
تعداد نشریات | 45 |
تعداد شمارهها | 1,406 |
تعداد مقالات | 17,247 |
تعداد مشاهده مقاله | 55,719,462 |
تعداد دریافت فایل اصل مقاله | 17,897,103 |
تأثیر بیوچار بر جذب آفتکشها در خاکها | ||
دانش خاک و گیاه | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 28 شهریور 1404 اصل مقاله (2.02 M) | ||
نوع مقاله: مقاله مروری | ||
شناسه دیجیتال (DOI): 10.22034/sps.2025.68824.1016 | ||
نویسندگان | ||
سمیه سفیدگر شاکلائی* 1؛ اعظم طاهری شهرستانی2 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران. | ||
2گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران. | ||
چکیده | ||
امروزه از آفتکشها بهطور گسترده در نظامهای کشاورزی استفاده میشود. استفاده ناکارآمد و گسترده از آفتکشها در طول ۵ تا ۶ دهه گذشته ناخواسته سبب کاهش جدی کیفیت محیطزیست شده و سلامت جانداران از جمله انسانها را به خطر انداخته است. استفاده از برخی رویکردهای سازگار با محیطزیست و پایدار برای اصلاح، بازیابی و حفظ کیفیت خاک بسیار مهم است. بیوچار بهعنوان یک اصلاحگر خاک، در سطح جهانی توجه قابلتوجهی را به خود جلب کرده است، زیرا توانایی جذب و به حداقل رساندن زیستفراهمی آفتکشها را در خاک دارد. در این مطالعه از وبسایتهای ریسرچگیت، اسکوپوس، گوگل اسکولار و ساینس دایرکت بهعنوان منابعی برای جمعآوری اطلاعات استفاده شد. همچنین، 40 مقاله منتشر شده از سالهای 2013 تا 2025 انتخاب و مورد بررسی قرار گرفت. این مطالعه، ترکیبی جامع از پیشرفتهای اخیر در جذب آفتکشها بهوسیله بیوچار را ارائه میدهد و جنبههای کلیدی مانند سازوکارهای تولید بیوچار، سازوکارهای جذب و روشهای اصلاح نوآورانه شامل فعالسازی فیزیکی، شیمیایی و بیولوژیکی را روشن میکند. همچنین، این مطالعه با هدف ارائه بینشهای گستردهتر در مورد پتانسیل بیوچار برای کاهش مؤثر آلودگی آفتکشها انجام شده است. این دیدگاه روشنگرانه به شکلدهی و جهتگیریهای پژوهشهای آینده در زمینه اصلاح آلودگی آفتکشها کمک میکند و در نتیجه، نوآوری و اهمیت کار ارائه شده را افزایش میدهد. | ||
کلیدواژهها | ||
آفتکش؛ بیوچار؛ جذب سطحی؛ زیستفراهمی؛ فعالسازی | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Abdollahi, K., Movahedi Naeini, S.A.R., Barani Motlagh, M., Ebrahimi, P. & Roshani G.A. (2019). Evaluation the effect of organic amendments (manure and biochar) on Metribuzin herbicide persistence in soil. Applied Soil Research, 8(1): 149-161. (in Persian with English abstract)
Aldas‑Vargas, A., Poursat, B.A.J. & Sutton, N.B. (2022). Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil. World Journal of Microbiology and Biotechnology, 38, 240. https://doi.org/10.1007/s11274-022-03426-x
An, X., Wu, Z., Shi, W., Qi, H., Zhang, L., Xu, X. & Yu, B. (2021). Biochar for simultaneously enhancing the slow-release performance of fertilizers and minimizing the pollution of pesticides. Journal of Hazardous Materials, 407, 124865. https://doi.org/10.1016/j.jhazmat.2020.124865
