆x
+O(∆xm), (2.2)

where fi+ 1
2
is the numerical flux at xi+ 1

2
and m is the order of the truncation error. In a (2k − 1)th-order WENO

scheme [15, 16], the flux fi+ 1
2
is approximated such that m = 2k−1 in smooth regions and m = k near discontinuities.

This is done by a convex combination of k fluxes:

fi+ 1
2
=

k−1∑
r=0

ωrf
(k,r)

i+ 1
2

, 0 ≤ r ≤ k − 1, (2.3)

where f
(k,r)

i+ 1
2

is a kth-order approximation of the flux. The flux f
(k,r)

i+ 1
2

satisfies (2.2) with m = k by using the following

stencil points

Sk
r = {xi−r, xi−r+1, · · · , xi−r+k−1} , (2.4)

and it is obtained by a polynomial of degree at most k − 1, pkr (x), which its average in [xj− 1
2
, xj+ 1

2
] equals fj for all

xj ∈ Sk
r :

fj =
1

∆x

∫ x
j+1

2

x
j− 1

2

pkr (ξ) dξ , xj ∈ Sk
r . (2.5)

The coefficients ωr are nonlinear weights which determine the contribution of each f
(k,r)

i+ 1
2

to fi+ 1
2
. For consistency

and stability, it is required:

ωr ≥ 0 ,

k−1∑
r=0

ωr = 1. (2.6)

In [15], the following weights, after extensive numerical experiments, are proposed

ωr =
αr∑k
q=0 αq

, αr =
dr

(βr + ϵ)2
, (2.7)

where the coefficients dr are optimal weights which generate the (2k − 1)th-order central upwind scheme:

f
(2k−1,k)

i+ 1
2

=
k−1∑
r=0

drf
(k,r)

i+ 1
2

. (2.8)

The coefficients βr are called the smoothness indicators and defined by

βr =
k−1∑
l=1

∫ x
i+1

2

x
i− 1

2

∆x2l−1

(
∂lpkr (x)

∂xl

)2

dx. (2.9)
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Figure 1. All sub-stencils inside S5
2 (k = 3).

For the fifth-order scheme (k = 3), the optimal weights and third-order sub-stencils, shown by S3
0 , S

3
1 and S3

2 in
Fig. 1, are as follows

d0 =
3

10
, f

(3,0)

i+ 1
2

=
1

6
(2fj + 5fj+1 − fj+2),

d1 =
3

5
, f

(3,1)

i+ 1
2

=
1

6
(−fj−1 + 5fj + 2fj+1),

d2 =
1

10
, f

(3,2)

i+ 1
2

=
1

6
(2fj−2 − 7fj−1 + 11fj), (2.10)

and the smoothness-indicators are

β0 =
13

12
(fj − 2fj+1 + fj+2)

2 +
1

4
(3fj − 4fj+1 + fj+2)

2,

β1 =
13

12
(fj−1 − 2fj + fj+1)

2 +
1

4
(fj−1 − fj+1)

2,

β2 =
13

12
(fj−2 − 2fj−1 + fj)

2 +
1

4
(fj−2 − 4fj−1 + 3fj)

2. (2.11)

Note that, according to [14], if the smoothness-indicators can be written as

βr = B(1 +O(h2)), (2.12)

where B is some non-zero constant independent of r, then the scheme is fifth-order accurate in smooth regions. Taylor
series expansion of smoothness indicators of (2.11) shows that

βr = (hf ′
i)

2(1 +O(h2)), (2.13)

and therefore the fifth-order accuracy of the scheme in smooth regions is guaranteed.

2.1. increasing the accuracy near discontinuities. Amat et al. [4] proposed a method to utilize the available
fourth-order schemes, i.e. S4

1 and S4
2 (see Fig. 1), near discontinuities. Before describing their main idea, we give

the fourth-order schemes. Considering the cells involved in computing fi+ 1
2
for the WENO5 scheme, there are two
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fourth-order schemes which corresponding to stencils S4
1 and S4

2 . Both the fourth-order schemes can be obtained by
a linear combination of the third-order schemes:

f
(4,1)

i+ 1
2

=
1

2
f
(3,0)

i+ 1
2

+
1

2
f
(3,1)

i+ 1
2

,

f
(4,2)

i+ 1
2

=
3

4
f
(3,1)

i+ 1
2

+
1

4
f
(3,2)

i+ 1
2

. (2.14)

