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Abstract

The nonlinear fractional Riccati equation (NFRE) can be solved using a unique spectral tau approach in this
study that uses Lucas polynomials as basis functions. The fractional Caputo derivative and nonlinear terms can

be handled effectively by explicit operational formulations when the Lucas basis is used. A tau projection is used

to convert the problem into a nonlinear algebraic system, which is then solved by Gaussian elimination. The
correctness and quick convergence of the suggested method are shown by a number of numerical tests that are

backed by error analysis.
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1. Introduction

In fields including viscoelasticity, biology, signal processing, and finance, fractional differential equations (FDEs)
are essential tools for simulating anomalous diffusion, memory effects, and nonlocal dynamics [19]. Robust numerical
methods are required because many fractional models, especially those of Riccati form, are inherently nonlocal and
nonlinear, making analytical solutions unfeasible.

A number of semi-analytical approaches have been put out to approximate solutions to FDEs. While the variation
of parameters technique [15] adapts standard ODE solvers to the fractional case, the modified homotopy perturbation
method [18] and generalized homotopy analysis [23] use iterative series expansions. Wavelet-based collocation tech-
niques also use localized basis functions to capture solution features [28]. When dealing with large nonlinearities, these
approaches may show slow convergence or increased complexity, notwithstanding their effectiveness in some situations.

Spectral methods offer an attractive alternative by achieving spectral (exponential) convergence for smooth solutions
and handling complex boundary conditions naturally. Different orthogonal bases have been incorporated into Galerkin
and collocation frameworks in recent work. Specifically, collocation methods for time-fractional Newell–Whitehead–Segel
models [9], refined Bernoulli polynomial Galerkin schemes [30], and Chebyshev–Galerkin operational matrix techniques
[2] have shown high accuracy and efficiency. The adaptability of Chebyshev-based methods is further demonstrated
by extensions to Ψ-contraction frameworks [8] and KdV–Burgers equations [35].

Beyond Chebyshev systems, alternative families have been explored. Fourth-kind Chebyshev Tau algorithms for
Bagley–Torvik problems [29], Caputo-based corneal models [32], and Euler–Bernoulli beam formulations via second-
kind Chebyshev polynomials [31] illustrate diverse applications. More recently, mildly singular integro-differential
kernels have been tackled with Chebyshev Petrov–Galerkin methods [33], while modified shifted Chebyshev third-kind
polynomials address hyperbolic telegraph equations [27]. Lucas polynomial–based Petrov–Galerkin schemes [1] and
explicit Duffing collocation algorithms [34] showcase the expansion of spectral tools beyond classical bases.
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A further corpus of research extends these ideas to Gegenbauer, Jacobi, and other polynomial families. Represen-
tative studies include recursive expansion coefficient formulas [7], fractional Bratu problem algorithms [10], pseudo-
spectral Tricomi solvers [36], and Robin boundary treatments via second-kind Chebyshev [26]. Boundary value diffu-
sion and Bagley–Torvik formulations via tau methods [3, 24] co-exist with Jacobi-Galerkin surveys [13], Gegenbauer
Fisher solvers [11], and seventh-kind shifted Gegenbauer techniques [25]. Additional advancements include fractional
Fokker–Planck models [17], Romanovski–Jacobi spectral schemes [37], and fully Jacobi-Galerkin time-dependent PDE
solvers [14].

Various numerical techniques have been developed to tackle differential equations of fractional and classical types.
A fractional-order Lagrange polynomial approach was proposed in [20] to handle fractional differential equations
efficiently. In [22], a forward Riccati formulation in the hybrid functions domain was applied to the control of time-
varying systems. Spline-based strategies are also prominent, as demonstrated in [12], where cubic Hermit splines
were used to approximate solutions of fractional problems. Scaling functions of fractional-order Lagrange type were
constructed and analyzed in [21] for broader applications. A system of fractional Volterra integro-differential equations
was solved numerically in [16] using cubic Hermit spline functions. Finally, the application of cubic B-splines to
fractional Sturm–Liouville problems was investigated in [6], showing their accuracy and flexibility.

In this work, we introduce a spectral tau method based on Lucas polynomials for the nonlinear fractional Riccati
equation. The main contributions are:

• The formulation of a Lucas polynomial basis within the Petrov–Galerkin tau framework for nonlinear fractional
Riccati equations.

• Construction of operational matrices for the Caputo fractional derivative in the Lucas basis.
• Transformation of the FDE into a system of nonlinear algebraic equations solved by Gauss elimination.
• A comprehensive convergence study and numerical comparisons demonstrating the method’s accuracy and
efficiency.

