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Abstract

This paper presents a novel approach for solving the Poisson equation on arbitrary domains using a direct Radial

Basis Function (DRBF) partition of unity technique. The method involves dividing the primary domain into

overlapping subdomains, calculating local approximations within each subdomain, and then combining these ap-
proximations through discontinuous weight functions to form a global solution. We also use polyharmonic spline

(PHS) kernels, with scaling properties. This strategy improves stability, lowers computational costs, and replaces

a single ill-conditioned linear system with several smaller, well-conditioned linear systems. Numerical experiments
are performed to confirm the efficacy of the proposed method.
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1. Introduction

Methods based on radial basis functions (RBFs) are a rapidly growing area of research and have become a common
tool for solving partial differential equations (PDEs) [? ? ? ]. Several valuable properties–such as easy implementation,
applicability to scattered data, flexibility with respect to geometry and dimension, and high-order convergence rates–
make them particularly advantageous for higher-dimensional problems [7, 19]. However, despite their applicability,
especially in high-dimensional spaces, one of the main disadvantages of RBFs is the ill-conditioned system generated
by the interpolation conditions. Localized methods have been introduced to address this issue, providing the benefits
of a sparse interpolation matrix and a well-conditioned final system, which results in greater stability and lower
computational costs.

An interesting example of localized methods is the partition of unity (PU) method, a type of meshless approach
that enables fast computation. This method was first introduced by Shepard in 1968 [15]. This method decomposes a
large problem into many smaller problems. Combining popular numerical methods with the PU method yields various
approaches that are widely used in computational research. Historically, Babuška and Melenk introduced the partition
of unity finite element method (PUFEM) for solving PDEs [2, 10].

Wendland combined the PU method with the RBF method for scattered data problems [18]. Various RBF-PU
methods exist [9], including a form based on collocation (C-RBF-PU) for PDE problems introduced by Larsson and
Heryudono [14]. Another form, the compact radial basis function partition of unity (CRBF-PU) method, integrates
standard Hermite interpolation, RBF-FD, and the PU method [1]. Mirzaei proposed a new direct RBF-PU (D-RBF-
PU) scheme that omits PU weight derivatives [12], demonstrating its effectiveness in solving boundary value problems
and showing it to be faster than traditional RBF-PU methods. The applications of RBF-PU methods for solving
PDEs are extensively documented in references [3, 4, 6, 8, 11, 13].

In this paper, we want to obtain a numerical solution using the D-RBF-PU method for solving the Poisson equation
with pure Dirichlet boundary conditions. The structure of this article is organized as follows. Section 2 defines the
notations that will be used during the article. Following this, Section 3 offers a detailed description of the D-RBF-PU
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method, such as its formulation, implementation, and some theoretical subjects. In Section 4, the application of the
D-RBF-PU method is demonstrated for the numerical solution of the Poisson equation, by a presentation of numerical
investigations that shows the effectiveness and accuracy of the method. Finally, Section 5 includes the conclusions
drawn from the study, summarizing the main findings and discussing the potential implications and future research in
this area.

2. Notations

In order to describe the proposed method, we define some notations that we use them in whole of this article.
For the given positive integer d, Rd denotes the d dimensional Euclidian space of real numbers and Ω is an open
bounded domain in Rd. In general the bold lower-case letters such as x,y, and the bold lower-case Greek letter such
as α,β ∈ Nd ∪ {0} are used for vectors in Rd and multi-indices, respectively. For example

x = [x1, · · · , xd]T , x ∈ Rd,

α = [α1, · · · , αd]
T , α ∈ Nd.

. The inequality α ≤ β means that αj ≤ βj , for j = 1, · · · d. For an arbitrary set X ⊆ Ω with N distinct points
x1, · · · ,xM , we define two geometric quantities which express quality of point distribution.

• The fill distance quantity which is the radius of largest empty ball inside Ω and is defined by

h = hX,Ω = max
x∈Ω

min
xi∈X

∥x− xi∥.

• The separation of X which is defined by

qX,Ω =
1

2
min
j ̸=k

|xj − xk|2.

For the multi-index α, and x ∈ Rd, we define α! = α1! × · · · × αd!, |α| = α1 + · · · + αd, and x
α = xα1

1 , · · · , xαd

d .

