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Abstract

In this study, the Atangana-Baleanu fractional operator was employed with the Fornberg-Witham equation to
investigate The computational solutions to this equation. The existence and uniqueness of the solution were proven

using precise mathematical conditions that ensure their validity. Furthermore, the convergence of the approximated

solutions derived through the use of the Yang-Daftardar-Jafari Method (YDJM) to the exact solutions was verified.
The effectiveness of the proposed method was tested by applying it to two illustrative examples. The results

demonstrated that the solutions obtained through this method exhibit high accuracy and align well with the

analytical solutions under certain conditions, which highlights the efficiency of the method in handling nonlinear
fractional differential equations.

Keywords. Daftardar-Jafari iteration method, Yang Transform, Fornberg–Witham equation, Atangana–Baleanu fractional derivative.

2010 Mathematics Subject Classification. 26A33, 35R11, 65M70.

1. Introduction

In recent decades, fractional calculus (FC) has emerged as a powerful mathematical tool for modeling complex
phenomena across a wide range of disciplines, including natural sciences, engineering, fluid dynamics, and biological
systems. Unlike classical calculus, FC effectively captures hereditary and memory-dependent behaviors in various
materials and processes, making it particularly suitable for real-world applications [2, 3, 29, 37].

Fractional derivatives (FDs) have been applied to model systems involving viscoelastic behavior, anomalous diffu-
sion, signal processing, and damping phenomena. Among the many fractional partial differential equations (FPDEs)
studied, the Fornberg–Whitham equation (FWE) has received significant attention due to its ability to describe wave
breaking and nonlinear dispersive wave propagation.

The classical FWE, introduced by Fornberg and Whitham [16, 45], admits peaked solutions (peakons), which
provide valuable insight into wave height limitations and wave-breaking phenomena. Its fractional counterpart, the
fractional Fornberg–Whitham equation (FFWE), introduces a time-fractional derivative that enables more accurate
modeling of memory effects in physical systems:

Dϑ
t u− uκκt + uκ + uuκ = 3uκuκκ + uuκκκ , (1.1)

where 0 < ϑ ≤ 1.
Numerous analytical and semi-analytical methods have been proposed to solve the FWE and its fractional variants,

including the Laplace decomposition method [27], variational iteration method [29], and other iterative and transfor-
mation techniques [1, 4, 5, 9, 11–13, 18–25, 28, 30, 32–36, 38–41, 43, 44]. Additionally, recent studies have contributed
further to the development of numerical and analytical approaches for fractional models, offering new perspectives
and results in the field [6, 7].
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In this paper, we focus on solving the time-fractional FWE using the Yang–Daftardar–Jafari Method (YDJM) in
the sense of the Atangana–Baleanu fractional derivative. The Atangana–Baleanu operator [8, 42] was chosen due to its
non-singular and non-local kernel, characterized by the Mittag–Leffler function. Unlike classical FDs such as Caputo
and Riemann–Liouville [15], this operator provides a more realistic modeling framework for systems with smooth
memory effects and avoids the numerical instabilities associated with singular kernels.

The main objective of this study is to develop an efficient and accurate semi-analytical method for obtaining approx-
imate solutions to the FFWE. The proposed approach combines the Yang transform [46, 47] with the Daftardar–Jafari
iterative method to yield series-form solutions that converge rapidly with minimal computational cost. This work not
only provides insights into the qualitative behavior of the FFWE but also offers a versatile framework for tackling
other nonlinear FPDEs in applied sciences. Moreover, the analytical approximate solutions derived in this study allow
for explicit expressions that facilitate deeper analysis, reduce computational efforts, and enhance understanding of the
influence of fractional parameters on system dynamics, making them particularly valuable in engineering and physical
applications.

