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Abstract r N

Potential developments of Williamson fluid flow across porous media included plasma mechanics, blood transport,
bio-thermal engineering, medication delivery, and tissue temperature perception. The benefits of these results
are evident in the biomedical fields of tissue engineering and tissue replacement, where porous scaffolds improve
blood flow across biological tissues and address organ shortages. In the fluid flow model, velocity Uy (x) = ax is
influenced by an inclined magnetic field and radiation effect at an angle of a over the stretching surface, with the
temperature, concentration, and velocity slips present. Relevant partial differential equations were transformed
into ordinary differential equations by the conversion of similarity. The MATLAB module implements the BVP4C
solver computationally to determine these ODEs. The current discoveries constitute a remarkable extension of
previous results. As the magnetic parameter rises, the Lorentz force acting on the fluid flow reduces the velocity
distribution. The temperature profile minimized as the Prandtl number improved because of a reduction in the
thickness of the thermal boundary layer. In addition, the proposed innovative work for a machine learning-based
multiple linear regression improves the accuracy to 95%. In the end, employing an artificial neural network tech-
nique yields highly dependable validation and 99% correct forecasts for such scenarios by locating accurate data
for amounts of interest. The exact quality of the prediction and verification of the present result is ultimately
verified and confirmed by a graph and tabular data for comparison with the prior outcomes.
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1. INTRODUCTION

One of the most crucial non-Newtonian fluids was the Williamson fluid, which has potential advancement in biomed-
ical and industrial applications such as plasma mechanics, blood circulation, bio-thermal engineering, ice cream paste,
fruit juices, polymer melts, greases, and crude oil processing. Initially, Williamson et al. [43] in 1929 provided an
excellent experiment to verify these ideas and gave a great example formulation for describing the flow of pseudo-
plastic fluids. This technique displayed infinite viscosity when the shear rate is stationary and zero viscosity when the
shear rate approaches infinity. After that, Lyubimov et al. [19] explored the movement of a tiny layer of Williamson
fluid to produce translational vibrations in its plane across an inclined, infinite solid surface. Subsequently, Vasudev
et al. [41] examined the Williamson fluid peristaltic pumping over a porous material in a horizontal tube involving
thermal transfer. In further study, Nadeem et al. [20] evaluated the impact of Williamson fluid on boundary flow and
heat transfer across a stretching surface. Recently, Haider et al. [9] developed a novel heat flux model to investigate
the thermal properties of hybrid nano-Williamson fluids. He discovered that the rate of species diffusion in a hy-
brid nanofluid is noticeably higher than in a mono nanofluid. Navigate to the Williamson fluid model due to the
previous result demonstrating the significant influence of the industrial and biological domains.

A porous medium, or porous material, is a substance that contains pores. The monitoring of blood flow and
tissue temperature, as well as industrial uses for petroleum resources, crude oil production, and energy storage, are

Received: 12 June 2024 ; Accepted: 10 September 2025.
* Corresponding author. Email: priyadharshinip@psgcas.ac.in.



2 P. PRIYADHARSHINI AND V. KARPAGAM

a few of the biomedical and technical applications of a thorough investigation of porous media. From the beginning,
Khan et al. [13] analyzed buoyancy-induced flow with non-Newtonian nanofluid characteristics through a porous
vertical stretching surface using the model of a third-grade fluid. He caught the impact of buoyancy. Afterward,
Bhatti et al. [2] studied the influence of a magnetic field on the peristaltic behavior of the Williamson fluid utilizing
empirical and computational methods. The above results show the impact of the Williamson fluid parameter, the
nano-Lewis number, and the Dufour solute Lewis number. Later, Krishna et al. [17] tested the ion slip and Hall
ripples affecting the non-Newtonian fluid hydromagnetic convective fluxes through an impermeable medium connected
to two gyrating parallel plates for an instant sporadic sinusoidal pressure gradient. Following that, Shamshuddin et
al. [32] analyzed magnetohydrodynamics (MHD) bioconvection techniques for microbial nanofluid treatment using
permeable surfaces and an induced heat source and tested the size of the motile density of microorganisms damped
for different thermophysical factors. Soon after, Usman et al. [40] observed that a semi-numerical method for heat
transference in a Williamson fluid moving along a ciliated porosity medium. By looking at the previously mentioned
results, this framework facilitates an analysis of the Williamson fluid with a porous surface stretching sheet.