Azimzadeh Y., Najafi N., Abdolmaleki E., & Amirloo B. (2020). Changes in some chemical properties of various organic materials after converting in biochar and hydrochar. Applied Soil Research, 7(4), 1–17. (in Persian with English abstract)
Azimzadeh Y., Najafi N., Reyhanitabar A., Oustan S. & Khataee A. (2020). Effects of phosphate loaded LDH-biochar/hydrochar on maize dry matter and P uptake in a calcareous soil. Archives of Agronomy and Soil Science, 67(12): 1649–1664. https://doi.org/10.1080/03650340.2020.1802012
Azimzadeh Y., Najafi N., Reyhanitabar A., Oustan S. & Khataee A. (2021). Modeling of phosphate removal by Mg-Al layered double hydroxide functionalized biochar and hydrochar from aqueous solutions. Iranian Journal of Chemistry and Chemical Engineering, 40(2): 565–579. https://doi.org/10.30492/ijcce.2020.38042
Bian, S., Xu, S., Yin, Z., Liu, S., Li, J., Xu, S. & Zhang, Y. (2021). An efficient strategy for enhancing the adsorption capabilities of biochar via sequential KMnO4-promoted oxidative pyrolysis and H2O2 oxidation. Sustainability, 13, 2641. https://doi.org/10.3390/su13052641
Bruckmann, F.S., Schnorr, C., Oviedo, L.R., Knani, S., Silva, L.F.O., Silva, W.L., Dotto, G.L. & Bohn Rhoden, C.R. (2022). Adsorption and photocatalytic degradation of pesticides into nanocomposites: A review. Molecules, 27, 6261. https://doi.org/10.3390/ molecules27196261
Cara, I.G., T, opa, D., Puiu, L. & Jitareanu, G. (2022). Biochar a promising strategy for pesticide-contaminated soils. Agriculture, 12, 1579. https://doi.org/10.3390/agriculture12101579
Chen, Y., Zhang, X., Chen, W., Yang, H. & Chen, H. (2017). The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresource Technology, 246, 101-109. https://doi.org/10.1016/j.biortech.2017.08.138
Dong, X., Chu, Y., Tong, Z., Sun, M., Meng, D., Yi, X., Gao, T. & Wang, M. D. (2024). Mechanisms of adsorption and functionalization of biochar for pesticides: A review. Ecotoxicology and Environmental Safety, 272, 116019. https://doi.org/10.1016/j.ecoenv.2024.116019.
Eissa, F., Alsherbeny, S., El-Sawi, S., Slaný, M., Lee, S.,Shaheen, S.M. & Jamil, T. (2023).Remediation of pesticides contaminated water using biowastes-derived carbon rich biochar. Chemosphere, 340, 139819. https://doi.org/10.1016/j.chemosphere.2023.139819
FAO. (2016). Food and Agriculture: Key to Achieving the 2030 Agenda for Sustainable Development. Job No. I5499, Food and Agriculture Organization of the United Nations, Rome, Italy.