2. Preliminaries

Definition 2.1. For a function u(κ) that is sufficiently smooth, the Caputo fractional derivative of order k−1 < ϑ ≤ k
is specified by, [15]:

cDϑ
κu(κ) =

{
1

Γ(k−ϑ)

∫ κ
0
(κ − t)k−ϑ−1u(k)(t) dt, k − 1 < ϑ ≤ k ∈ N,

dk

dκk u(κ), ϑ = k ∈ N.
(2.1)

Remark 2.2. From Definition 2.1, The resulting outcome is as follows:

cDϑ
t t

B =

{
Γ(B+1)

Γ(B−ϑ+1) t
B−ϑ, k − 1 < ϑ ≤ k, B > k − 1, B ∈ R,

0, k − 1 < ϑ ≤ k, B > k, B ∈ N.
(2.2)

Definition 2.3. The Atangana–Baleanu fractional derivative (ABFD) is expressed as [8, 42]:

ABDϑ
t u(t) =

M(ϑ)

1− ϑ

∫ t

a

Eϑ

(
−ϑ(t− κ)ϑ

1− ϑ

)
u′(κ) dκ, (2.3)

where 0 < ϑ < 1 and M(ϑ) is a scaling function and M(0) = 1, M(1) = 1.

Definition 2.4. The Atangana–Baleanu fractional integral (ABFI) of order ϑ is expressed as follows [8]:

ABIϑt u(t) =
1− ϑ

M(ϑ)
u(t) +

ϑ

M(ϑ)Γ(ϑ)

∫ t

a

(t− κ)ϑ−1u(κ) dκ, (2.4)

where 0 < ϑ < 1 and M(ϑ) is a scaling function.

Definition 2.5. The Yang transform (YT) is expressed as [26, 31, 46]:

Y {u(t)} =

∫ ∞

0

e−t/vu(t) dt, t > 0, (2.5)

with v representing the transform variable.

Few properties:

Y {1} = v, (2.6)

Y {t} = v2, (2.7)

Y {tn} = vn+1n!, (2.8)

Y {tϑ} = vϑ+1Γ(ϑ+ 1), ϑ ∈ R. (2.9)
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Theorem 2.6. The YT of fractional order derivative is formulated by:

Y
{
cDϑ

t u(κ, t)
}
=

Y {u(t)}
vϑ

−
n−1∑
k=0

u(k)(0)

vϑ−k−1
, n− 1 < ϑ ≤ n, (2.10)

Y
{
ABDϑ

t u(t)
}
=

M(ϑ)

1− ϑ+ ϑvϑ
(Y {u(t)} − vu(0)) , 0 < ϑ ≤ 1. (2.11)

Proof. The proof of part (a) is as in [31]. To prove part (b), we take the transformation into Equation (2.3) and then
utilize the convolution property to obtain the desired result after simplification. Thus, the proof is completed. □

Definition 2.7. The Mittag-Leffler function with two parameters is outlined as [17, 27]:

Eϑ,p(z) =
∞∑

n=0

zn

Γ(nϑ+ p)
, ϑ, p, z ∈ C, Re(ϑ) > 0, Re(p) > 0. (2.12)

Remark 2.8. From Definition 2.12, the following results are obtained:

E2,1(κ2) = cosh(κ), (2.13)

E2,2(κ2) =
sinh(κ)

κ
, (2.14)

E2,3(κ2) =
1

κ2
[−1 + cosh(κ)] . (2.15)

3. Methodology of YDJM

The Yang-Daftardar-Jafari Method (YDJM) is a semi-analytical technique that combines the Yang integral trans-
form with the iterative Daftardar–Jafari method (DJM). This hybrid approach leverages the simplification power of
the Yang transform to reduce the complexity of fractional differential equations, while the DJM iteratively refines the
solution without requiring linearization or discretization. YDJM offers rapid convergence and high accuracy, making
it suitable for solving a wide range of nonlinear fractional differential equations.