An inclined magnetic field represents a slanted field at an angle rather than precisely aligned with the reference
direction, and it has a non-zero inclination. It is crucial for assessing the capabilities of MHD plasma devices, ac-
celerators, and energy systems used in actual geophysical and biological processes. Ramesh et al. [27] addressed the
effects of the transmission of heat on magnetohydrodynamics second-grade fluid across the permeable substance in an
imbalanced tunnel, and they discussed the contribution of the inclination angle on the flow. Following that, Sreedevi et
al. [34] explored the heat and mass distribution of nanofluids on linear and nonlinear stretching surfaces that employ
thermal radiation and chemical processes. After that, Elgazery et al. [7] demonstrated that nanofluids flow across a
porous, unstable extended surface bordered by a non-uniform heat source/sink. The impact of the inclination angle
frequently results in an inclined magnetic field. Koriko et al. [16] investigated the bioconvection flow of an MHD
thixotropic nanofluid across a vertical surface with the effects of gyrotactic bacteria and nanoparticles. Rehman et
al. [29] examined the impact of the non-Fourier heat flow model, magnetic field, and Darcy-Forchheimer equation on
the Casson dusty nanofluid. Rauf et al. [28] evaluated the MHD micropolar non-Newtonian tri-hybrid nanofluid flow
between two parallel surfaces, which is affected by Hall current and morphological factors. In addition, Abdelhafez
et al. [1] discussed heat and mass transfer with an angled magnetic field, affecting peristaltic blood circulation in an
unconventional stream, and their result signifies the shear stress of the blood. Choudhari et al. [5] inspected the effects
of numerous slips on MHD plasma peristaltic flow applying Phan-Tien-Tanner nanofluid through an asymmetric route,
which influenced blood rheology. After that, Many researchers studied the impact of an angled magnetic field and
Williamson fluid flow across porous media ([44], [15],[22], [26], and [4]). After examining the earlier findings, this struc-
ture provides a Williamson fluid research using a stretched sheet with an angled magnetic field porous surface.

This study examines the multi-slip-and thermal radiation impact of Williamson fluid flow through a stretching
sheet in an environment of a highly inclined magnetic field, providing outstanding targets for the previously suggested
favorable results of Wang et al. [42], Gorla et al. [8], Khan et al. [14], Srinu et al. [36]. The earlier outcomes indicated
that elevating the Prandtl and Weissenberg numbers minimized the temperature distribution and reduced the velocity
distribution as the magnetic field rose. It offers advantages in various biomedical fields, including drug administration,
heat transmission in biological tissues, and tissue formation using porous scaffolds.

1.1. Framework. The current investigation has five parts: mathematical formulation, methodology, discussion of
results, validation, and conclusion.

* Formation of mathematical equations is known as flow analysis.

* The numerical technique for solving these equations under appropriate boundary conditions, as executed by the
MATLAB module BVP4C solver, demonstrated the solution methodology.

* A summary of the numerical and machine learning studies indicated that prior findings were validated, as described
in the results and comments.

* The outcome compared with previous results depicted the validation.

* The outcome displayed in the concluding remarks.
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F1cURE 1. Applications of Williamson fluid.

2. FLow ANALYSIS

An angled magnetic field and heat radiation were employed to examine the effects of Williamson fluid flow on
a stretching sheet. This experiment looked at a stretching surface with the ambient fluid temperature T, the
upper part of the surface To, and the velocity Uy, (z) = ax. The positioning of a flow control provides y > 0.
The fluid flow is subjected to an orthogonal magnetic field to the z-axis at an angle of a. An estimated difference
exists between the applied and induced magnetic fields. Figure 1 indicates the application of Williamson fluid, and
Figure 2 illustrates the structure of the geometrical representation.
Srinivasulu et al. [35] and Srinu et al. [36] and address the governing equations of momentum, energy, and
concentration.

Uy + vy =0, (2.1)
oB? ., v
Uy 4 VUy = Vityy + V20T Uty = p—sm ()u — el (2.2)
f
k 1 160*T3 oB?2 v
uTy + 0T, = —q = 29 Jop +—0u2+—[u2—|—\/§I‘u3]+Q0T—TOO, 2.3
Y (pep)s Y (pep)y 3K T (pep) g Gy LY Y ( ) (23)
uCy +vCy = DpCy, — Kc*(C — Cx), (2.4)

The boundary constraints are:
U= Uy = ax + A'uy,v =0, T =T, + B*'T,,C =C, +C*Cy at y = 0, 05
u=0,T = Tp,C = Cs, as y — 00. (25)

The stream function is
U=y, v = —1Py. (2.6)

The system of equations generates the dimensionless flow model to apply the following non-dimensional similarity
transformations.

= Vavzf(n), n= y\/g 0(n) = ;;__—TTC’:O ¢(n) = % (2.7)
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FIGURE 2. Proposed geometrical diagram.

The stream function satisfies continuity Equation (2.1) and generates nonlinear ordinary differential equations by
modifying the nonlinear parameters in Equations (2.2)-(2.4) and boundary restrictions in Equation (2.5) are as shown
below:

(12" ) £ )+ )" () = ()2 m) = (Msin?(a) + KS,) £ () = 0, (28)
0" (m) + ai—m 8 () + Be (1)) +We(F" V() + M(F)2(n)) + Q6(m)]| = 0, (2.9)
¢ (n) + Lef(m)@ () — LeKeg(n) = 0. (2.10)

The boundary restrictions are

F) = £u(0), £ (n) =1+ Af (0); 0(n) =1+66'(0), d(n) =1+~6 (0), at n — 0,

(2.11)

f (n) =0, 8(n) — 0,7¢(n) — 0, as n — .