Πm(Rd) is the Q dimensional space of multi-variable polynomials of degree less than or equal to m with the classical

basis function {pi(x)}Q1 , where each element q(x) ∈ {p1(x), · · · , pQ(x)} is a monomial with the following form

q(x) = xα = xα1
1 · · ·xαd

d , |α| = m.

We define the partial derivative operator Dα for multi-indices α as

Dα =
∂α1

∂xα1
1

· . . . · ∂
αd

∂xαd

d

.

3. Some preliminaries for D-RBF-PU method

D-RBF-PU method, which is proposed in [12] for the first time, is a localized RBF method based on PU and has
used for solving boundary and initial-boundary value problems. This method benefits from a direct discretization
approach and is more faster than standard PU method because it is avoiding all derivatives of PU weight functions.

3.1. The interpolation using Radial Basis Functions (RBFs). In this section, we interpolate the function u at
scattered data points using conditionally positive definite radial basis functions.

Definition 3.1. The function ψ : Rd −→ R is called conditionally positive definite of order m if

N∑
i=1

M∑
j=1

bibjψ(xi − xj) > 0,

for any pairwise distinct nodes x1, · · · ,xN ∈ Rd for all vectors b = (b1, · · · , bN )T ∈ RN satisfying

N∑
j=1

bjpℓ(xj) = 0, ℓ = 1, · · · , Q,
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u(x) ≈ ũ(x) =
N∑
i=1

ciψ(x− xi) +

Q∑
ℓ=1

cN+ℓ pℓ(x)

= Ψ(x)T c1 + p(x)
T c2,

(3.1)

where c1 = [c1, · · · , cN ]T , c2 = [cN+1, · · · , cN+Q]
T , Ψ(x) = [ψ(x − x1), · · · , ψ(x − xN )]T ∈ RN , and p(x) =

[p1(x), · · · , pQ(x)]T , which p1, · · · , pQ are the bases for the Q-dimensional space Πm(Rd). The vectors c1 and c2
are obtained by interpolation conditions ũ(xk) = u(xk), k = 1, · · · , N , along with Q additional constraints

N∑
k=1

ckpℓ(xk) = 0, ℓ = 1, · · · , Q.

These computations lead to the following system of linear equations:

Rc1 + pc2 = U|X ,
pT c1 = 0,

(3.2)

where U|X = [u(x1), · · · , u(xN )]T , p = pT (X) ∈ RN×Q and R = ψT (X) ∈ RN×N . If ψ is a positively definite
conditional function of order m and the set X consists of unique solvers in Πm(Rd), then the Equation (3.2) is
uniquely solvable. Moving forward, we express the interpolation operator ũ in Lagrangian form, which plays a pivotal
role in implementing the RBF − PU method. Let’s assume e(j) ∈ RN denote the j -th unit vector. Assuming that
the set X ⊆ Ω is Πm(Rd) unisolvent, the following linear system is uniquely solvable:[

R P
PT O

][
c
(j)
1

c
(j)
2

]
=

[
e(j)

0

]
,

where O denotes the Q×Q zero matrix. Moreover, Lagrange functions ϑ∗j exist and are given by:

ϑ∗j =

N∑
j=1

c
(j)
i ψ(· − x) +

Q∑
ℓ=1

c
(j)
N+ℓpℓ(x),

Moreover, the Lagrange functions ϑ∗j satisfy the property ϑ∗j (xi) = δij and belong to the subspace:

vj :=


N∑
j=1

ajψ(x− xj),

N∑
j=1

aipl(xj), l = 1, · · · , Q, pl ∈ Πm(Rd)

⊕Πm(Rd).

Theorem 3.2. [19] Let ψ be a positive definite kernel with respect to Πm(Rd). If X ⊆ Ω be a Πm(Rd) unisolvent,
then functions ϑ∗j ∈ vj exist such that ϑ∗j (xk) = δjk. Additionally, functions ν∗j , j = 1, 2, · · · , Q exist such that[

R P
PT O

] [
ϑ∗(x)
ν∗(x)

]
=

[
Ψ(x)
p(x)

]
. (3.3)

Then the function u can be interpolated as follows:

ũ(x) =
N∑
j=1

ϑ∗j (x)u(xj).