Consider the fractional Fornberg–Whitham equation:

ABDϑ
t u− uκκt + uκ + uuκ = 3uκuκκ + uuκκκ, 0 < ϑ ≤ 1, (3.1)

subject to

u(κ, 0) = g(κ). (3.2)

By using the Yang transform on Equation (3.1), we derive:

1

1− ϑ+ ϑvϑ
[Y {u} − vu(κ, 0)] = Y {uκκt − uκ − uuκ + 3uκuκκ + uuκκκ}. (3.3)

Rewriting, we have:

Y {u} = vu(κ, 0) + (1− ϑ+ ϑvϑ)Y {uκκt − uκ − uuκ + 3uκuκκ + uuκκκ}. (3.4)

By employing the inverse Yang transform, the following result is obtained:

u(κ, t) = u(κ, 0) + Y −1
[
(1− ϑ+ ϑvϑ)Y {uκκt − uκ − uuκ + 3uκuκκ + uuκκκ}

]
. (3.5)

Assuming:

u(κ, t) =
∞∑
i=0

ui, (3.6)

where the nonlinear terms are decomposed as follows:

uuκ = u0u0κ +
∞∑
i=1

[( i∑
k=0

uk

)(
i∑

k=0

uk

)
κ

−

(
i−1∑
k=0

uk

)(
i−1∑
k=0

uk

)
κ

]
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=
∞∑
i=0

Gi, (3.7)

where G0 = u0u0κ.
Similarly, we have:

uκuκκ = u0κu0κκ +
∞∑
i=1

[( i∑
k=0

uk

)
κ

(
i∑

k=0

uk

)
κκ

−

(
i−1∑
k=0

uk

)
κ

(
i−1∑
k=0

uk

)
κκ

]

=
∞∑
i=0

Hi, (3.8)

where H0 = u0κu0κκ.

uuκκκ = u0u0κκκ +
∞∑
i=1

[( i∑
k=0

uk

)(
i∑

k=0

uk

)
κκκ

−

(
i−1∑
k=0

uk

)(
i−1∑
k=0

uk

)
κκκ

]

=
∞∑
i=0

Ki, (3.9)

where K0 = u0u0κκκ .
Substituting Equations (3.6), (3.7), (3.8), and (3.9) into Equation (3.5) yields the following result:

∞∑
i=0

ui = u(κ, 0) + Y −1

[
(1− ϑ+ ϑvϑ)Y

{( ∞∑
k=0

uk

)
κκt

−

( ∞∑
k=0

uk

)
κ

−
∞∑
i=0

Gi + 3
∞∑
i=0

Hi +
∞∑
i=0

Ki

}]
. (3.10)

The recurrence relation is given by:

u0 = u(κ, 0),

u1 = Y −1
[
(1− ϑ+ ϑvϑ)Y {u0κκt − u0κ −G0 + 3H0 +K0}

]
,

u2 = Y −1
[
(1− ϑ+ ϑvϑ)Y {u1κκt − u1κ −G1 + 3H1 +K1}

]
,

ui+1 = Y −1
[
(1− ϑ+ ϑvϑ)Y {uiκκt − uiκ −Gi + 3Hi +Ki}

]
. (3.11)

The solution can then be expressed in series form as:

u(κ, t) = u0 + u1 + u2 + · · · . (3.12)

4. Convergence

Theorem 4.1 (Banach Fixed Point Theorem). Let κ be a Banach space and T : κ → κ be a nonlinear mapping.
Assume that the following condition holds:

∥T(u)− T(ω)∥ ≤ ϵ ∥u− ω∥ , u, ω ∈ κ, 0 < ϵ < 1. (4.1)

It is asserted that T possesses a fixed point, and the sequence produced by the YDJM method is defined as un+1 = T(un),
beginning with an arbitrary initial value u0 ∈ κ. Additionally, the subsequent inequality is satisfied:

∥ur − ut∥ ≤ ∥u1 − u0∥
r−2∑

k=t−1

ϵk. (4.2)

This theorem acts as a cornerstone for the subsequent analysis, which is elucidated using the Banach fixed point
theorem.

Theorem 4.2. Let u(κ, t) ∈ H and ϑ ∈ (0, 1), where H denotes a Hilbert space, and assume u(κ, t) is the exact
solution to Equation (3.1). The computed results

∑∞
r=0 ur converge to u(κ, t) if ∥ur∥ ≤ ∥ur−1∥.
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Proof. Let
∑∞

r=0 ur and the sequence defined as:

T0 = u0,

T1 = u0 + u1,

T2 = u0 + u1 + u2,

T3 = u0 + u1 + u2 + u3, . . . ,

Tr = u0 + u1 + · · ·+ ur.