Also, the fifth-order central upwind scheme of (2.8) can be obtained by a linear combination of these fourth-order
schemes:

f
(5,2)

i+ 1
2

=
2

5
f
(4,1)

i+ 1
2

+
3

5
f
(4,2)

i+ 1
2

. (2.15)

Now, if we define the vector of weights in (2.3) as Ω = (ω0, ω1, ω2) and also define

C4
1 = (0,

3

4
,
1

4
) , C4

2 = (
1

2
,
1

2
, 0) , C5

2 = (d0, d1, d2) = (
3

10
,
3

5
,
1

10
), (2.16)

then Ω = C4
1, Ω = C4

2, and Ω = C5
2 give f

(4,1)

i+ 1
2

, f
(4,2)

i+ 1
2

and f
(5,2)

i+ 1
2

, respectively. Also, note that

C5
2 = D1C

4
1 +D2C

4
2, (2.17)

where

D1 =
2

5
, D2 =

3

5
. (2.18)

In the WENO5 scheme if a discontinuity exists in any of the cells (Figure 1), then the scheme accuracy degrades
from fifth- to third-order. In [4], the idea is to use one of the fourth-order schemes if the discontinuity is outside their
corresponding stencil. Precisely, if a discontinuity is inside the rightmost cell (the cell centered at xj+2) and the other
four cells are smooth, then it is better to use the fourth-order scheme corresponding to sub-stencil S4

2 . This can be
achieved if the optimal weights are C4

2 instead of C5
2. Similarly, if a discontinuity is inside the leftmost cell (the cell

centered at xj−2) and the other four cells are smooth, then it is better to use the fourth-order scheme corresponding
to sub-stencil S4

1 which can be achieved by using the optimal weights equal to C4
1 instead of C5

2. We denote these
cases by I and II, respectively. To accomplish this, the optimal weights in (2.7), i.e. C5

2 = (d0, d1, d2), is replaced by

C̃5
2 = (d̃0, d̃1, d̃2), where C̃5

2 is defined by replacing the constant coefficients D1 and D2 in (2.17) by new weights as

C̃5
2 = W1C

4
1 +W2C

4
2, (2.19)

where

Wr =
Ar

A1 +A2
, (2.20)

and

A1 =
D1

(β
(4)
2 + ϵ)t

, A2 =
D2

(β
(4)
1 + ϵ)t

, (2.21)

where t is a positive number which should be greater than or equal to 2 for achieving the desired accuracy and β
(4)
r is

the smoothness indicators of the fourth-order stencils S4
r (see [10]):

β(4)
r =

(
ux +

ux3

10

)2
+

13

3
(ux2)

2
+

781

20
(ux3)

2
,

(2.22)
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where

r = 1 : ux =
1

6
(−19fj−1 − 33fj + 63fj+1 − 11fj+2) ,

ux2 =
1

2
(fj−1 − 2fj + fj+1) ,

ux3 =
1

6
(−fj−1 + 3fj − 3fj+1 + fj+2) ,

r = 2 : ux =
1

6
(11fj−2 − 63fj−1 + 33fj + 19fj+1) ,

ux2 =
1

2
(fj−1 − 2fj + fj+1) ,

ux3 =
1

6
(−fj−2 + 3fj−1j − 3fj + fj+1) .

It should be mentioned that β
(4)
2 is used to obtain A1 and β

(4)
1 is used to obtain A2 and there is no typesetting

error in (2.21). The accuracy condition (2.12) is also true for this scheme and since we have

β(4)
r = (hf ′

i)
2(1 +O(h2)), (2.23)

and therefore the fifth-order accuracy of this scheme in smooth regions is guaranteed. Now, it can be shown that for
smooth regions (see [4]), we have

C̃5
2 = C5

2 +O(h2), (2.24)

and for cases I and II, we have

Case I : C̃5
2 = C4

2 +O(h2t),

Case II : C̃5
2 = C4

1 +O(h2t).

2.2. Mapped Weights. Henrik et al. [14] showed that near the critical points (zero first-derivative), the original
weights (2.7) are not close enough to their optimal values and cannot achieve the maximum accuracy. They introduced
mapped WENO schemes (WENO-M) where the following mapping function is used to render the weights closer to
their optimal values (dr) so as to satisfy sufficient criteria for fifth-order convergence:

gr(ω) =
ω(dr + d2r − 3drω + ω2)

d2r + ω(1− 2dr)
, (2.25)

Since after mapping, the weights sum is no longer equal to unity, another normalization, similar to (2.7), is required

ω̃r =
α̃r∑k
q=0 α̃q

, α̃r = gr(ωr), (2.26)

and then ω̃r are used instead of ωr in (2.3).