To approximate the function Dαu using the kernel ψ ∈ C2k(Ω×Ω), analogous to how we interpolated u, assume that
X ⊆ Ω, implying uloc(x) ∈ Ck(Ω), where ũ(x) is the interpolation of u using ψ. Define the derivatives:

DαΨ(x) = [Dα
1ψ(x), · · · ,Dα

dψ(x)],

Dαp(x) = [Dα
1 p1(x), · · · ,Dα

d pQ(x)],
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where Dα
i denotes the derivative with respect to the ith component of x. The approximation of Dαu using Lagrange

functions is expressed as:

Dαu(x) ≈
N∑
j=1

Dαϑ∗j (x)u(xj),

where Dαϑ∗j (x) are Lagrange basis functions satisfying[
R P
PT O

] [
Dαϑ∗(x)
Dαν∗(x)

]
=

[
DαΨ(x)
Dαp(x)

]
.

3.2. Partition of Unity (PU). The Partition of Unity method is a mesh-free approach that enables rapid compu-
tations by replacing the global approximation with specific number of local approximations. This method decomposes
a large problem into numerous smaller problems, while extending the accuracy of local approximations to a global
approximation. It solves several interpolation problems and then combines them into a global approximation.

Definition 3.3. Let Ω ⊆ Rd be an open and bounded region, and let {ωj}Jj=1 constitute an open and bounded cover

for Ω (meaning all Ωj are open, bounded, and Ω ⊆ ∪J
j=1Ωj). We define:

δj = diam(Ωj) = sup
x,y∈Ωj

|x− y|2.

Definition 3.4. A family of non-negative functions {ωj}Jj=1, where ωj ∈ Ck(Rd), constitutes a Partition of Unity

with respect to the cover {ωj}Jj=1 if it satisfies the following conditions:

(1) supp(ωj) ⊆ Ωj

(2) On Ω, we have:
∑J

j=1 ωj(x) = 1, for all x ∈ Ω,

(3) For every multi-index α ∈ Nd
0 such that |α| ≤ k, , there exists a positive constant Cα > 0 such that for

each j = 1, · · · , J , we have:

|Dαωj |L∞(Ωj) ≤
Cα

δ
|α|
j

.

In [7], Shepard weights are used to construct Partition of Unity weight functions. If {ψj(x)}Jj=1 are non-negative,
non-zero, and compactly supported functions, then the Partition of Unity weight functions are defined as follows:

ωj(x) =
ψj(x)∑J
j=1 ψj(x)

, j = 1, · · · , J. (3.4)

In Equation (3.4), we can interchange the summation indices with the following set:

I(x) = {ℓ ∈ {1, 2, · · · , J} : x ∈ Ωℓ} .

The function u within each subdomain is approximated using the local approximation ũj ∈ vj . So, these approxi-
mations are combined using the weight functions ωj forming a global approximation across the entire space Ω. This
means

upu(x) =
∑

ℓ∈I(x)

ũℓ(x)ωℓ(x), x ∈ Ω. (3.5)

Theorem 3.5. [19] Let Ω ⊆ Rd be a bounded and open region, and let {Ωj}Jj=1 be an open and bounded cover of

Ω. Suppose {Ωj}Jj=1 constitutes a k-stable partition of unity. If u ∈ Ck(Ω) is a function approximated by ũj ∈ vj ⊆
Ck(Ωj), a local approximation space, such that u is approximated by upu within each region Ωj ∩ Ω, where

|Dαu−Dαũj |L∞(Ω∩Ωj) ≤ ε(α),
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Then, in relation to (3.5), the function upu ∈ Ck(Ω) satisfies the following for all multi-indices |α| ≤ k:∣∣∣(Dαu−Dαupu)(x)
∣∣∣ ≤ ∑

ℓ∈I(x)

∑
β≤α

(
α

β

)
Cα−βδ

|β|−|α|
ℓ εℓ(α), x ∈ Ω. (3.6)

Our objective is to utilize this method and its outcomes for the radial basis function (RBF) interpolation. Let
Xj = X ∩ Ωj , and let ψ be a positive definite function of order m. Then, the local approximation space is defined as
follows:

vj := span{ψ(x− xk), x ∈ Xj} ⊕Πm(Rd).