The skin friction, Nusselt number, and Sherwood numbers are
Tw TG TQm

Cp, = s N, = ﬁ, Sp, = m. (2.12)

where the shear stress and thermal flux are
L 3
Tw = b [uy + ﬁuy] s qw = —k(Ty)y=o0. (2.13)

The dimensionless form of skin friction, Nusselt, and Sherwood values evaluated from Equations (2.7), (2.12), and
(2.13).

)\ " " Nu ’ Sh ’
C¢ v/ Re, = 0), = = —(1+ R)6 (0), = = —¢ (0). 2.14
VT = (14 50) 10 S =~ R0, == ~6'10) (2.14)
Table 1 exhibits distinguished physical parameters.
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TABLE 1. Values for several physical parameters.

| S.No || Physical Parameters || Physical Parameter Values |
1 Magnetic Parameter M= ‘;TBE
2 Prandtl number Pr—= %k __
(pCp)s
3 Williamson factor A= Z—faxf
ot 160" T3
4 Radiation parameter R= ==
) Suction injection parameter W= — \12%/
6 Weissenberg Number We = 2Ty /@
U2
7 Eckert number Ec= WVKTOO)
8 Lewis number Le = Dl’B
9 Chemical reaction parameter K¢ = %*Q
10 Reynolds number R., = %

FI1GURE 3. Flow chart of proposed approach.

3. SOLUTION METHODOLOGY

This research project focuses primarily on numerical and machine-learning methodologies. The main advan-
tage of this approach is that the BVP4C solver MATLAB program reduces higher-order ODEs to first-order ODEs,
which is the initial stage in developing a numerical solution. In the second half of the research, multiple linear regres-
sion with machine learning enhanced prediction and decision-making processes, resulting in more accurate results. The
development of MLR focused on the significant correlation recognized between a single prediction and many response
variables. The coefficients corresponding to the different flow conditions that affected each are found and calculated.
Finally, precisely predicted and verified the values of physical quantities employing artificial neural networks, yielding
results exhibited through mean square error, error histogram, regression, and fitness plots. A simplified flowchart of
the recommended method is displayed in Figure 3, emphasizing significant parts of an inquiry.
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3.1. Numerical Approach. The nonlinear ODE with boundary restrictions are in Equations (2.8)—(2.11) are de-
termined by computationally utilizing MATLAB software, incorporating the BVP4C solution module. For evaluat-
ing boundary value problems in ordinary differential equations, Shampine et al. [30] first looked at this solver. Here-
after, Shampine et al. [31] developed this software to solve ordinary differential equations. After that, Dey et al. [6] dis-
covered volume fraction-based two-phase fluid motion in a porous medium. Using this technique, solve thermal radia-
tion on boundary layer flow analyzed by Kamil et al. [12]. A novel numerical technique for calculating Williamson fluid
cross-flow over a porous shrinking/stretching surface, combining the hybrid nanofluid and thermal radiation among
the finite difference method evaluated by Umair et al. [38].
To introduce the new variables:

"

Fm) =y, f () = wo. £ () = y3,001) = ya, 6 () = w5, &(n) = Y6, 6 (n) = - (3.1)
The specified variables have transformed from a dimensionless higher-order ODE form to a first-order ODE.
y1 = 12, (3-2)
Vs = U3, (3.3)
/ 1 9 .9
= _[- M K 3.4
Y3 1+ \ys) [ Y1ys +y3 + ( sin”(a) + p) ZU2] ) (3.4)
Ya = Y5, (3.5)
’ PT
Y5 = "0+ R) [y1ys + Ec ((y3)* + We(ys)® + M(y2)?) + Qual , (3.6)
Yo = v, (3.7)
vs = —Leyryr + LeKeys. (38)

Furthermore, the boundary restrictions:
ya1 = fw,yaz = 1+ Ayas,yas = 1 + dyas, yag = 1 4 vyaz, yb2 = 0,ybs = 0,ybs = 0. (3.9)

The BVP4C solver seemed to resolve the system of ODEs and the related boundary requirements are in Equations
(3.2)-(3.9).

3.1.1. Convergence Test for BVP4C Solver. Integration settings, initial guesses, boundary conditions, step size, and
error estimation are vital components in evaluating the convergence of the BVP4C solver. By strategically adjusting
the step size, we can achieve highly accurate and dependable results. Our findings demonstrate that expanding the
number of intervals significantly minimizes the error. Table 2 shows that setting the number of step sizes to 5 resulted
in the highest residual of 7.426e-05, which was solved using an 84-point mesh. However, when increasing the number
of step sizes to 50, the solution achieved an 186-point mesh and its optimum residual produced 9.042e-05. Hence,
fine-tuning the step size emerges as a critical strategy in the convergence tests for the BVP4C solver. An increment of
step size and mesh point enhances resolution by detecting small-scale variations in temperature distribution, resulting
in more precise heat transfer analysis in the boundary region.