We aim to show that the sequence {Tr}∞r=0 forms a Cauchy sequence under the given conditions.
Additionally, consider:

∥Tr − Tr+1∥ = ∥ur+1∥ ≤ ϵ ∥ur∥ ≤ ϵ2 ∥ur−1∥ ≤ ϵ3 ∥ur−2∥ ≤ · · · ≤ ϵr+1 ∥u0∥ . (4.3)

Now, for r, n ∈ N with r > n, we have:

∥Tr − Tn∥ = ∥Tr − Tr−1 + Tr−1 − Tr−2 + · · ·+ Tn+1 − Tn∥ (4.4)

≤
r∑

k=n+1

∥Tk − Tk−1∥

≤
r∑

k=n+1

ϵk ∥u0∥

= ∥u0∥
(
ϵr + ϵr−1 + · · ·+ ϵn+1

)
(4.5)

= ∥u0∥
ϵn+1(1− ϵr−n)

1− ϵ
.

Since u0(κ, t) and 0 < ϵ < 1 are bounded, and as r → ∞, we get ϵn+1(1−ϵr−n)
1−ϵ → 0.

Hence, {Tr(κ, t)}∞r=0 forms a Cauchy sequence in H and converges to:

lim
r→∞

ur(κ, t) = u(κ, t), for some u(κ, t) ∈ H.

□

Theorem 4.3. Suppose u(κ, t) represents the obtained series solution and
∑r

k=0 uk(κ, t) is finite. For ϵ > 0 and
∥uk∥ ≥ ∥uk+1∥, the maximum absolute error is given by:

∥Tr − Tn∥ <
ϵn+1

1− ϵ
∥u0∥. (4.6)

Proof. Assume
∑r

k=0 uk(κ, t) is bounded such that
∑r

k=0 ∥uk∥ < ∞. Then:

∥Tr − Tn∥ =

∥∥∥∥∥
r∑

k=n+1

uk

∥∥∥∥∥ (4.7)

≤
r∑

k=n+1

∥uk∥ (4.8)

≤
r∑

k=n+1

ϵk∥u0∥ (4.9)

≤ ϵn+1
(
1 + ϵ+ ϵ2 + · · ·

)
∥u0∥ (4.10)

=
ϵn+1

1− ϵ
∥u0∥. (4.11)
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Thus, the error is bounded by:

∥Tr(κ, t)− Tn(κ, t)∥ = AR∥u0(κ, t)∥.

□

Remark 4.4. The component AR denotes the maximum truncation error of u(κ, t).

5. Uniqueness

Let the analytical solution of the fractional Fornberg–Whitham equation (FWE) obtained using the Yang-Dafterdar-
Jafari Method (YDJM) be unique whenever 0 < γ < 1. Specifically, consider the equation:

ABDϑ
t u = L(u) +N(u), 0 < ϑ ≤ 1, (5.1)

where L(u) = uxxt − ux and N(u) = 3uxuxx + uuxxx − uux represent the linear and nonlinear operators, respectively.
Assuming that the function u is bounded and its derivatives are continuous, it follows that these operators satisfy the
Lipschitz condition. For further details, refer to [10, 14].

Proof. Given the solution to the equation obtained using the YDJM:

ABDϑ
t u = L(u) +N(u), 0 < ϑ ≤ 1, (5.2)

and noting that L and N satisfy the Lipschitz conditions, we apply the Yang Transform (YT) to obtain:

1

1− ϑ+ ϑvϑ
[Y {u} − vu(κ, 0)] = Y {L(u) +N(u)}. (5.3)

Rewriting this, we have:

Y {u(κ, t)} = vu(κ, 0) + (1− ϑ+ ϑvϑ)Y {L(u) +N(u)}. (5.4)

By applying the inverse Yang Transform:

u(κ, t) = u(κ, 0) + Y −1
[
(1− ϑ+ ϑvϑ)Y {L(u) +N(u)}

]
. (5.5)