Now, we apply this method to approximate the solution of the following partial differential equation (PDE):

Lu = f, x ∈ Ω,

Bu = g, x ∈ ∂Ω,
(3.7)

where L denotes an arbitrary differential operator and B represents the boundary operators such as Dirichlet or
Neumann boundary conditions. To obtain the numerical solution of the PDE, we apply these operators to the
approximation upu as defined in (3.5). Therefore, we have:

Lupu ≈
J∑

j=1

L(ωj ũj),

Bupu ≈
J∑

j=1

B(ωj ũj),

where ũj and upu represent the local and global approximations on sub domains Ωj and domain Ω, respectively, as
introduced earlier. The operators L and B involve partial derivatives Dα, where α ∈ Nd

0 denotes multi-indices. For a
sufficiently smooth ũj , we can apply the Leibniz rule, which states:

Dαupu =
J∑

j=1

∑
β≤α

(
α

β

)
DβωjDα−βũj .

For example, the Laplace operator is in the form:

L = ∆ = D(2,0,··· ,0) +D(0,2,··· ,0) + · · ·+D(0,0,··· ,2),

and we can express ∆upu as:

∆upu =
J∑

j=1

(ũj∆ωj + 2∇ωj .∇ũj + ωj∆ũj).

Here, computing the derivatives ωj from Equation (3.4) is complex and has computational cost. To address these
issues, an alternative method was used to avoid these challenging computations, reducing both computational cost
and algorithmic complexity.

3.3. Classical RBF-PU method. Consider the conditionally positive definite function ψ : Rd −→ R of order m,
and X as the set of N distinct points in Ω as mentioned earlier. Let Xℓ = X ∩ Ωℓ, ℓ = 1, · · · , J . Consider the
following set:

Jℓ = {j ∈ {1, · · · , J} : xj ∈ Xℓ}.

If the local approximation is comes from the following approximation space:

span{ψ(x− xj) : j ∈ Jℓ} ⊕Πm(Rd), ℓ = 1, · · · , J,



Unco
rre

cte
d Pro

of

6 F. FATHI DOPOLANI AND M. A. DARANI

then the local approximation ũℓ is an interpolation of the function u on Xℓ as follows:

ũℓ(x) =
∑
j∈Jl

cjψ(x− xj) +

Q∑
k=1

bkpk(x), x ∈ Ωℓ ∩ Ω,

It can be written in the following Lagrangian form:

ũℓ(x) =
∑
j∈Jℓ

ϑ∗j (ℓ;x)u(xj),

so that the Lagrangian functions ϑ∗j (l;x) satisfying in the following linear system of equations[
R P
PT O

] [
ϑ∗(x)
ν(x)

]
=

[
Ψ(x)
p(x)

]
,

where

Rij = ψ(xi − xj), i, j ∈ Jl,

Pjk = pk(xj), j ∈ Jl, k = 1, 2, · · · , Q,
Ψ(x) = Ψ(xl), l ∈ Jl,

p(x) = [p1(x), · · · , pQ(x)]T .

Therefore, we have the following global approximation:

upu(x) =
J∑

ℓ=1

∑
j∈Jℓ

(ωℓ(x)ψj(ℓ;x))ũ(xj), x ∈ Ω. (3.8)

Now we want to perform the collocation method RBF-PU for the problem (3.7). To do this, suppose we have the
following point set:

Y = {y1, · · · ,yM} M ≥ N.

Separate Y into two sets, Yb and Yi, each of which lies on the boundary or inside Ω, respectively. Therefore Y = Yb∪Yi.
We use the collocation method to solve the problem (3.7) at points Y

(Lu)(yk) = f(yk), yk ∈ Yi,

(Bu)(yk) = g(yk), yk ∈ Yb.
(3.9)

According to what was stated at the beginning of this section and in the first section Lu and Bu are approximated as
follows:

Lu ≈ Lũ =
J∑

ℓ=1

∑
j∈Jℓ

L(ωℓϑj(ℓ; .))u(xj),

Bu ≈ Bũ =
J∑

ℓ=1

∑
j∈Jℓ

B(ωℓϑj(ℓ; .))u(xj).

