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Introduction

Strawberries are one of the most important and valuable garden crops, widely supplied to global agro-
markets, as well as food and pharmaceutical industries, due to their high nutritional and economic value,
antioxidant compounds, and favorable taste. However, strawberry production is often accompanied by
challenges, one of the most important of which is prevalence of plant diseases. Diseases of fungal or
bacterial origin typically cause damage to the crop growth, which may reduce the yield, and in some cases,
lead to the complete harvest failure and significant financial losses. Timely and accurate identification of
these diseases plays a crucial role in effective farm management. Traditional methods, such as visual
inspection, require considerable expertise, are time-consuming, prone to errors, and often yield suboptimal
results. In recent years, advancements in technologies related to artificial intelligence and machine learning,
particularly in machine vision models, have made it possible to automatically identify plant diseases with
higher speed and accuracy. In this study, the YOLO algorithm, one of the most widely used and advanced
methods in digital object recognition, was employed to identify various strawberry diseases, including
angular leaf spots, anthracnose, gray mold, and powdery mildew. To improve the accuracy of the model,
modifications were made to the network architecture and training process. In addition to high accuracy and
appropriate speed, this method may reduce the costs related to monitoring and managing strawberry farms.
The results obtained from this study demonstrate that the YOLO algorithm can be effectively utilized in
smart agriculture, in conjunction with specific equipment and tools such as drones and image sensors, to
control diseases and enhance production. This research represents a practical step toward utilizing modern
technologies to manage plant diseases and enhance agricultural productivity.

Materials and Methods

The dataset used consisted of 2902 images of strawberry leaves and fruits collected from the Roboflow
database. The whole dataset was divided into three distinct portions: training (70%), validation (20%), and
test (10%). All images were set to 640x640 pixels, and the labeling process was performed according to
YOLO standards. Eight disease classes, including angular leaf spot, anthracnose rot, blossom blight, gray
mold, healthy leaves and fruits, leaf spot, powdery mildew on fruits, and powdery mildew on leaves, were
included in the dataset. The YOLO11-Large (YOLO11L) model was trained using pre-trained weights and
an object detection task. The Optuna algorithm was used to optimize the hyperparameters. The training
process consisted of 200 epochs, utilizing an early stopping mechanism to prevent overfitting. The training
batch size was set to 4, and other settings, such as data augmentation, including random rotation, scaling,
horizontal and vertical inversion, random cropping, and image blending, were also applied. Finally, a deep
learning model based on YOLO11L was used to identify and classify strawberry plant diseases. The final
model is consists of 190 layers and approximately 790,000 trainable parameters, which are distributed
among three main parts of the network: about 480,000 parameters in the backbone (feature extraction),
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285,000 in the neck (feature aggregation), and 25,000 in the head (detection output). The model’s total
computational complexity is approximately 6.86 GFLOPs. The processing speed of the model was
measured to be 0.5 ms for preprocessing, 23.6 ms for inference, and 2.3 ms for postprocessing per image.

Results and Discussion

The results show that the evaluation accuracy of the model is the best in case of blossom blight class,
where a precision of 0.951 and a full recall of 1.000 were obtained. This indicates the ability of the model
to identify this disease without any omission errors. Additionally, the mAP@50 and mAP@50-95 values
for this class are 0.995 and 0.882, respectively, which confirm the model's accuracy at all Intersection over
union (IoU) thresholds. The angular leaf spot class also demonstrated good performance, falling just short
of balance between precision (0.905) and recall (0.904). Additionally, the mAP@50 and mAP@50-95
values for this class are 0.927 and 0.760, respectively, indicating the practical identification of this disease
at various levels of overlap. The leaf spot class with the highest number of samples (223) also exhibits
strong performance, with a precision of 0.907, recall of 0.914, and mAP@50 of 0.943, confirming that the
model has experienced improved learning and generalization with increasing data volume. On the other
hand, some classes, such as anthracnose and gray mold, suffer from an imbalance in precision and recall.
In the anthracnose class, the high precision (0.952) indicates the ability of the model to avoid type I errors,
but the lower recall (0.800) indicates the possibility of undetected samples. Similarly, in the gray mold
class, the precision is 0.897, and the recall is 0.812, indicating some challenges in extracting the unique
features of this disease. The lower value of mAP@50-95 in this class (0.628) indicates that the model suffers
from performance degradation at different levels of spatial accuracy. In the healthy class, the model has a
perfect recall (0.942), indicating that almost all healthy samples are correctly identified. However, the lower
precision in this class (0.799) suggests that some diseased samples are falsely diagnosed as healthy, which
can be risky in real applications, especially in prevention processes. Finally, the fruit and leaf powdery
mildew classes have the weakest performance among all available classes. The precision of 0.816 and recall
of 0.725 for the fruit powdery mildew class indicate a serious challenge for the model in accurately
diagnosing this disease. In particular, the mAP@50-95 value of 0.689 also highlights that the model lacks
the necessary stability across different detection scales. Possible reasons for this poor performance may
include the lack of data in the relevant classes, the apparent similarity with other classes, e.g., leaf powdery
mildew and leaf spot, and the insufficient visual diversity in the dataset.

Conclusion

This study led to the development of an advanced strawberry disease detection system based on an
updated YOLOI11L architecture, which achieved an average precision of 90.9% in the mAP@50
benchmark. The proposed model performed very well in identifying diseases with distinct visual symptoms,
such as blossom blight (99.5% precision) and leaf spot (94.3% precision). However, a relative decrease in
accuracy was observed when classifying diseases with similar visual symptoms, such as fruit powdery
mildew (82.7% precision) and gray mold (89.1% precision). This was mainly due to two key factors: (1)
insufficient training data for recent, classes and (2) high overlap in visual patterns between them. From an
applied perspective, the presented model has significant potential in improving plant disease management
solutions, through applications such as intelligent monitoring of farms and greenhouses, integration with
unmanned aerial systems for large-scale surveillance, and reducing untargeted pesticide use through
accurate and situational disease detection.
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Fig 2. Results of comprehensive statistical analysis on
labeled images in training dataset
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Table 2. Details of model performance based on different
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Fig 4. Precision-Recall Curve of the Model for Detecting
Different strawberry Plant Diseases
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Table 3. Comparison of the performance of strawberry
disease detection models
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