The remainder of this paper is organized as follows. In section 2, we recall essential definitions and properties
of Caputo fractional derivatives and introduce the Lucas polynomial basis along with its key operational relations.
Section 3 details the construction of the spectral tau scheme, including the derivation of fractional derivative matrices
and the formulation of the algebraic system. In section 4, a rigorous analysis of error bounds is presented. Section
5 provides numerical examples illustrating the accuracy and efficiency of the proposed method. Finally, concluding
remarks and potential directions for future research are offered in section 6.

2. Fundamental Concepts

In this section, we present the essential definitions of the generalized Caputo fractional operators and summarize
some important properties of the Lucas polynomials Ln(x), which will be utilized throughout the paper.

2.1. Caputo Fractional Derivative.

Definition 2.1. [19] The Caputo fractional derivative of a function ψ(σ) of order α > 0 is defined by

Dαψ(σ) =
1

Γ(m− α)

∫ σ

0

(σ − τ)m−α−1ψ(m)(τ) dτ, (2.1)

where m ∈ N satisfies m− 1 < α < m, and σ > 0.

The operator Dα satisfies the following elementary properties for m− 1 < α < m and m ∈ N:

Dα k = 0, for any constant k, (2.2)

Dα σm =


0, if m ∈ N0 and m < ⌈α⌉,

m!

Γ(m− α+ 1)
σm−α, if m ∈ N0 and m ≥ ⌈α⌉,

(2.3)

where N = {1, 2, 3, . . .}, N0 = {0, 1, 2, . . .}, and ⌈α⌉ represents the ceiling of α.
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2.2. An account on Lucas polynomials. The power formula of Lucas polynomials Li(x), i > 0, is defined as

Li(x) =
i∑

s=0

Bs,i x
s, (2.4)

where

Bs,i =
i ξi−sΓ

(
i+s
2

)
Γ
(
i−s
2 + 1

)
s!
. (2.5)

Also, for m ≥ 0, the inversion formula is

xm =
1

2

m∑
s=−m

(−1)
m−s

2 ξm−s

(
m

m−s
2

)
Ls(x). (2.6)

Lemma 2.2. The following linearization formula holds:

Li(x)Lj(x) = Li+j(x) + (−1)iLj−i(x), i, j ≥ 0. (2.7)

Lemma 2.3. [4] The following formula holds:

xmLi(x) =
i+m∑

s=i−m

(−1)
i+m−s

2 ξi+m−s

(
m

i+m−s
2

)
Ls(x), m, i ≥ 0, (2.8)

where

ξr =

{
1, if r is even,

0, if r is odd.
(2.9)

Theorem 2.4. [4] The following formula holds for Lm(x), m ≥ 0,

dsLm(x)

dxs
=

1

2

m−s∑
r=s−m

(−1)
m−r−s

2 mξm−r−s Γ
(
1
2 (m− r + s)

)
Γ
(
1
2 (m+ r + s)

)(
1
2 (m− r − s)

)
!
(
1
2 (m+ r − s)

)
! Γ(s)

Lr(x) (2.10)

Lemma 2.5. [4] The first derivative of Lm(x), m ≥ 0, is

dLm(x)

dx
− 1

2

m−1∑
r=1−m

(−1)
m−r−1

2 mξm−r−1 Lr(x). (2.11)

Lemma 2.6. [4] The following relations hold∫
Li(x) dx =

i+1∑
r=0

ηr,iLr(x) + γi, , i ≥ 0, (2.12)

where

γi =

{
0, if i < 4 or i even,

2i(i−3)
(i−1)(i+1) , Otherwise.

∫ 1

0

xjLi(x) dx =


2

1+j , if i = 0,
i∑

s=0

i ξi−s Γ
(
i+s
2

)
Γ
(
i−s
2 + 1

)
s! (s+ j + 1)

, if i ̸= 0.
(2.13)
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where

ηi,j =


2, if i = 1 and j = 0,
1
i , if |i− j| = 1 and j > 0,

− j
j+1 , if i = 0 and j odd,

0, Otherwise.

(2.14)

3. Tau approach for the NFRE

Consider the following NFRE [28]:

DβK(t) = a(t) + b(t)K(t) + f(t)K2(t); t ∈ [0, 1], (3.1)

where 0 < β ≤ 1, subject to the initial condition:

K(0) = λ, (3.2)

where a(t), b(t) and f(t) are continuous functions on [0,1].