We insert these equations into Equation (3.9), resulting in the following linear system of equations:[
L
B

]
U =

[
f |Yi

g|Yb

]
,
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That approximate solution of u in points X denoted as U = [u1, · · · , uN ]T and the matrix components L and B are
as follows:

L(k, j) =
∑
ℓ∈Iyk

(
L(ωℓϑ

∗
j (ℓ; .))

)
(yk), yk ∈ Yi,

B(k, j) =
∑
ℓ∈Iyk

(
B(ωℓϑ

∗
j (ℓ; .))

)
(yk), yk ∈ Yb,

As mentioned earlier, this device results in challenging and algorithm complexity.

4. Implementation of D-RBF-PU for Poisson Equation

The new D-RBF-PU method was introduced for the first time in [12] to reduce the computational cost, by avoiding
differentiation with respect to PU weight functions. This important property, allows using some types of discontinuous
weight functions. Comparing with the RBF-FD method, this method is much faster and has better accuracy. Indeed
in the D-RBF-PU method, the differential operators just act on the local approximations. In this case we have

Lupu(x) =
J∑

ℓ=1

∑
j∈Jℓ

(ωℓ(x)Lψj(ℓ;x))ũ(xj), x ∈ Ω. (4.1)

In this section, we apply the D-RBF-PU Method for numerical solution of Poisson Equation. Now, we consider Poisson
equation

∆u(x) = f(x), x ∈ Ω, (4.2)

with boundary conditions:

u(x) = g(x), x ∈ ∂Ω,

where f and g are given functions. The pure Dirichlet boundary condition is imposed on whole of Ω. Considering
L = ∆, in (4.1) and replacing in (4.2), we get

∆upu(x) =
J∑

ℓ=1

∑
j∈Jℓ

(ωℓ(x)∆ψj(ℓ;x))ũ(xj), x ∈ Ω. (4.3)

upu(x) =

J∑
ℓ=1

∑
j∈Jℓ

(ωℓ(x)ψj(ℓ;x))ũ(xj), x ∈ ∂Ω. (4.4)

Eventually, collocating the main Equation (4.3) and the boundary condition (4.4) generates the final system, and the
approximate solution is obtained by solving it.

5. Test examples

We compute our all computations in MATLAB R2014a on a computer with Intel(R) Core(TM) i5-3230M CPU @
2.60 GHz; memory (RAM): 4.00 GB; and system type: 32-bit Operating System.

There are three domains Ω1, Ω2, Ω3 that the boundary of them are defined by using polar coordinate as follow:

Ω1 : r1(θ) =0.25
(
2 + sin(2θ)− 0.01 cos(5θ − π

2
) + 0.63 sin(6θ − 0.1)

)
,

Ω2 : r2(θ) =0.5 + 0.25
(
sin2(4θ) + sin(5θ)

)
+ 0.2

(
sin3(θ)

)
,

Ω3 : r3(θ) =0.7 + 0.12 (sin(6θ) + sin(3θ)) , ,

where r is a radial coordinate and θ ∈ [0, 2π] is the angle. These domains are shown in figures, Fig.1, Fig.2 and Fig.3,
respectively. The polyharmonic spline (PHS) kernel, defined as

ψm(r) =

{
r2m log r m is even,
r2m−1 m is odd,
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Figure 1. Schematic diagrams of the domain Ω1 with boundary points and internal points and
partitioning of domain with circular patches.
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Figure 2. Schematic diagrams of the domain Ω2 with boundary points and internal points and
partitioning of domain with circular patches.
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Figure 3. Schematic diagrams of the domain Ω3 with boundary points and internal points and
partitioning of domain with circular patches.

is employed as the RBF basis function, which is conditionally positive definite of order m. Some different values for
m are chosen, and results are depicted in the figures.
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Example 5.1. Consider the function u1 as exact solution of (4.2), as follows:

u1(x) =
3

4
e

−1
4 [(9x−2)2+(9y−2)2] +

3

4
e[

−1
49 (9x+1)2+ 1

10 (9y+1)2]

+
1

2
e

−1
4 [(9x−7)2+(9y−3)2] − 1

5
e−[(9x−4)2+(9y−7)2],

where u1 is the Franke function, and x = [x, y]T .

There is a comparison between the convergence rates and the absolute values of error (Crate) for C-RBF-PU and
D-RBF-PU, as reported in Tables 1, 2, 3, and 4, for different values of h (where h ≈ 1√

N
) and various PHS kernels

with different choices of m. Additionally, the absolute values of error are shown in Figures 4, 5, and 6.