3. New scheme

In this section, we introduce a new approach to use the fourth-order schemes for cases I and II. Through numerical
experiments, we observed that we can improve [4] if we modify (2.21) as

A1 =
D1

(β̂2 + ϵ)t
, β̂2 = |β2 − β1|,

A2 =
D2

(β̂1 + ϵ)t
, β̂1 = |β0 − β1|, (3.1)
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which only uses the third-order smoothness indicators (2.11). Specifically, β
(4)
1 and β

(4)
2 are replaced by |β0 − β1| and

|β2 − β1|, respectively. However, in smooth regions, Taylor series expansion [14] shows

β̂1 = (h4f ′
if

′′′
i )(1 +O(h)) , β̂2 = (h4f ′

if
′′′
i )(1 +O(h)),

which does not meet the accuracy condition (2.12). Therefore, we seek for a suitable combination of β
(4)
r and β̂r which

can meet the accuracy condition. Through extensive numerical experiments, we found the following combination

β̂
(4)
1 = max(β

(4)
1 , C ′

1|β0 − β1|) , C ′
1 = C ′′ β2

β
(4)
1 + ϵ

,

β̂
(4)
2 = max(β

(4)
2 , C ′

2|β2 − β1|), C ′
2 = C ′′ β0

β
(4)
2 + ϵ

, (3.2)

where C ′′ is a positive constant for tuning. This combination recovers the accuracy condition (2.12) and then (2.24).
Therefore, for the new scheme, we have

A1 =
D1

(β̂
(4)
2 + ϵ)t

, A2 =
D2

(β̂
(4)
1 + ϵ)t

. (3.3)

We denote this scheme by WENO5/4I.

3.1. Further improvement by mapping. If we use the mapping function (2.25) for the weights of WENO5/4I,

the scheme can be further improved. Here, we use (2.25) to map the weights of WENO5/4I toward C̃5
2 = (d̃0, d̃1, d̃2).

This is done by replacing dr with d̃r in the mapping function definition (2.25) as

g̃r(ω) =
ω(d̃r + d̃2r − 3d̃rω + ω2)

d̃2r + ω(1− 2d̃r)
, (3.4)

and then the new weights are obtained by normalization (2.26). This makes the weights of WENO5/4I closer to C4
1

for case I, to C4
2 for case II and to C5

2 otherwise. This allows to have the advantages of both the WENO5/4I and
mapped WENO methods. We denote this scheme by WENO5/4IM.

In the next section, the performance of the introduced methods are assessed by several numerical experiments.

4. Numerical experiment

In this section, we assess the numerical performance of the new WENO scheme. For all the problems, the third-order
TVD Runge-Kutta scheme [17] is used for the time integration

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)), (4.1)

where ∆t is the time-step. Also, we set ϵ = 10−12. The results of the mapped scheme (section 2.2) and the scheme of
Amat et al (section 2.1) are labeled by WENO5M and WENO5/4, respectively. For WENO5/4 and WENO5/4I the
power parameter is t = 2. For WENO5/4IM since the mapping function quickly recovers the optimal weights we use
t = 1. Also, we set C ′′ = 4 for WENO5/4I and C ′′ = 20 for WENO5/4IM.

4.1. Advection equation. For the first test case, we consider is the linear wave or advection equation in x ∈ [−1, 1]
with periodic boundary conditions:

ut + ux = 0, x ∈ [−1, 1]. (4.2)

First, we assess the error and convergence of the new schemes for a smooth solution. A periodic function in
∈ [−1, 1] is considered: u(x, 0) = sin(πx). Since the time integration method is third-order, the time step is chosen to

be ∆t = 8(∆x)
5
3 in order that the error for the overall scheme is a measure of the spatial convergence only. The error
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of the numerical solution is computed by comparing with the exact solution at t = 2. Table 1 shows the L1 norm of
the error:

L1 =
2

N

N∑
i=0

|ui − uexact,i| , (4.3)

For the sake of comparison, the results of the central upwind scheme (i.e. the optimal scheme), are given in the table.
The results show both WENO5/4I and WENO5/4IM converge at fifth-order.

Table 1. Convergence properties of the new schemes.