Garcia, M., Lucıa, J., Cox Heike, E., Juan, K., Cornejo Kurt, A. & MCarmen, S. (2014). Characterization and selection of biochar for an efficient retention of tricyclazole in a flooded alluvial paddy soil. Journal of Hazardous Materials, 286, 581-588. http://dx.doi.org/doi:10.1016/j.jhazmat.2014.10.052
Isakovski, M.K., Jevrosimov, I., Tamindˇzija, D., Apostolovi´c, T., Knicker, H., la Rosa, J., Ronˇcevi´c, S. & Maleti´c, S. (2024). Enhanced retention of hydrophobic pesticides in subsurface soils using organic amendments. Journal of Hazardous Materials. 480, 135738. https://doi.org/10.1016/j.jhazmat.2024.135738
Khaefi, F., Hosseinpur, A.R. & Motaghian, H.R. (2022). Sewage sludge biochar: Physicochemical properties and fractionation of zinc and lead metals. JWSS - Journal of Water and Soil Science, 26(2), 61-73. (in Persian with English abstract) http://dx.doi.org/10.47176/jwss.26.2.5722
Khalid, S., Shahid, M., Murtaza, B., Bibi, I., Natasha Naeem, M.A. & Niazi N.K. (2020). A critical review of different factors governing the fate of pesticides in soil under biochar application. Science of the Total Environment, 711: 134645. https://doi.org/10.1016/j.scitotenv.2019.134645
Li, H., Dong, X., Silva, E. & Oliveira, L. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466e478. http://dx.doi.org/10.1016/j.chemosphere.2017.03.072
Lindhardt, J.H., Tobler, D.J., Holm, P.E., Li, H. Winter, N. & Hansen, H.C.B. (2025). Carbon dioxide activated biochars as mediators for reductive debromination of 1,2‑dibromoethane. International Journal of Environmental Science and Technology, 22, 14661–14668. https://doi.org/10.1007/s13762-025-06576-1
Liu, N., Charrua, A.B., Weng, C.H., Yuan, X.L. Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource Technology, 198, 55-62. https://doi.org/10.1016/j.biortech.2015.08.129
Losacco, D., Campanale, C., Triozzi, M., Massarelli, C. & Uricchio, V.F. (2024). Application of wood and vegetable waste-based biochars in sustainable agriculture: Evaluation on nitrate leaching, pesticide fate, soil properties, and brassica oleracea growth. Environments, 11, 13. https://doi.org/10.3390/environments11010013
Mengesha, T., Ancha, V.R., Sundar, S. & Pollex, A. (2024). Review on the influence of pyrolysis process parameters for biochar production with minimized polycyclic aromatic hydrocarbon content. Journal of Analytical and Applied Pyrolysis, 182, 106699. https://doi.org/10.1016/j.jaap.2024.106699
Nguyen, B.T., Lehmann, J., Hockaday, W.C., Joseph, S. & Masiello, C.A. (2010). Temperature sensitivity of black carbon decomposition and oxidation. Environmental Science & Technology, 44, 3324-3331. https://doi.org/10.1021/es903016y
Pereira, H.A., Martinello, K´., Vieira, Y., Diel, J.C., S. Netto aM, Reske G.D., Lorenzett, E., Silva, L.F.O., Burgo, T.A.L. & Dotto, G.L. (2023). Adsorptive behavior of multi-walled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices. Chemosphere, 325,138384. https://doi.org/10.1016/j.chemosphere.2023.13838
Rigi, M.R. & Farahbakhsh, M. (2018). Evaluation of leaching and degradation of metribuzin herbicide in different soils. Iranian Soil and Water Research, 50(1), 1-12. (in Persian with English abstract) https://ijswr.ut.ac.ir/article_70097.html
Sarker, A., Yoo, J. & Jeong, W.T. (2023). Environmental fate and metabolic transformation of two non-ionic pesticides in soil: Effect of biochar, moisture, and soil sterilization. Chemosphere, 345, 140458. https://doi.org/10.1016/j.chemosphere.2023.140458
Sefidgar Shahkolaie, S., Baranimotlagh, M., Dordipour, E. & Khormali, F. (2020). Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. South African Journal of Botany, 128, 132-140. https://doi.org/10.1016/j.sajb.2019.10.007
Shi, Y., Wang, S., Xu, M., Yan, X., Huang, J. & Wang, H.W. (2022). Removal of neonicotinoid pesticides by adsorption on modified Tenebrio molitor frass biochar: Kinetics and mechanism. Separation and Purification Technology, 297,121506. https://doi.org/10.1016/j.seppur.2022.121506
Sorptive removal of neonicotinoid pesticides by nanobiochars: Efficiency, kinetics, and reusability Radwan, I., Wang, C., Kim, J.H., Wei, H. & Wang, D. (2025). Journal of Hazardous Materials, 493,138354. https://doi.org/10.1016/j.jhazmat.2025.138354
Suo, F., You, X., Ma, Y. & Li, Y. (2019). Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere, 235, 918-925. https://doi.org/10.1016/j.chemosphere.2019.06.158
Saffari, M. (2023) Optimization of nickel removal from aqueous solutions by physical-modified biochar. Iranian Journal of Health and Environment. 16 (3), 445-58. (in Persian with English abstract) http://ijhe.tums.ac.ir/article-1-6762-en.html
Tao, W., Duan, W., Liu, C., Zhu, D., Si, X., Zhu, R., Oleszczuk, P. & Pan, B. (2020). Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics. Science of The Total Environment, 715, 136575. https://doi.org/10.1016/j.scitotenv.2020.136575
Wahla, A.Q., Iqbal, S., Mueller, J.A., Anwar, S., Arslan, M. (2019). Immobilization of metribuzin degrading bacterial consortium MB3R on biochar enhances bioremediation of potato vegetated soil and restores bacterial community structure. Journal of Hazardous Materials, 3894(19)31447-5. https://doi.org/10.1016/j.jhazmat.2019.121493.