Example 5.2. We use function u2 as exact solution of (4.2) as follow:

u2(x, y) =
5∑

j=0

e−
√
2j
(
cos(2jx) + cos(2jy)

)
.

Similar to previous example, Tables 5, 6, 7, and 8 lists the detailed results of the computation and Figures 8, 9, and
10 plot the computational errors. Already, this equation has been solved by the least squres RBF-FD method in [17].

To evaluate accuracy of this method, we use following infinity relative error norm in this study:

E∞ =
∥ Su,X(x)− U(x) ∥∞

∥ Su,X(x) ∥∞
.

We compute the convergence rate of the proposed method as follows:

Crate =
log(E1

E2
)

log(h1

h2
)
,

where E1 and E2 are errors that corresponding to h1 and h2, respectively.
We set polyharmonic spline (PHS) as kernel in this study. This kernel is defined by following form:

ψ(r) =

{
rb log r b even
rb b odd,

in which b is a positive real number, r =∥ x ∥2 and ψ(r) is conditionally positive definite of order n = ⌊ b
2⌋. We use

ψ(r) = r5 and ψ(r) = r6 log r as PHSs.
Here, in the PU method, we set covering Ωj = B(ϖ, rc) for j = 1, · · · , J where points ϖj are covering centers. rc = 4h
is covering radius where h is fill distance.
We employed the Wendlands function ω3,2 with ε = rc as

ω3,2(r) =
(
1− (

r

ε
)
)6

+

(
35(

r

ε
)2 + 18(

r

ε
) + 3

)
.

The function ω3,2(r) is C
4 compactly supported.

Table 1. The obtained error, convergence rate Crate, the condition number and the computational
time using the C-RBF-PU method with different values of h with the kernel r5 on Ω3 for Example
5.1.

h Error Crate Cond time

0.10000 2.8682e− 03 - 8.2826e+ 03 0.4052
0.05773 1.4033e− 03 1.3011 3.8943e+ 04 0.6239
0.03333 5.2201e− 04 1.8002 2.0718e+ 05 3.6726
0.01924 2.2340e− 04 1.5446 8.4742e+ 05 58.2016



Unco
rre

cte
d Pro

of

10 F. FATHI DOPOLANI AND M. A. DARANI

10
1.2

10
1.3

10
1.4

10
1.5

10
1.6

10
1.7

10
−5

10
−4

10
−3

10
−2

10
−1

√
N

‖
e
‖
∞

 

 

C-RBF-PU
D-RBF-PU

10
1.2

10
1.3

10
1.4

10
1.5

10
1.6

10
1.7

10
−5

10
−4

10
−3

10
−2

10
−1

√
N

‖
e
‖
∞

 

 

C-RBF-PU
D-RBF-PU

Figure 4. The error obtained using the C-RBF-PU method and the D-RBF-PU method with PHS
kernels r7 (left) and r8 log r (right) on domain Ω1 for Example 5.1.
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Figure 5. The absolute error obtained by using the C-RBF-PU method and the D-RBF-PU method
with kernels r7 (left) and r8 log r (right) on Ω2 for Example 5.1.
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Figure 6. The absolute error obtained by using the C-RBF-PU method and the D-RBF-PU method
with kernels r7 (left) and r8 log r (right) on Ω3 for Example 5.1.
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Figure 7. Density plot of the error on Ω1 (left), Ω2 (middle) and Ω3 (right) for h = .1, with the
kernel r6 log for Example 5.1.
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Figure 8. The error obtained using C-RBF-PU method and D-RBF-PU method with PHS kernels
r7 (left) and r8 log r (right) on domain Ω1 for Example 5.2.
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Figure 9. The error obtained using C-RBF-PU method and D-RBF-PU method with PHS kernels
r7 (left) and r8 log r (right) on on domain Ω2 for Example 5.2.
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Figure 10. The error obtained using C-RBF-PU method and D-RBF-PU method with PHS kernels
r7 (left) and r8 log r (right) on domain Ω3 for Example 5.2.

Figure 11. Density plot of error on the Ω1 (left), on the Ω2 (middle) and on the Ω3 (right) for h = .1
with PHS kernels r6 log for Example 5.2.