TABLE 2. Convergence test for BVP4C solver.

Total number of Step Size H Maximum Residual H Number of Mesh ‘

5 7.426e-05 84
50 9.042e-05 186

3.2. Machine Learning Approach.
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3.2.1. Multiple Linear Regression Algorithm. Artificial intelligence leverages machine learning data to help robots
learn, develop new ideas, and perform specialized activities more accurately. It enhances proficiency in apply-
ing decision-making and resource evaluation methods to gather relevant data from massive databases to advance fluid me-
chanics research. Furthermore, this method automatically regulates, optimizes, and raises the flow. Heureux et al. [10]
provided extensive details on ML, emphasizing its challenges and techniques. Sulochana et al. [37] investigated the
effect of temperature source-sink on classification and regression algorithms that use nanofluid flows on an expanding
surface. Palash et al. [21] investigated temperature conductive prediction for titania-water nanofluid using several fore-
casting machine learning algorithms. The current work employed a multiple linear regression approach to forecast
fluid physical parameters, which is consistent with the prevalence of predictive algorithms in the domain ([24]-[25]).

3.2.2. Structure of MLR. MLR determines a complex interaction between a single predictor component and several
physical quantities. The evidence-based multiple regression evaluation technique aims to discover errors or deviations
while also characterizing the final anticipated findings. The implementation of multiple regression techniques to
forecast the physical parameter values of skin friction, Nusselt number, and Sherwood number.

The estimation of multiple linear regression utilizes the following formula

Y:Oéo+OélX1 +Ot2X2+...+Oéan+€. (310)

The value of Y is the prediction variable, X1, X5, ..., X,, are the response variables, the constant term < depicted as
the regression line on the vertical axis, it is denoted by the intercept, o, as, ..., a;, indicated the regression coefficient
and e represented as the random error.

The preceding Equations (3.11)-(3.13) provides the skin friction, Nusselt, and Sherwood numbers.

Cj, = 0.94248 + 0.081444 M + 0.44312 % fw + 0.33659 x Kp — 0.89831 % A, (3.11)
Ny, = 1.1527 4 0.13677 « Pr — 1.2102 * Ec + 0.16721 « We — 3.2539  Q — 0.51885 R — 0.45595 % 5,  (3.12)
Sp, = 1.3465 + 0.1572 = Le + 0.35224 x K¢ — 2.8461 * 4. (3.13)

3.2.3. Artificial Neural Network Algorithm. The conceptual architecture of the human brain serves as a source of in-
spiration for the working mechanism of machine learning under artificial neural networks (ANN). It is an excellent
resource for modeling nonlinear statistical data. The input, output, and hidden layers are the three interconnected lay-
ers that make up an artificial neural network. The first layer contains the neurons in the input layer. The final output
layer receives the information that those neurons supply to the deeper layers. Through a series of transformations, the
hidden units that comprise the inner layers adaptively modify the data they receive layer by layer. A specific artificial
neural network model forecasts the hydrodynamic flow characteristics of a Williamson fluid in a stratified environment
with a convective surface. Shoaib et al. [33] examined the application of Levenberg-Marquardt backpropagation neu-
ral networks to intelligent computing for third-grade nanofluid on a stretched sheet under convective conditions.
Ullah et al. [39] investigated the backpropagation neural networks in the Levenberg-Marquard algorithm for ANN in
the numerical treatment of nanofluid flow squeezing between two circular plates. Evaluation of energy transmission
characteristics of non-Newtonian fluid flow in stratified and non-stratified conditions. Bilal et al. [3] conducted the
comparative investigation. Prikhodko et al. [23] investigated two-dimensional acoustic tomography employing encoder
neural networks. Using an artificial neural network, Hussain et al. [11] evaluated the heat and mass transport of the
Casson nanofluidic flow model on a nonlinear slanted expanding sheet. Liu et al. [18] implemented an adaptive
activation function to a class of nonlinear Schrodinger equations and utilized a physically informed neural network.
Figure 4 displays the working principle of the multilayer perceptron of the ANN model. Figure 5 illustrates a working
procedure that comfortably comprehends an artificial neural network.

3.2.4. Advantages of Artificial Neural Network. Artificial neural networks offer several advantages for highly accurate
predictions, allowing for more reliable modeling of complex fluid behaviors, the capacity for rapid analysis, and
detecting medical images that help to identify cancer cells. Additionally, it generates faster forecasts, managing
nonlinear systems, significantly reducing the time required for simulations and decision-making. Furthermore, ANNs
facilitate robust data-driven modeling, harnessing vast amounts of data to uncover intricate patterns and relationships
within fluid dynamics.
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F1GURE 5. ANN prediction algorithm.