Wu, J., Jin, C., Yang, Z., Tian, J. & Yang, R. (2015). Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon, 82, 562-571. https://doi.org/10.1016/j.carbon.2014.11.008
Wu, W., Li, J., Lan, T., Muller, K., Niazi, N.K. & Chen, X. (2017). Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: a microscopic and spectroscopic investigation. Science of The Total Environment, 576, 766-774. https://doi.org/10.1016/j.scitotenv.2016.10.163
Wu, W., Li, J., Niazi, N.K., Muller, K., Chu, Y. & Zhang, L. (2016). Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiberderived biochars in aqueous environments. Environmental Science and Pollution Research, 23, 22890-22896. https://doi.org/10.1007/s11356-016-7428-0
Xin, S., Yang, H., Chen, Y., Yang, M., Chen, L., Wang, X. & Chen, H. (2015). Chemical structure evolution of char during the pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 116, 263-271. http://dx.doi.org/doi:10.1016/j.jaap.2015.09.002
Yakout, S.M. (2015). Monitoring the changes of chemical properties of rice strawederived biochars modified by different oxidizing agents and their adsorptive performance for organics. Bioremediation Journal, 19, 171e182. https://doi.org/10.1080/10889868.2015.1029115
You, X., Suo, F., Yin, S., Wang, X., Zheng, H., Fang, S., Zhang, C., Li, F. & Li, Y. (2021). Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil. Journal of Hazardous Materials, 417,126047. https://doi.org/10.1016/j.jhazmat.2021.126047
Zhang, H., Liu, M., Yang, H., Jiang, H., Chen, Y., Zhang, S. & Chen, H. (2022). Impact of biomass constituent interactions on the evolution of char’s chemical structure: an organic functional group perspective. Fuel, 319, 123772. https://doi.org/10.1016/j.fuel.2022.123772
Zhang, P., Sun, H., Yu, L. & Sun, T. (2013). Adsorption and catalytic hydrolysis of carbaryl and atrazine on pig manure-derived biochars: Impact of structural properties of biochars. Journal of Hazardous Materials, 244– 245, 217– 224. http://dx.doi.org/10.1016/j.jhazmat.2012.11.046
Zheng, W., Guo, M., Chow, T., Bennett, D.N. & Rajagopalan, N. (2010). Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials, 181, 121–126. https://doi.org/10.1016/j.jhazmat.2010.04.103
Zhu L., Zhao, N., Tong, L., Lv, Y. & Li, G. (2018). Characterization and evaluation of surface modified materials based on porous biochar and its adsorption properties for 2,4-dichlorophenoxyacetic acid. Chemosphere 210, 734–744. https://doi.org/10.1016/j.chemosphere.2018.07.09 | ||
آمار تعداد مشاهده مقاله: 10 تعداد دریافت فایل اصل مقاله: 2 |