WENO5/4I WENO5/4IM Central Upwind

∆x L1 Order L1 Order L1 Order

0.53 4.1659× 10−3 −− 9.5659× 10−4 −− 6.0250× 10−4 −−
0.54 1.3365× 10−4 4.96 1.9610× 10−5 5.61 1.9480× 10−5 4.95
0.55 4.2237× 10−6 4.98 6.1817× 10−7 4.98 6.1797× 10−7 4.98
0.56 1.3268× 10−7 4.99 1.9450× 10−8 4.99 1.9449× 10−8 4.99
0.57 4.1609× 10−9 4.99 6.1141× 10−10 4.99 6.1140× 10−10 4.99

For investigating the performance of the new schemes around non-smooth regions, the initial condition is taken to
be a function containing a Gaussian-, a triangle-, a square- and a half-ellipse-wave region [15]:

u(x, 0) =



1
6 (Q(x, β, ζ − δ) +Q(x, β, ζ + δ) + 4Q(x, β, ζ)), x ∈ [−0.8,−0.6],

1, x ∈ [−0.4,−0.2],

1− |10(x− 0.1)|, x ∈ [0.0, 0.2],
1
6 (R(x, α, a− δ) +R(x, α, a+ δ) + 4R(x, α, a)), x ∈ [0.4, 0.6],

0, Otherwise.

(4.4)

where

Q(x, β, ζ) = exp(−β(x− ζ)2),

R(x, α, a) =
√
max(1− α2(x− a)2, 0),

and the constants are

a = 0.5 , ζ = −0.7 , δ = 0.005 , α = 10 , β = ln 2/(36δ2).

Figure 2 compares the results of different schemes at t = 8 which corresponds to four time periods. The number of
grid points is N = 201 and the time-step is ∆t = 0.1. The exact solution is also given. For better comparison, a closer
views of the square and gaussian waves are given in Figure 3. The results of WENO5/4I is considerably more accurate
than those of WENO5/4. Also, the results of WENO5/4IM is slightly more accurate than those of WENO5M.

To have a more clear view of the difference between the methods, we present the results at a very long time. Figure
4 compares the results of different schemes at t = 100 which corresponds to 50 time periods. This figure clearly shows
the difference of the results. For the square wave, WENO5/4IM has the most accurate results. The WENO5M scheme
ruins the shape of the square wave while the WENO5/4 and WENO5/4I schemes better preserve the shape of this
wave. Furthermore, in the regions between two consecutive waves, we observe again the most accurate results belong
to the WENO5/4IM scheme.

Since WENO schemes are nonlinear, the comparison of different schemes may lead to different conclusions in
different solution times. Therefore, it is better to compare the error of different schemes at several solution times. For
this reason, in Figure 5 the L1 error of the schemes as a function of time for each of the four waves in logarithmic scale
are plotted. The errors are computed at each complete time period (multiples of T = 2). Since the interval length of
all the waves in (4.4) is 0.2, for each wave we consider an interval of length 0.4 centered at that wave to compute the
L1 error. The figure clearly shows for all the waves the least error belongs to WENO5/4IM. The exception is for the
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Figure 2. Numerical solution of the advection equation using N = 201 at t = 8.
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Figure 3. Closer view of the square (left) and gaussian (right) waves at t = 8.

triangle wave where in some solution times (t < 20) WEON5/4I has the least error. Also, for all the waves, the error
of WENO5/4I is significantly smaller than those of WENO5/4.

4.2. Shock-tube problem. The second test case is the Sod shock-tube problem [19]. The governing equations are
the one-dimensional Euler equations of gas dynamics:

Ut + Fx = 0, U =

 ρ
ρu
E

 , F =

 ρu
ρu2 + p
(E + p)u

 , (4.5)

E = ρ(e+
u2

2
), p = ρe(γ − 1), γ = 1.4,



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-13 9

+++++++++
+
+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
++

+
+
+
+
+
+
+
+
++++

+

+

+

+

+

+

+

+

+

+

+
+
+
+

+

+

+

+
+
++

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+
+
++++

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+
+
+++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+

+

+

+

+

+

+

+
+
+
+
+
+
+
+
+
+++++++++++++++++++++

+

Figure 4. Numerical solution of the advection equation using N = 201 at t = 100.
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Figure 5. Numerical solution of the advection equation using N = 201 at t = 100.

where u, ρ, p and e denote the velocity, density, pressure and internal energy per unit mass, respectively. The solution
domain is [0, 10] and the left and right states of the discontinuity at t = 0 are

(ρL, uL, pL) = (1, 0, 1), x ≤ 5, (4.6)

(ρR, uR, pR) = (0.125, 0, 0.1), x > 5,
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where the exact solution possesses a self-similar solution which consists of a shock, a contact discontinuity and an
expansion fan.