4. RESULTS AND DISCUSSION

This section highlights several factors that determine the thickness of the temperature, concentration, and velocity
profiles. The BVP4C solver in the MATLAB module occupies Equations (2.8)—(2.11) to analyze velocity, tempera-
ture, concentration distribution, and non-dimensional physical terms such as Nusselt number, Sherwood number, and
skin friction. In machine learning, multiple linear regression also improves accuracy and eliminates errors. Finally,
to improve prediction and validation for implementing the artificial neural network model.

4.1. Impact of Velocity profile. Figure 6 illustrates the momentum distribution under different physical parameters
and analyzes changes in the fluid motion rates. The velocity profile declined as the magnetic field parameter M
developed because a magnetic field interacts with the fluid motion and produces an electromagnetic force. This force,
known as the Lorentz force, operates against the direction of flow, slowing it down. Since increased suction restricts
the creation of the boundary layer by continuously drawing fluid inward, the velocity distribution decreased when
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the suction parameter fw increased. A thinner boundary layer indicates less velocity at the surface, resulting in a
slower momentum distribution. Permeability is the loss of energy generated by friction and dispersion within a porous
material. Therefore, higher permeability promotes lower fluid motion and minimizes the speed. The momentum of
the fluid decreased as the velocity slip condition increased. Higher slip indicates lower resistance at the boundary,
resulting in less momentum exchange between the solid surface and the fluid. Since the fluid at the border travels
more slowly, it leads to inferior mobility.

0.7
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FIGURE 6. Several parameters of velocity distribution.

4.2. Impact of temperature profile. Figure 7 reveals that variations in fluid temperature affect the fluid behav-
iors of the physical nature. The temperature profile declined as the Prandtl number Pr rose due to heat transfer
primarily occurring through convection rather than conduction. This results in a narrower thermal boundary layer
and a more significant decrease in temperature. The temperature profile dropped as the Weissenberg number We
expanded due to fluid elastic forces that restricted convective heat transmission. This elasticity specifies the effective-
ness of heat diffusion, resulting in a lessened temperature profile. Developing thermal slip § weakened the thermal
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connection, resulting in a lower temperature profile. The thermal boundary layer is thin since fluid retains less heat
at the surface.

The temperature profile improves as the Eckert number Ec rises due to viscous forces producing heat as the
fluid motion, resulting in higher internal heat production and raising the temperature profile. Thermal radiation
R facilitates heat transmission and radiation, therefore enhancing heat transfer. Radiation enables efficient energy
emission and absorption, which contributes considerably to accelerating the temperature distribution. The thermal
distribution expanded when the heat source parameter () grew because thermal radiation R improves heat transport
and radiation, resulting in higher heat transfer. The heat source parameter () describes more heat created inside,
which raises the temperature profile.

4.3. Impact of concentration profile. Figure 8 displays the behaviors for the concentration distribution of Williamson
fluid flow in a porous medium. The concentration profile fell as the chemical reaction parameter grew. Superior reac-
tion rates encourage faster chemical transformations, resulting in a higher rate of species diffusion away from reaction
zones due to a dilution effect that lowers the presence of reactants in the system. The greater values of Le correspond
to the inferior concentration distribution because the higher values of the Lewis number generate less mass diffusion
rate since reactant particles diffuse more slowly in the medium. Hence, the intensity of the fluid dropped. Slip effects
reduce species diffusion over the boundary layer, resulting in lower concentration profiles for higher v values. This
results in less mixing and lower concentrations across the domain.

4.4. Impact of skin friction. The impact of magnetic parameter M, Suction injection parameter fw, Permeability
factor Kp, and velocity slip A on skin friction is mentioned in Table 3. The advancement of the skin friction coefficient
is the improvement of the magnetic parameter M, the suction injection parameter fw, and the permeability factor
Kp. The magnetic field interacts with fluid particles at the surface, causing a thicker boundary layer and increased
shear stress at the wall. A maximum velocity slip A causes the fluid to move faster over the surface, decreasing shear
stress and skin friction.

TABLE 3. Skin friction v/ RezC', effects of several parameters.