Suppose there are two potential solutions, u(κ, t) and v(κ, t), where u(κ, 0) = v(κ, 0). Considering these functions,
we obtain:

|u− v| =
∣∣u(κ, 0)− v(κ, 0) + Y −1

[
(1− ϑ+ ϑvϑ)Y {L(u) +N(u)− L(v)−N(v)}

]∣∣ . (5.6)

Applying the triangle inequality, this becomes:

|u− v| ≤ |u(κ, 0)− v(κ, 0)|+
∣∣Y −1

[
(1− ϑ+ ϑvϑ)Y {L(u) +N(u)− L(v)−N(v)}

]∣∣ . (5.7)

Simplifying, we find:

|u− v| ≤ (1− ϑ) |L(u) +N(u)− L(v)−N(v)|

+

∫ t

0

|L(u) +N(u)− L(v)−N(v)|
∣∣∣∣ (t− τ)ϑ−1

Γ(ϑ)

∣∣∣∣ dτ. (5.8)

Since L and N satisfy the Lipschitz conditions, we know that L is bounded such that |L(u) − L(v)| ≤ µ|u − v|,
where µ is a constant. Similarly, N satisfies |N(u) −N(v)| ≤ ϵ|u − v| for some ϵ > 0. Substituting these bounds, we
rewrite the inequality as:

|u− v| ≤
∫ t

0

|u− v|(ϵ+ µ)

∣∣∣∣ (t− τ)ϑ−1

Γ(ϑ)

∣∣∣∣ dτ. (5.9)

We denote M = max
∣∣∣ (t−τ)ϑ−1

Γ(ϑ)

∣∣∣ over the interval [0, t]. This simplifies the inequality to:

|u− v| ≤
∫ t

0

|u− v|(ϵ+ µ)M dτ. (5.10)
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Letting γ = (ϵ+ µ)M , we obtain:

|u− v| ≤
∫ t

0

|u− v|γ dτ. (5.11)

Using Grönwall’s inequality, we conclude that u = v when γ < 1. Thus, the solution is unique for 0 < γ < 1. □

Before introduce illustrative example, we have the following remakes

Remark 5.1. If uk =
∑n

r=0 ar,ke
κ/2, then 3Hi +Ki −Gi = 0 for all i ≥ 1.

Proof. We begin by expanding 3Hi +Ki −Gi as follows:

3Hi +Ki −Gi =

(
i∑

k=0

n∑
r=0

ar,ke
κ/2

)2

−

(
i−1∑
k=0

n∑
r=0

ar,ke
κ/2

)2(
1

8
+

3

8
− 1

2

)
= 0.

□

Remark 5.2. If uk = ak +
∑n

r=0 ar,k cosh(κ/2) +
∑n

r=0 br,k sinh(κ/2), then:

3Hi +Ki −Gi =
3

8

[
i−1∑
k=0

ak

{
i−1∑
k=0

(
n∑

r=0

ar,k sinh(κ/2) +
n∑

r=0

br,k cosh(κ/2)

)}]

− 3

8

[
i∑

k=0

ak

{
i∑

k=0

(
n∑

r=0

ar,k sinh(κ/2) +
n∑

r=0

br,k cosh(κ/2)

)}]
.

6. Illustrative Examples

In this section, we will present two examples to illustrate the technique discussed above and its effectiveness, along
with providing illustrative plots and tables for the absolute error.

Example 6.1. Consider the fractional FWE:
ABDϑ

t u− uκκt + uκ + uuκ = 3uκuκκ + uuκκκ, 0 < ϑ ≤ 1, (6.1)

with the initial condition:

u(κ, 0) = eκ/2. (6.2)

Based on the above method derivation, Equation (3.11) provides a basis for determining iterations, along with the
insights from Remark 5.1 The resulting solution is as follows:

u0 = eκ/2,

u1 = −1

2
eκ/2

[
1− ϑ+

ϑtϑ

Γ(ϑ+ 1)

]
,

u2 = −
[
(1− ϑ)ϑtϑ−1

Γ(ϑ)
+

ϑ2t2ϑ−1

Γ(2ϑ)

]
1

8
eκ/2 +

[
(1− ϑ)2 + 2(1− ϑ)