Remark 3.1. Problem (3.1) is solved in two cases corresponding to

• b(t) = b and f(t) = f are constants.
• b(t) = f(t) = tm, m ∈ N.

3.1. Solution of NFRE for the case of b(t) = b and f(t) = f are constants. Consider the NFRE (3.1), subject
to the constant functions b(t) = b and f(t) = f .
Now, the collection of Li(t) enables us to write K(t) ∈ L2[0, 1] as a linearly combination as

K(t) =
∞∑
i=0

K̂i Li(t), (3.3)

which can be approximated as

K(t) ≈ KN (t) =
N∑
i=0

K̂i Li(t). (3.4)

The residual R(t) of NFRE (3.1) after putting b(t) = b and f(t) = f and using linearization formula (2.7) can be
written as

R(t) = DβKN (t)− a(t)− bKN (t)− f K2
N (t)

=
N∑
i=0

K̂iD
βLi(t)− a(t)− b

N∑
i=0

K̂i Li(t)− f
N∑
i=0

K̂i Li(t)
N∑
j=0

K̂j Lj(t)

=
N∑
i=0

K̂iD
βLi(t)− a(t)− b

N∑
i=0

K̂i Li(t)− f
N∑
i=0

N∑
j=0

K̂jK̂i

(
Li+j(t) + (−1)i Lj−i(t)

)
.

(3.5)

The application of the Tau method leads to∫ 1

0

R(t)Lr(t) dt = 0, r : 0, 1, ..., N − 1. (3.6)

The previous equation can be written in another form as

N∑
i=0

K̂i

(
Dβ Li(t),Lr(t)

)
− b

N∑
i=0

K̂i (Li(t) ,Lr(t))− f
N∑
i=0

N∑
j=0

K̂iK̂j [(Li+j(t) ,Lr(t))

+
(
(−1)i Lj−i(t) ,Lr(t)

)]
= (a(t) ,Lr(t) ),

(3.7)
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or

N∑
i=0

K̂iRi,r − b
N∑
i=0

K̂iZi,r − f
N∑
i=0

N∑
j=0

K̂iK̂j

[
Zi+j,r + (−1)i Zj−i,r

]
= Ar, r : 0, ..., N − 1, (3.8)

where

Ri,r =
(
Dβ Li(t),Lr(t)

)
,

Zi,r = (Li(t) ,Lr(t)) ,

Ar = (a(t) ,Lr(t) ).

(3.9)

Moreover, we get the following initial conditions

N∑
i=0

K̂i Li(0) = λ, (3.10)

Finally, a system in (3.8)-(3.10) of dimension (N + 1) can be solved with the aid of the Gauss elimination method to

get the unknown expansion coefficients K̂i.

Remark 3.2. The inner product (a(x) , b(x)) is defined as

(a(x) , b(x)) =

∫ 1

0

a(x) b(x) d x. (3.11)

Remark 3.3. Based on the relation (2.4) along with (2.3), we can write

Dβ Li(t) =
i∑

s=0

Bs,i s!

Γ(s− β + 1)
ts−β . (3.12)

Theorem 3.4. For all i, r ≥ 0, the elements Ri,r and Zi,r are given by

Ri,r =
(
Dβ Li(t),Lr(t)

)
=

i∑
k=1

s∑
n=0

k!Bk,iBn,s

Γ(k − β + 1)(−β + k + n+ 1)
, (3.13)

Zi,r = (Li(t) ,Lr(t)) =
r+i+1∑
m=0

[
ηm,r+i + (−1)i · χm,r,i · ηm,r−i

]
Sm, (3.14)

where the indicator function χm,r,i is defined as:

χm,r,i =

{
1, if m ≤ r − i+ 1,

0, Otherwise,

and

Sm = (Lm − (1 + (−1)m)) .
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Proof. The proof of the first part can be easily obtained after using Remark 3.3 and imitating similar steps as in [5].
Now, to prove the second part

Zi,r =

∫ 1

0

Li(t)Lr(t) dt

=

∫ 1

0

(
Lr+i(t) + (−1)iLr−i(t)

)
dt

=
r+i+1∑
m=0

ηm,r+iLm(x) + (−1)i
r−i+1∑
m=0

ηm,r−iLm(x)

∣∣∣∣∣
1

0

=
r+i+1∑
m=0

ηm,r+iLm + (−1)i
r−i+1∑
m=0

ηm,r−iLm −
r+i+1∑
m=0

ηm,r+i(1 + (−1)m)− (−1)i
r−i+1∑
m=0

ηm,r−i(1 + (−1)m)