’ M H fw \LKﬂ A H Skin friction ‘
0.1 0.1 | 0.1

1.0 . . . 1.0209
1.5 .01 0.1 | 0.1 1.0610
2.04 0.1 0.1 |/ 0.1 1.0990
25011 0.1 0.1 1.1351
3.01{ 0.1 0.11] 0.1 1.1695
1.0 0.2 0.1 0.1 1.0608
1.0 03| 0.1 0.1 1.1020
1.0 041 0.1 || 0.1 1.1444
1.0 0.5 0.1 | 0.1 1.1880
1.0 0.1} 0.2 || 0.1 1.0532
1.0 0.1 0.3 0.1 1.0840
1.0 0.1 04 | 0.1 1.1136
1.0 0.1} 0.5 || 0.1 1.1421
1.0 0.1 0.1 0.2 0.9007
1.0} 0.1 0.1 0.3 0.8086
1.0/ 0.1} 0104 0.7354
1.0 0.1 01105 0.6754

4.5. Impact of Nusselt number. Table 4 presents the Nusselt number impact of Prandtl number Pr, Ecklet number
Ec¢, Weissenberg number We, Heat source parameter (), Radiation factor R, and thermal slip Parameter §. Higher
a0
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FIGURE 7. Several parameters of temperature distribution.
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FIGURE 8. Several parameters of concentration distribution.

values of Prandtl number Pr and Weissenberg number We suggest better momentum transmission from the walls due
to wall shear stress and elastic effects.

Larger values of heat source parameter ), Ecklet number Ec¢, thermal slip Parameter 4, and radiation factor R
declined the Nusselt number means the reduction of the temperature deviation in the fluid and the surface, reduc-
ing the temperature differential between the fluid and its outermost layer, more heat generation inside the fluid, the
slow convective heat transmission for an insulator, and a thicker thermal boundary layer.

4.6. Impact of Sherwood number. Table 5 demonstrated the Sherwood number influence for Lewis number Le,
Chemical reaction parameter K¢, and concentration slip 7. The Sherwood number value increased for the higher
values of the Lewis number (Le) and chemical reaction parameter (Kc¢) due to enhanced mass transfer accuracy
through convection and diffusion. But the concentration boundary layer thickness near the wall reduced as the ex-
pansion in concentration slip v dropped in the Sherwood number.
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Nul-
TABLE 4. Nusselt number TR effects of several parameters.

’ Pr H Ec H We H Q H R H 1) H Nusselt number ‘

3 |02 1 0.2 021 0.1 0.6734
4 1 0.2 1 0.2 021 0.1 0.8416
5 (0.2 1 021021 0.1 0.9824
6 | 0.2 1 0.2 021 0.1 1.1053
7 (0.2 1 0.2 021 0.1 1.2154
3 103 1 02021 0.1 0.5573
3 104 1 0.2 021 0.1 0.4411
3 1105 1 0.2 021 0.1 0.3250
3 ] 0.6 1 0.2 021 0.1 0.2089
3 |02 2 0.2 021 0.1 0.8455
3 1102 3 |]0.2]/0.2] 0.1 1.0176
3 1102 4 |]0.2]0.2] 0.1 1.1897
3 102 ) 0.2 021 0.1 1.3618
3 102 1 0.3 021 0.1 0.4265
3 102 1 041021 0.1 0.0054
3 |02 1 0.2 03] 0.1 0.6288
3 |02 1 0.2 041 0.1 0.5880
3 ] 0.2 1 0.2 021 0.2 0.6262
3 102 1 021021 0.3 0.5851
3 102 1 0.2 021 0.4 0.5491
3 |02 1 0.2 0.2 05 0.5173

Sh,
T effects of several parameters.

TABLE 5. Sherwood number

’ Le H Kcﬂ v WSherwood number ‘

5 1 ]01 2.1866
6 11 0.1 2.3681
7 1 ]/0.1 2.5306
8 1 ]01 2.6781
9 1 ]01 2.8136
5 2 || 0.1 2.6692
5 3 || 0.1 3.0131
5 4 |01 3.2831
5 5 |01 3.5061
5 1 102 1.7942
) 1103 1.5213
5 1 |04 1.3204
5 1 105 1.1664

4.7. Machine Learning under MLR. The novel aspect of the multiple linear regression is that it advances the
physical quantities for forecasting to a 95% accuracy level. The standardized errors for the physical natures of
Sherwood number, Nusselt number, and skin frictions are 2.55F — 02, 5.00FE — 03, 3.08F — 03, provided in Tables 6-8.
The superior fitting of multiple linear regression makes this standard error approximately equal to zero.
an
BE
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TABLE 6. Skin friction effects of MLR table for actual and anticipated values.

’ M H fw H Kp H A H Actual Values H Anticipated Values ‘

1.0 0.1 ] 0.1 || 0.1 1.0209 1.0121
1.5 011 0.1 0.1 1.0610 1.0528
2.0 0.1 0.11] 0.1 1.0990 1.0935
251011 0.11]0.1 1.1351 1.1342
3.0{ 0.1 0.11] 0.1 1.1695 1.1750
1.0 0.2 0.1 | 0.1 1.0608 1.0564
1.0 0.3 0.1 || 0.1 1.1020 1.1007
1.0 04| 0.1 0.1 1.1444 1.1450
1.0 05| 0.1 0.1 1.1880 1.1893
1.0 0.1} 0.2 || 0.1 1.0532 1.0457
1.0 0.1 0.3 | 0.1 1.0840 1.0794
1.0 0.1 04 || 0.1 1.1136 1.1130
1.0 0.1 05 | 0.1 1.1421 1.1467
1.0 0.1 0.1 0.2 0.9007 0.9222
1.0 0.1} 0.1 || 0.3 0.8086 0.8324
1.0 0.1 0.1 0.4 0.7354 0.7426
1.0 0.1 0.1 || 0.5 0.6754 0.6527

TABLE 7. Nusselt number effects of MLR table for actual and anticipated values.