ϑtϑ

Γ(ϑ+ 1)
+

ϑ2t2ϑ

Γ(2ϑ+ 1)

]
1

4
eκ/2,

u3 = −
[
(1− ϑ)2ϑtϑ−2

Γ(ϑ− 1)
+

2(1− ϑ)ϑ2t2ϑ−2

Γ(2ϑ− 1)
+

ϑ3t3ϑ−2

Γ(3ϑ− 1)

]
1

32
eκ/2

+

[
3(1− ϑ)2ϑtϑ−1

Γ(ϑ)
+

5(1− ϑ)ϑ2t2ϑ−1

Γ(2ϑ)
+

2ϑ3t3ϑ−1

Γ(3ϑ)

]
1

16
eκ/2

−
[
(1− ϑ)3 +

3(1− ϑ)2ϑtϑ

Γ(ϑ+ 1)
+

3(1− ϑ)ϑ2t2ϑ

Γ(2ϑ+ 1)
+

ϑ3t3ϑ

Γ(3ϑ+ 1)

]
1

8
eκ/2.

The approximate solution is:

u(κ, t) = u0 + u1 + u2 + u3 + · · ·
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(a) (b)

Figure 1. In Example 6.1, plots (A) and (B) illustrate that the curve increasingly converges toward
the exact solution as ϑ approaches 1. Specifically, at ϑ = 0.9, the curve nearly overlaps with that of
ϑ = 1.

= eκ/2 − 1

2
eκ/2

[
1− ϑ+

ϑtϑ

Γ(ϑ+ 1)

]
− 1

8
eκ/2

[
(1− ϑ)ϑtϑ−1

Γ(ϑ)
+

ϑ2t2ϑ−1

Γ(2ϑ)

]
+

1

4
eκ/2

[
(1− ϑ)2 + 2(1− ϑ)

ϑtϑ

Γ(ϑ+ 1)
+

ϑ2t2ϑ

Γ(2ϑ+ 1)

]
− 1

32
eκ/2

[
(1− ϑ)2ϑtϑ−2

Γ(ϑ− 1)
+

2(1− ϑ)ϑ2t2ϑ−2

Γ(2ϑ− 1)
+

ϑ3t3ϑ−2

Γ(3ϑ− 1)

]
+

1

16
eκ/2

[
3(1− ϑ)2ϑtϑ−1

Γ(ϑ)
+

5(1− ϑ)ϑ2t2ϑ−1

Γ(2ϑ)
+

2ϑ3t3ϑ−1

Γ(3ϑ)

]
− 1

8
eκ/2

[
(1− ϑ)3 +

3(1− ϑ)2ϑtϑ

Γ(ϑ+ 1)
+

3(1− ϑ)ϑ2t2ϑ

Γ(2ϑ+ 1)
+

ϑ3t3ϑ

Γ(3ϑ+ 1)

]
+ · · · (6.3)

For ϑ = 1, the exact solution is:

u(κ, t) = eκ/2− 2t
3 . (6.4)

Example 6.2. Consider the fractional Fornberg–Whitham equation:

ABDϑ
t u− uκκt + uκ + uuκ = 3uκuκκ + uuκκκ, 0 < ϑ ≤ 1, (6.5)

with the initial condition:

u(κ, 0) = cosh2(κ/4). (6.6)

Using Equation (3.11) and Remark 5.2, the iterations are obtained as follows:

u0 = cosh2(κ/4) =
1

2
+

1

2
cosh(κ/2),

u1 = −
[
1− ϑ+

ϑtϑ

Γ(ϑ+ 1)

]
11

32
sinh(κ/2),
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Figure 2. In Example 6.1, plots (A), (B), and (C) present surface visualizations that emphasize
the strong agreement between the numerical and exact solutions, as depicted in plot (D).

u2 =
121

512
cosh(κ/2)

[
(1− ϑ)2 + 2(1− ϑ)

ϑtϑ

Γ(ϑ+ 1)
+

t2ϑ

Γ(2ϑ+ 1)

]
− 11

128
sinh(κ/2)

[
ϑ(1− ϑ)tϑ−1

Γ(ϑ)
+

ϑ2t2ϑ−1

Γ(2ϑ)