=
r+i+1∑
m=0

[
ηm,r+iSm + (−1)i · χm,r,i · ηm,r−iSm

]
,

(3.15)

which completes the proof of the theorem. □

3.2. Solution of NFRE for the case of b(t) = f(t) = tm, m ∈ N. Consider the NFRE (3.1), subject to the
constant functions b(t) = f(t) = tm.
The residual R(t) of NFRE (3.1) after putting b(t) = f(t) = tm and using formula (2.8) can be written as

R(t) = DβKN (t)− a(t)− tm KN (t)− tm K2
N (t)

=
N∑
i=0

K̂iD
βLi(t)− a(t)−

N∑
i=0

K̂i t
m Li(t)−

N∑
i=0

K̂i t
m Li(t)

N∑
j=0

K̂j Lj(t)

=
N∑
i=0

K̂iD
βLi(t)− a(t)−

N∑
i=0

i+m∑
s=i−m

K̂i (−1)
i+m−s

2 ξi+m−s

(
m

i+m−s
2

)
Ls(t)

−
N∑
i=0

N∑
j=0

K̂jK̂i

i+m∑
s=i−m

(−1)
i+m−s

2 ξi+m−s

(
m

i+m−s
2

)
[Ls+j(t) + (−1)s Lj−s(t)] .

(3.16)

The application of the Tau method enables us to get The application of the Tau method leads to∫ 1

0

R(t)Lr(t) dt = 0, r : 0, 1, ..., N − 1, (3.17)

which can be rewritten in another form as

N∑
i=0

K̂i Ri,r −
N∑
i=0

i+m∑
s=i−m

K̂i (−1)
i+m−s

2 ξi+m−s

(
m

i+m−s
2

)
Zi,r

−
N∑
i=0

N∑
j=0

K̂jK̂i

i+m∑
s=i−m

(−1)
i+m−s

2 ξi+m−s

(
m

i+m−s
2

)
[Zs+j,r + (−1)s Zj−s,r] = Ar, r : 0, ..., N − 1.

(3.18)

Now, Eq. (3.18) along with the initial condition in (3.10) enables us to get a system of algebraic equations of dimension

(N + 1) that can be solved with the aid of Gauss elimination method to get the unknown expansion coefficients K̂i.
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4. Error Analysis

In this section, we aim to establish that the residual term R(τ) diminishes as M tends toward infinity.

Theorem 4.1. Suppose that di KM (τ)
d τ i ∈ C([0, 1]) for i = 0, 1, 2, . . . ,M , where KM (τ) represents the approximate

solution. Define

ϱM = sup
τ∈[0,1]

∣∣∣∣dM+1 K(τ)

d τM+1

∣∣∣∣ .
Then, the following inequality holds:

∥K(τ)−KM (τ)∥2 ≤ ϱM
(2M + 3)1/2(M + 1)!

.

Proof. Consider the Taylor polynomial expansion of K(τ) around τ = 0:

χM (τ) =
M∑
i=0

(
di K(τ)

d τ i

)
τ=0

τ i

i!
, (4.1)

with the remainder given by

K(τ)− χM (τ) =
τM+1

(M + 1)!

(
dM+1 K(τ)

d τM+1

)
τ=c

, c ∈ [0, 1]. (4.2)

Since KM (τ) is the optimal approximation of K(τ), it follows that

∥K(τ)−KM (τ)∥22 ≤ ∥K(τ)− χM (τ)∥22

≤
∫ 1

0

ϱ2M τ2(M+1)

((M + 1)!)2
dτ

=
ϱ2M

(2M + 3) ((M + 1)!)2
,

(4.3)

which yields

∥K(τ)−KM (τ)∥2 ≤ ϱM
(2M + 3)1/2(M + 1)!

.

□

Theorem 4.2. Let K(τ) and KM (τ) satisfy the conditions of Theorem 4.1. Define

υM,m = sup
τ∈[0,1]

∣∣∣∣(dM+1 K(τ)

d τM+1

)m∣∣∣∣ , m = 2, 3, 4, . . .

Then, the following estimate holds:

∥Km(τ)−Km
M (τ)∥2 ≤ υM,m

(2m(M + 1) + 1)1/2 ((M + 1)!)m
.