[ Pr[Ec[[We] Q] R 6 [ Actual Values | Anticipated Values

3 102 1 0.2 021 0.1 0.6734 0.6880
4 1 0.2 1 0.2 021 0.1 0.8416 0.8248
5 1 0.2 1 0.2 021 0.1 0.9824 0.9616
6 || 0.2 1 0.2 0.2 0.1 1.1053 1.0983
7 1 0.2 1 0.2 0.2 0.1 1.2154 1.2351
3 103 1 0.2 0.2{ 0.1 0.5573 0.5670
3 104 1 0.2 02] 0.1 0.4411 0.4460
3 105 1 0.2 0.21 0.1 0.3250 0.3250
3 106 1 0.2 021 0.1 0.2089 0.2040
3 102 2 [02402|0.1 0.8455 0.8552
3 1024 3 {1021 02|0.1 1.0176 1.0225
3 11024 |102] 021 0.1 1.1897 1.1897
3 1102 5 ||02]0.2]0.1 1.3618 1.3569
3 102 1 0.3 0.21] 0.1 0.4265 0.3626
3 102 1 0.41 021 0.1 0.0054 0.0373
3 102 1 0.2 031 0.1 0.6288 0.6362
3 102 1 021041 0.1 0.5880 0.5843
3 102 1 0.2 021 0.2 0.6262 0.6424
3 102 1 0.2 021 0.3 0.5851 0.5968
3 || 0.2 1 0202104 0.5491 0.5513
3 102 1 0.2 0.21 0.5 0.5173 0.5057
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TABLE 8. Sherwood number effects of MLR table for actual and anticipated values.

’ Le H Kec H y H Actual Values H Anticipated Values ‘

5 1 ]0.1 2.1866 2.2001
6 1 ]0.1 2.3681 2.3573
7 1 ]01 2.5306 2.5145
8 1 |01 2.6781 2.6717
9 1 ]0.1 2.8136 2.8289
5 2 || 0.1 2.6692 2.5524
5 3 {01 3.0131 2.9046
5 4 |01 3.2831 3.2569
) 5 0.1 3.5061 3.6091
5 1 102 1.7942 1.9155
5 1 103 1.5213 1.6309
5 1 ]04 1.3204 1.3463
5 1 105 1.1664 1.0617

4.8. Machine Learning under ANN. Figures 9-13 displayed that machine learning under the ANN model for the
training state, performance analysis, error histogram, regression and function fit plots for the numerical and MLR pre-
dicted values of skin friction, Nusselt number, and Sherwood number frequencies for testing (15%), validation (15%), and
training (70%). After gathering several samples, compress the data, use the model to predict the outcome of every
sample, and compare the final results with the desired or actual values.

Figure 9 clarifies the training state graph of the ANN model, which provides the gradient, mu, validation check,
and optimal epochs. A mean-squared error (MSE) represents the model convergence. The gradient value indicates
that the mathematical model’s goal function has attained its lowest local minimum. An estimated Mu gradient is
typically zero, indicating a substantial convergence rate.

Validation performance charts displayed in Figure 10 explores the model on the dataset and modifies the net-
work weights at the end of each epoch. MSEs are highest at the beginning of training but decrease as the model
approaches optimal conditions. The dotted line indicates the best validation performance.

The steps involved in computing errors are sorting into 20 bins and creating a histogram that plots each of the
20 bins against the total number of samples that contain errors. The X-axis depicts the error bins, while the Y-
axis shows the sample that controls the error. The bar diagram demonstrates that the maximum of the data contains
zero errors, consistent with the training data employing the Levenberg-Marquardt Scheme. Furthermore, a fundamen-
tal tolerance for zero error ensures efficient data training with LMS, as seen in Figure 11.

Figure 12 exhibited thelinear regression graphs provided by applying the ANN model to all data-generated predic-
tions using LMS and employing the method to construct linear correlations between targets and outputs. The output
formula is Output = R*target + bias. The R-value approximately equal to 1 is displayed in the regression plot, indi-
cating that every ANN is functioning precisely.

In addition, Figure 13 demonstrates that the regulating parameter (Mu) significantly impacts the error convergence.
It is further examined and controls the training process of the ANN model. The output is almost equal to the target,
considering bias fluctuations. As a result, it concluded that ANNs produce excellent regression analysis results.