Table 2. The obtained error, Crate, the condition number and the computational time using D-RBF-
PU method with different values of h and the PHS kernels r5 on Ω3 for Example 5.1.

h Error Crate Cond time

0.10000 1.4322e− 03 - 7.8028e+ 03 0.2664
0.05773 4.1323e− 04 2.2624 3.9859e+ 04 .3415
0.03333 1.2465e− 04 2.1818 2.1306e+ 05 3.2557
0.01924 5.4932e− 05 1.4913 5.4932e+ 05 55.0363

6. Conclusion

In this study, we use the direct radial basis function partition of unity (D-RBF-PU) method to obtain the numerical
solution of the two-dimensional Poisson equation. In addition, different irregular 2D domains, two exact solutions, and
various types of polyharmonic spline kernels for this equation are presented in this paper. Finally, through different
examples, a comparative study of the efficiency, convergence rate, and speed demonstrates that this method is less
expensive, more accurate, and faster than the classical radial basis function partition of unity method.
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Table 3. The obtained error, Crate, the condition number and the computational time using the
C-RBF-PU method with different values of h and the PHS kernels r6 log r on Ω3 for Example 5.1.

h Error Crate Cond time

0.10000 1.2391e− 03 - 9.8904e+ 03 0.2802
0.05773 5.6124e− 04 1.4416 4.2038e+ 04 0.5786
0.03333 2.0892e− 04 1.7989 1.6004e+ 05 4.0098
0.01924 8.7740e− 05 1.5789 9.9442e+ 05 57.1031

Table 4. The obtained error, Crate, the condition number and the computational time using the
D-RBF-PU method with different values of h with the PHS kernels r6 log r on Ω3 for Example 5.1.

h Error Crate Cond time

0.10000 8.5341e− 04 - 8.5131e+ 03 0.2040
0.05773 2.4980e− 04 2.2362 4.3688e+ 04 0.3797
0.03333 5.7844e− 05 2.6631 1.8393e+ 05 3.1993
0.01924 2.3860e− 05 1.6116 9.8714e+ 05 55.4523

Table 5. The obtained error, Crate, condition number and time using C-RBF-PU method with
different values of h with PHS kernels r5 on domain Ω2 for Example 5.2.

h Error Crate Cond time

0.10000 1.1276e− 02 - 7.9291e+ 03 0.6622
0.05773 2.6155e− 03 2.6597 6.5195e+ 04 0.5583
0.03333 9.1794e− 04 1.9061 4.6443e+ 05 2.6694
0.01924 2.0675e− 04 2.7129 4.5973e+ 06 40.1659

Table 6. The obtained error, Crate, condition number and time using D-RBF-PU method with
different values of h with PHS kernels r5 on domain Ω2 for Example 5.2.

h Error Crate Cond time

0.10000 1.3591e− 02 - 8.0555e+ 03 0.2348
0.05773 2.6771e− 03 2.9572 6.3298e+ 04 .3121
0.03333 3.3828e− 04 3.7658 3.2810e+ 05 2.3675
0.01924 4.8249e− 05 3.5443 3.5417e+ 06 38.7791

Table 7. The obtained error, Crate, condition number and time using C-RBF-PU method with
different values of h with PHS kernels r6 log r on domain Ω2 for Example 5.2.

h Error Crate Cond time

0.10000 1.9025e− 02 - 8.7762e+ 03 0.2541
0.05773 2.6337e− 03 3.5992 1.4972e+ 05 0.5281
0.03333 4.5905e− 04 3.1803 8.2592e+ 05 3.0229
0.01924 8.7150e− 05 3.0239 9.7761e+ 06 40.5526
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Table 8. The obtained error, Crate, condition number and time using D-RBF-PU method with
different values of h with PHS kernels r6 log r on domain Ω2 for Example 5.2.

h Error Crate Cond time

0.10000 1.4764e− 02 - 9.0659e+ 03 0.1497
0.05773 2.6844e− 03 3.1029 1.3527e+ 05 0.3139
0.03333 2.6439e− 04 4.2194 4.5221e+ 05 2.3552
0.01924 2.2325e− 05 4.4984 7.7704e+ 06 39.2626
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