Proof. Using the Taylor expansion (4.1), we have

Km(τ)− χm
M (τ) =

τm(M+1)

((M + 1)!)m

(
dM+1 K(τ)

d τM+1

)m

τ=c

, c ∈ [0, 1]. (4.4)

Following a similar argument as in Theorem 4.1 based on best approximation, we obtain

∥Km(τ)−Km
M (τ)∥22 ≤ ∥Km(τ)− χm

M (τ)∥22

≤
∫ 1

0

υ2M,m τ2m(M+1)

((M + 1)!)2m
dτ

=
υ2M,m

(2m(M + 1) + 1)((M + 1)!)2m
,
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and consequently

∥Km(τ)−Km
M (τ)∥2 ≤ υM,m

(2m(M + 1) + 1)1/2 ((M + 1)!)m
.

□

Theorem 4.3. Suppose that the Caputo derivative DβK(τ) ∈ C([0, 1]) and that the hypotheses of Theorem 4.1 are
satisfied. Then,

∥Dβ [K(τ)−KM (τ)]∥2 ≤ ϱM
(2(M − β) + 3)1/2 Γ(M − β + 2)

.

Proof. Applying the operator Dβ to the result of (4.2), we find∣∣Dβ [K(τ)−KM (τ)]
∣∣ ≤ ϱM τM−β+1

Γ(M − β + 2)
. (4.5)

Taking ∥.∥2 yields

∥Dβ [K(τ)−KM (τ)]∥22 ≤
∫ 1

0

ϱ2M τ2(M−β+1)

(Γ(M − β + 2))2
dτ

=
ϱ2M

(Γ(M − β + 2))2

∫ 1

0

τ2(M−β+1) dτ

=
ϱ2M

(2(M − β) + 3) (Γ(M − β + 2))2
,

which proves the theorem. □

Theorem 4.4. Let R(τ) denote the residual corresponding to Eq. (3.1) as expressed in (3.16). Then, the following
upper bound holds:

∥R(τ)∥2 ≤ ϱM
(2(M − β) + 3)1/2 Γ(M − β + 2)

− b(τ)
ϱM

(2M + 3)1/2(M + 1)!

− f(τ)
υM,m

(2m(M + 1) + 1)1/2((M + 1)!)m
.

(4.6)

Proof. The residual R(τ) of Eq. (3.1) can be written as

R(τ) = DβKM (τ)− a(τ)− b(τ)KM (τ)− f(τ)K2
M (τ). (4.7)

Based in Eq. (3.1), we can write

a(τ) = DβK(τ)− b(τ)K(τ)− f(τ)K2(τ). (4.8)

Now, inserting Eq. (4.8) into Eq. (4.7), we get

R(τ) = Dβ [KM (τ)−K(τ)]− b(τ) [KM (τ)−K(τ)]− f(τ)
[
K2

M (τ)−K2(τ)
]
. (4.9)

At the end, taking |.| for both sides and using the bounds from Theorems 4.1–4.3, leads to the estimate (4.6). □

5. Illustrative examples

Example 5.1. [15, 18, 23, 28] Consider the following equation

DβK(t) +K2(t) = 1 ; t ∈ [0, 1], (5.1)

subject to

K(0) = 0, (5.2)

where the exact solution of this problem is K(t) = e2 t−1
e2 t+1 .
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Table 1. AE of Example 5.1 at β = 1.

t N = 7 N = 8 N = 9
0.1 3.47637×10−7 1.1573×10−7 9.76574×10−9

0.2 6.34193×10−8 7.86395×10−8 7.58118×10−9

0.3 4.16499×10−7 7.1228×10−8 3.91853×10−9

0.4 1.60685×10−7 1.22887×10−7 9.23474×10−9

0.5 3.98861×10−7 3.1166×10−8 3.03736×10−9

0.6 1.0245×10−7 1.16825×10−7 1.05086×10−8

0.7 3.46075×10−7 1.03399×10−8 5.28847×10−10

0.8 1.13768×10−7 8.00766×10−8 1.08437×10−8

0.9 1.66917×10−7 7.12214×10−8 1.04777×10−8

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-9

4.×10-9

6.×10-9

8.×10-9

1.×10-8

1.2×10-8

t

A
E

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

t

Figure 1. The AE (left) and approximate solution (right) of Example 5.1 at β = 1 and N = 9.