5. VALIDATION

5.1. Validation for Numerical results. Table 9 portrayed the values of —9,(0)7 resulting in the temperature at the
wall, capturing originally found by Wang et al. [42], Gorla et al. [8], Khan et al. [14], Srinu et al. [36] established
visualizations for indicating that the non-dimensional variables have an impact on momentum, heat, and mass. Figure
14 displays the results of the numerical simulations, comparing both previous and current outcomes.
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FIGURE 9. ANN training state for C¢,, Ny, , Sh, -

TABLE 9. Comparison for —6’ (0) impacts of Pr values when all parameters are zero.

| Pr || Wang et al. [42] [| Gorla et al. [8] | Khan et al. [14] [| Srinu et al. [36] || Present Result

0.7 0.4539 0.4539 0.4539 0.4539 0.4544
2 0.9113 0.9114 0.9114 0.9113 0.9114
7 1.8954 1.8905 1.8954 1.8954 1.8954

5.2. Validation for Multiple Linear Regression results. Table 10 highlighted the level of precision dependency of
the multiple linear regression model. The values of R? and adjusted R? are approximately equal to 1, even though the stan-
dard and root mean square errors are negligible. It emphasizes an appropriate fitting level for multiple linear regression.
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Best Validation Performanceis 5.8686e-05 at epoch 40
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FIGURE 10. ANN performance for Cy, , N, , Sh,.

TABLE 10. MLR statistics for C'¢,, Ny, and Sp, .

’ Statistics H SE

H R-square H Observations H Adjusted R Square H RMSE

MLR Cy,
MLR N,,
MLR S,

3.08E-03
5.00E-03
2.55E-02

0.995 17 0.993 0.0127
0.997 21 0.996 0.0229
0.988 13 0.985 0.0918

5.3. Validation for Artificial Neural Network results. Table 11 represents the ANN Statistics for Skin friction,
Nusselt number, and Sherwood number. ANN delivers great regression analysis results when the MSE, gradient, and
performance values are modest and the number of epochs increases.
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FIGure 11. ANN error histogram for Cy,, Ny, Sh,-
TABLE 11. ANN statistics for C'y,, N, , and Sy, .
| Statistics | Train [ Test [ Validation || Epochs | Grad [ Performance | Mu
ANN Cy, || 6.2972E-07 || 4.4035E-06 | 1.9281E-04 7 3.25E-08 2.45E-14 1.00E-09
ANN N, || 2.0843E-05 || 4.3355E-04 || 5.8686E-05 46 4.85E-05 1.85E-05 1.00E-06
ANN S, || 7.3000E-03 || 2.4400E-02 || 3.7000E-03 6 2.11E-14 3.50E-27 1.00E-09

6. CONCLUDING REMARKS

The current work investigates the flow of a Williamson fluid over an inclined sheet driven by a magnetic field and
radiation under the effects of velocity, temperature, and concentration slips. Notable outcomes include the following:
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FIGURE 12. ANN regression for Cy,, Ny, , Sh,.

e The larger values of the magnetic parameter and velocity slip reduced the velocity distribution for the Lorentz
force developed for the magnetic field changes and lowered the boundary layer surface.

e The temperature profile dropped for the Weissenberg and Prandtl numbers expands because the tempera-
ture boundary layer thins and reduces heat transfers from the fluid to the surface.

e Multiple regression strategies used in the machine learning methodology yielded good fitting MLR catches
with R? values about equivalent to 1 and achieved a 95% accuracy between predicted and actual attainments.
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e The execution of the artificial neural network model confirms the multilayer perceptron’s predicted and nu-

merical values for the physical parameters. The mean square error, gradient, and performance values are
negligible, and an elevated number of epochs indicates a perfect regression analysis with 99% validity.

e The biological application of permeability ideas involves the creation of porous scaffolds for tissue engineering,

hyperthermia for cancer treatment, drug delivery systems, and blood circulation. Future researchers can ex-
plore the change in velocity, temperature, and concentration in the physical characteristics of the Williamson fluid.

e Further research on Williamson fluid and thermal energy radiation is needed to evaluate the effectiveness and im-

prove prediction abilities. It looks into several potential directions for implementing an artificial neural network
algorithm.
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NOMENCLATURE
A Velocity slip (A = A*,/%)
0 Thermal slip (§ = B*\/g)
y Concentration slip (y = C* \/g )
Vo Suction velocity constant
By Magnetic field coefficient
u* and v* Component of velocity along the x and y axes (M/S)
k* Permeability of a porous medium
Q Angle of inclination factor
K, Permeability factor
T Temperature of the fluid (K)
Ty The temperature of the wall (K)
Ty Ambient temperature (K)
C* Concentration of the fluid
Cu The fluid concentration at the plate
Cs Ambient concentration

Fluid density(Kg/M?)

Fluid magnetic permeability
Kinematic viscosity (M?2/9)
The parameter of heat source

O =
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