Figure 6 shows the density profile at t = 2 for different fifth-order schemes. At this time, the shock and contact
discontinuity approximate locations are x = 8.5 and x = 6.85, respectively. Also, the expansion fan is approximately
spanned from x = 2.65 fo x = 4.85. The grid spacing is ∆x = 0.05 (201 points) and the time marching is done
using a fixed time-step of ∆t = 0.01. The characteristic-wise Lax-Friedrichs flux splitting [21] is used to handle both
the negative and positive wave speeds. Although the difference between te results of the different schemes are small,
we observe the most accurate results in all the regions belong to WENO5M. The difference between the results of
WENO5M and WENO5/4IM are very small. The least accurate results belong to WENO5/4. Overall, one mas say
the WENO5/4IM scheme can preserve both the advantages of the WENO5M and WENO5/4I schemes.

+ + + + + + + + + +

+

+

+
+ + + + + + + +

x

ρ

8 8.5 9
0.1

0.2

0.3

Exact

WENO5/4

WENO5M

WENO5/4I

WENO5/4IM

++ + + +
+

+

+

+

+

+

+
+ + + + + + + + + +

x

ρ

6.5 7 7.5
0.2

0.3

0.4

Exact

WENO5/4

+

+

+

+

+
+

+ + + + +

x

ρ

4.6 4.7 4.8 4.9 5 5.1
0.4

0.45

0.5

0.55

Exact

WENO5/4

WENO5M

WENO5/4I

WENO5/4IM

+

+ + + + +
+

+

+

+

+

+

x

ρ

2.3 2.4 2.5 2.6 2.7 2.8
0.9

0.95

1

1.05

Exact

WENO5/4

WENO5M

WENO5/4I

WENO5/4IM

Figure 6. Shock-tube problem; Numerical solution at t = 2 with N = 201.

4.3. Shock-density wave interaction. This test case involves the interaction between a Mach 3 moving shock and
a density wave in shape of a sine function [18]. The governing equations are the Euler Equations (4.5). The solution
domain is [−5, 5] and the initial states of the gas are as follows

(ρL, uL, pL) =

(
27

7
,
4
√
35

9
,
31

3

)
, x ≤ −4, (4.7)

(ρR, uR, pR) = (1 + 0.2 sin(5x), 0, 1), x > −4.



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-13 11

Figure 7 shows the exact density profile at t = 1.8. During the interaction, several shocks and high gradient regions
appear. Specifically, at the time shown in the figure, the location of the moving shock is x ≈ 2.4 and some shocks
and steepening gradients are formed behind in x ∈ [−2.9, 0.8]. Also, during the interaction, the steepening gradients
gradually form shocks. At t = 1.8, two of these steepening gradients at x ≈ −2.6 and x ≈ −1.6, already become
discontinuous.
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Figure 7. Shock-density wave interaction; Exact solution at t = 1.8.

Figure 8 compares the density distribution using N = 201 points (∆x = 0.05) for different schemes in the high gradi-
ent region. Also, the time-step is ∆t = 0.002. The results show the most accurate results belong to WENO5/4IM and
then WENO5M. Also, WENO5/4I gives more accurate results than WENO5/4. Again, we may say the WENO5/4IM
scheme can preserve both the advantages of the WENO5M and WENO5/4I schemes.
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Figure 8. Shock-density wave interaction; Numerical solution using at t = 1.8 with N = 201.
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5. Conclusion

In this article, we introduced a new fifth-order WENO scheme which was designed by improvement of a the
WENO5/4 scheme [4]. The new scheme was denoted by WENO5/4I. Also, the this scheme was further improved by
using a mapping function which was denoted by WENO5/4IM.

We examined the new schemes (WENO5/4I and WENO5/4IM) for the linear wave equation and also the Euler
equations of gas dynamics. In all the test cases, the numerical results verified that WENO5/4I is considerably more
accurate than WENO5/4. Also, the results verified that the WENO5/4IM scheme had the advantages of both the
WENO5M scheme in smooth regions and the WENO5/4I scheme near discontinuities.
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[8] S. Amat, J. Ruiz-Álvarez, C. W. Shu, and D. F. Yáñez, Cell-average WENO with progressive order of accuracy
close to discontinuities with applications to signal processing, Applied Mathematics and Computation, 403 (2021),
126201.
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