Table 2. Comparison between approximate solutions of Example 5.1.

t Our method Method in[18] Method in [23] Method in [15] Exact
0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.1973753126 0.197375 0.1973753092 0.1973753160 0.1973753202
0.4 0.3799489714 0.379944 0.3799435784 0.3799469862 0.3799489622
0.6 0.5370495564 0.536857 0.5368572343 0.5369833784 0.5370495669
0.8 0.6640367811 0.661706 0.6617060368 0.6633009217 0.6640367702
1.0 0.7615941559 0.746032 0.746031746 0.7571662667 0.7615941559

Table 1 presents the absolute errors (AE) at β = 1 and different values of N . Figure 1 shows the AE (left) and
approximate solution (right) at β = 1 and N = 9. Figure 2 shows the maximum absolute errors (MAE) and L∞-errors
at different values of N when β = 1. Figure 3 shows the approximate solutions at different values of β when N = 7.
Table 2 presents a comparison between our method and methods in [15, 18, 23] of approximate solutions at β = 1.

Example 5.2. Consider the following equation

DβK(t) +K2(t)−K(t) = a(t) ; t ∈ [0, 1], (5.3)

subject to

K(0) = 1, (5.4)
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Figure 2. Errors of Example 5.1 at β = 1.
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Figure 3. Approximate solutions of Example 5.1.

where a(t) is chosen such that the exact solution of this problem is K(t) = eβ t.
Figure 4 shows the AE at β = 1 and different values of N . Table 3 presents the AE of Example 5.2 at β = 0.5 and

different values of N . Figure 5 shows the MAE and L∞-errors at different values of N when β = 0.9. Table 4 presents
the MAE and L∞-errors at different values of N when β = 0.3.

Example 5.3. Consider the following equation

DβK(t) + tK2(t)− t2 K(t) = a(t) ; t ∈ [0, 1], (5.5)

subject to

K(0) = 0, (5.6)

where a(t) is chosen such that the exact solution of this problem is K(t) = sin(β t).
Figure 6 shows the AE at β = 1 and different values of N . Table 5 presents the MAE and L∞-errors at different

values of N when β = 0.7. Figure 7 shows AE (left) and approximate solution (right) at β = 1 and N = 12.
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Table 3. AE of Example 5.2 at β = 0.5.

t N = 7 N = 8 N = 9 N = 10
0.1 8.63354×10−12 1.43885×10−13 1.33227×10−15 6.66134×10−16

0.2 1.99685×10−12 4.04121×10−14 4.44089×10−16 2.22045×10−16

0.3 2.01483×10−12 3.77476×10−14 4.44089×10−16 2.22045×10−16

0.4 1.2963×10−12 2.10942×10−14 2.22045×10−16 4.44089×10−16

0.5 8.20233×10−13 2.02061×10−14 0 2.22045×10−16

0.6 1.08846×10−12 1.15463×10−14 2.22045×10−16 0
0.7 1.03917×10−13 1.42109×10−14 2.22045×10−16 2.22045×10−16

0.8 2.10409×10−12 3.55271×10−15 0 2.22045×10−16

0.9 3.37796×10−12 4.21885×10−15 1.11022×10−15 6.66134×10−16

Table 4. Errors of example 5.2 at β = 0.3.

N = 3 N = 5 N = 7 N = 9

MAE 3.16015× 10−5 1.5042× 10−8 3.6886× 10−12 3.01981× 10−14

L∞ errors 3.16015× 105 1.5042× 10−8 3.68842× 10−12 3.0263× 10−14

Table 5. Errors of example 5.3 at β = 0.7.

N = 3 N = 5 N = 7 N = 9 N = 11 N = 13

MAE 1.72398× 10−4 4.16301× 10−7 5.30611× 10−10 4.08784× 10−13 8.21565× 10−15 4.44089× 10−16

L∞ errors 1.72398× 104 4.16301× 10−7 5.30577× 10−10 4.09006× 10−13 8.43769× 10−15 5.27356× 10−16

6. Concluding remarks

For the nonlinear fractional Riccati equation, a novel spectral tau scheme based on Lucas polynomials has been
created. The approach offers a straightforward but incredibly precise framework for solving nonlinear FDEs by utilizing
the orthogonal structure and derivative features of Lucas polynomials. The method’s better accuracy, convergence,
and flexibility in addressing scenarios with constant and variable coefficients are demonstrated by numerical examples.
Extensions to space-time fractional models and systems of fractional equations might be investigated in future research.
All codes were written and debugged by Mathematica 11 on an HP Z420 Workstation, Processor: Intel(R) Xeon(R)
CPU E5-1620 v2 - 3.70GHz, 16 GB Ram DDR3, and 512 GB storage.
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