]
,

u3 = −1331

8192
sinh(κ/2)

[
(1− ϑ)3 +

3(1− ϑ)2ϑtϑ

Γ(ϑ+ 1)
+

3(1− ϑ)ϑ2t2ϑ

Γ(2ϑ+ 1)
+

ϑ3t3ϑ

Γ(3ϑ+ 1)

]
+

121

2048
cosh(κ/2)

[
3(1− ϑ)2ϑtϑ−1

Γ(ϑ)
+

5(1− ϑ)ϑ2t2ϑ−1

Γ(2ϑ)
+

2ϑ3t3ϑ−1

Γ(3ϑ)

]
− 11

512
sinh(κ/2)

[
(1− ϑ)2ϑtϑ−2

Γ(ϑ− 1)
+

2(1− ϑ)ϑ2t2ϑ−2

Γ(2ϑ− 1)
+

ϑ3t3ϑ−2

Γ(3ϑ− 1)

]
.

The approximate solution is:

u(κ, t) = u0 + u1 + u2 + u3 + · · ·

=
1

2
+

1

2
cosh

(κ
2

)
− 11

32
sinh

(κ
2

)[
1− ϑ+

ϑtϑ

Γ(ϑ+ 1)

]
+

121

512
cosh

(κ
2

)[
(1− ϑ)2 + 2(1− ϑ)

ϑtϑ

Γ(ϑ+ 1)
+

t2ϑ

Γ(2ϑ+ 1)

]
− 11

128
sinh

(κ
2

)[ϑ(1− ϑ)tϑ−1

Γ(ϑ)
+

ϑ2t2ϑ−1

Γ(2ϑ)

]
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(a) (b)

Figure 3. In Example 6.2, plots (A) and (B) demonstrate that the curve progressively converges
toward the exact solution as ϑ approaches 1. At ϑ = 0.9, the curve aligns almost perfectly with the
one corresponding to ϑ = 1.

Table 1. A table showing the absolute error for Example 6.1, where the Atangana-Baleanu operator
is used.

κ ϑ = 1 ϑ = 0.9 ϑ = 0.7 ϑ = 0.4

0.5 0.00049496 0.031087 0.047460 0.061608
1.0 0.00063554 0.039917 0.060537 0.079106
1.5 0.00081606 0.051254 0.077731 0.101570
2.0 0.00104780 0.065811 0.099809 0.130420
2.5 0.00134540 0.084503 0.128160 0.167470
3.0 0.00172760 0.108500 0.164560 0.215030
3.5 0.00221830 0.139320 0.211300 0.276110
4.0 0.00284830 0.178890 0.271310 0.354530
4.5 0.00365730 0.229700 0.348370 0.455230
5.0 0.00469610 0.294950 0.447310 0.584520

− 1331

8192
sinh

(κ
2

)[
(1− ϑ)3 +

3(1− ϑ)2ϑtϑ

Γ(ϑ+ 1)
+

3(1− ϑ)ϑ2t2ϑ

Γ(2ϑ+ 1)
+

ϑ3t3ϑ

Γ(3ϑ+ 1)

]
+

121

2048
cosh

(κ
2

)[3(1− ϑ)2ϑtϑ−1

Γ(ϑ)
+

5(1− ϑ)ϑ2t2ϑ−1

Γ(2ϑ)
+

2ϑ3t3ϑ−1

Γ(3ϑ)

]
− 11

512
sinh

(κ
2

)[ (1− ϑ)2ϑtϑ−2

Γ(ϑ− 1)
+

2(1− ϑ)ϑ2t2ϑ−2

Γ(2ϑ− 1)
+

ϑ3t3ϑ−2

Γ(3ϑ− 1)

]
+ · · ·

For ϑ = 1, the exact solution is:

u(κ, t) = cosh2
(
κ
4
− 11t

24

)
. (6.7)

7. Conclusion

In this study, we investigated the fractional Fornberg–Whitham equation using the Yang–Daftardar–Jafari Method
(YDJM) in conjunction with the Atangana–Baleanu fractional derivative. The existence and uniqueness of the solution
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Figure 4. In Example 6.2, plots (A), (B), and (C) provide surface representations that highlight
the close correspondence between the numerical solution and the exact solution, shown in plot (D).

Table 2. A table displaying the absolute error for Example 6.2, where the Atangana-Baleanu
operator is applied.

κ ϑ = 1 ϑ = 0.9 ϑ = 0.8 ϑ = 0.7

5.0 0.005757 0.0039514 0.065314 0.17893
5.5 0.0070306 0.0070339 0.079532 0.22314
6.0 0.008746 0.010558 0.098746 0.28137
6.5 0.011011 0.014746 0.124160 0.35728
7.0 0.013967 0.019860 0.157380 0.45564
7.5 0.017801 0.026222 0.200490 0.58262
8.0 0.022754 0.034232 0.256190 0.74621
8.5 0.029136 0.044392 0.327990 0.95667
9.0 0.037348 0.057341 0.420390 1.22720
9.5 0.047907 0.073892 0.539210 1.57490

were established, providing a solid theoretical foundation for the proposed approach. The approximate solutions
obtained by the method were shown to converge accurately to the analytical solutions, demonstrating the method’s
reliability and efficiency in handling nonlinear fractional differential equations.

The integration of the YDJM with the Atangana–Baleanu operator proved to be a powerful analytical framework for
exploring the complex dynamics of fractional systems characterized by nonlinearity and memory effects. In addition
to reducing computational cost compared to purely numerical techniques, this method ensures fast convergence and
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Table 3. Comparison of Absolute Errors for Example 6.1.

κ YDJM mVIM YDJM mVIM YDJM mVIM
ϑ = 1 ϑ = 0.9 ϑ = 0.7

0.5 0.00049496 0.00049496 0.031087 0.038857 0.04746 0.094969
1.0 0.00063554 0.00063554 0.039917 0.049893 0.060537 0.12194
1.5 0.00081606 0.00081606 0.051254 0.064064 0.077731 0.15658
2.0 0.0010478 0.0010478 0.065811 0.08226 0.099809 0.20105
2.5 0.0013454 0.0013454 0.084503 0.10562 0.12816 0.25815
3.0 0.0017276 0.0017276 0.1085 0.13562 0.16456 0.33147
3.5 0.0022183 0.0022183 0.13932 0.17415 0.2113 0.42562
4.0 0.0028483 0.0028483 0.17889 0.22361 0.27131 0.54651
4.5 0.0036573 0.0036573 0.2297 0.28712 0.34837 0.70173
5.0 0.0046961 0.0046961 0.29495 0.36867 0.44731 0.90104

Table 4. Comparison of absolute errors for Example 6.2.

κ YDJM mVIM YDJM mVIM YDJM mVIM
ϑ = 1 ϑ = 0.9 ϑ = 0.8

5 0.005757 0.005757 0.0039514 0.10332 0.065314 0.17664
5.5 0.0070306 0.0070306 0.0070339 0.13346 0.079532 0.22897
6 0.008746 0.008746 0.010558 0.17199 0.098746 0.29568
6.5 0.011011 0.011011 0.014746 0.22132 0.12416 0.38096
7 0.013967 0.013967 0.01986 0.28455 0.15738 0.49019
7.5 0.017801 0.017801 0.026222 0.36567 0.20049 0.63021
8 0.022754 0.022754 0.034232 0.46975 0.25619 0.80982
8.5 0.029136 0.029136 0.044392 0.60335 0.32799 1.0403
9 0.037348 0.037348 0.057341 0.77486 0.42039 1.3362
9.5 0.047907 0.047907 0.073892 0.99504 0.53921 1.716

acceptable accuracy. The analytical approximate solutions obtained provide explicit mathematical expressions that
allow for easier interpretation and qualitative analysis of system behavior, which is often challenging with purely
numerical results. Furthermore, the proposed approach can be extended to a wider class of nonlinear fractional partial
differential equations, highlighting its potential in addressing real-world problems in physics, engineering, and other
applied sciences. Thus, this work makes a valuable contribution to the advancement of fractional calculus and its
applications.
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