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Abstract r )

In mathematical physics, the study of solutions to nonlinear evolution equations has always been important,
especially in the fields of nonlinear optics, fluid dynamics, and condensed matter physics. We study a generalized
(3+1)-dimensional nonlinear evolution equation as a key consequence. This underlying equation is discovered
to admit an endless number of conservation laws and point symmetries. Traveling wave solutions of physical
interest are demonstrated by combining the Lie symmetry method with ansatz techniques. Furthermore, we use
the multiplier approach to obtain the underlying equation’s infinitely many conservation laws. It is predicted that
these findings may be utilized to better understand how nonlinear waves propagate in a range of nonlinear physical
systems, such as fluid mechanics and nonlinear optics. The solution dynamics are presented graphically.
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1. INTRODUCTION

Many scientific domains, including mechanics, oceanography, aeronautics, nonlinear optics, and plasma physics,
have extremely clear concepts on the dynamical implications of nonlinear evolution equations. Their broad effect
may be seen in every field of invention and research. Understanding the precise solutions of nonlinear evolution
equations is of great interest to the scientific community, since it is necessary to understand their mathematical
and practical applications. These equations are generated from several mathematical and physical models and have
significant practical implications. In recent years, nonlinear events have revealed exciting qualities with a wide variety of
applications, which has captivated researchers in mathematical physics and engineering. In the study of mathematical
physics, nonlinear evolution equations [9, 17-19, 26, 33-36, 42] often arise in various contexts. These equations can
describe complex physical phenomena such as fluid dynamics, heat transfer, and quantum mechanics. To further
understand and analyze these phenomena, it is important to obtain exact solutions of these nonlinear evolution
equations. Exact solutions of nonlinear evolution equations provide valuable information about the behavior and
dynamics of physical systems. They allow us to make precise predictions and gain insights into the underlying
physical processes. Overall, the search for exact solutions of nonlinear evolution equations in mathematical physics is
a crucial endeavor that allows us to better understand and analyze complex physical phenomena [10-12, 27, 31, 32, 43—
46]. Nonlinear evolution equations are an area of focus research that offers valuable insights into the complexities of
several physical processes. In a number of disciplines, such as atmospheric science, fluid mechanics, plasma waves,
optical fiber communications, and soliton theory, these formulae are very useful for clarifying complicated processes.
Nonlinear evolution equations research opens openings for innovative solutions to urgent issues in various domains
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by paving the road for the understanding and management of many systems. Since there are no standard methods
that can be used to analyze all of these nonlinear evolution equations, these equations are often challenging to solve
analytically, necessitating a thorough examination of each equation separately. There are two main ways to solve
nonlinear evolution equations: analytically or numerically. Recent years have witnessed tremendous advancements
that have resulted in the creation of many dependable and effective mathematical techniques for obtaining precise
solutions for nonlinear evolution equations [4, 14, 15, 20-25, 37—41].

A (3 + 1)-dimensional nonlinear evolution equation

3 Way — 2wy + Wege — 2wwy)y + 2(w,0; twy), = 0, (1.1)
where 9,1 stands for an inverse operator of 9, = d/dx with the condition 9,0, ! = 8,19, = 1, which can be defined
as (0,1 f)(x) = / f(¢)d¢ under the decaying condition at infinity [13]. The dimensions interaction between a long

wave along the z-axis and a Riemann wave moving along the y-axis was described by (1.1) who was the subject of
several works [5-8, 16]. The method of inverse scattering can be employed to solve Eq. (1.1). It has been demonstrated
that (1.1) has an unlimited number of symmetries and a Hamiltonian structure. Inspired by the works of [5-8, 13, 16],
we aim to investigate a generalized version of Eq. (1.1) as

0 Wy — (Bwe + Wage — 5wwz)y + (wmﬁglwy)gc =0. (1.2)
On making use of w = u,,, where w = w(t, z,y, z) then the generalized nonlinear evolution equation is now
6 gz — (Bute + Uzzoa — Busles), + B (Ugatty), = 0, (1.3)
which after expanding, gives
S Uggs — BUtzy — Ugzazy + N Ugplioy +BUslzzy + B Uszztly =0, (1.4)

where (§, 8, ) are real non-zero constants while w is a function of the three scaled spatial variables (x,y, z) and t the
temporal variable.

Due to the generalization in (1.4) we end up with novel symmetry reductions and associated group invariant
solutions of physical interest. We like to emphasize due the arbitrary non-zero parameters in (1.4) leads to infinitely
many conservation laws of (1.4).

The organization is structured as follows." Section 2 is concerned with the Lie point symmetry analysis of (1.4).
Conservation laws of (1.4), with their physical ramifications are illustrated in section 3. Finally in section 4 an ansatz
methodology is employed to seek further travelling wave solutions of physical interest.

2. GROUP INVARIANT SOLUTIONS

Lie symmetry analysis [1-3] is a powerful tool used to study differential equations and understand their underlying
symmetries. By analyzing the Lie symmetries of a differential equation, we can identify transformations that leave the
equation invariant. These symmetries can provide valuable insights into the behavior and properties of the equation,
such as the existence of conservation laws or special solutions. Lie symmetry analysis involves finding transformations
that can be applied to differential equations without changing their form. This technique, named after the Norwegian
mathematician Sophus Lie, is based on the concept of a symmetry operator. A symmetry operator is a transformation
that maps solutions of a differential equation to other solutions. By applying Lie symmetry analysis to a differential
equation, we can determine the forms of the symmetry operators and use them to construct new solutions or simplify
the equation.

In this section, we aim to compute group-invariant solutions of Eq. (1.4). This primarily attained by first obtaining
the admitted generators of Eq. (1.4). The admitted generators are formulated by considering the vector field of the
form

0 0 0 0 0
_ ¢l - 2 s 3 -~ 4 -~ -~
A - g (t’ x7y7 Z’ u) at + 5 (t7x7y7 Z’u) 83; + 5 (t7x7y7 Z’u) 8y + é‘ (t’ 1’7 y7 Z7u) az + /r}(t7x’y7 Z,U) au7 (2'1)
an
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is a Lie point symmetry of (1.4) if

=0, (2.2)
(1.4)
where AP is the fifth prolongation of (2.1). Applying the fifth extension of Eq. (2.1) to Eq. (1.4) and solving the
resulting system of linear partial differential equations leads to the cases shown below.
Case 1. §, \, § arbitrary, but not in the form of case 2. In this case Eq. (1.4) admits the following point symmetries:

A[5]{ 0 Uger — B Utgy — Ugzzzy T )\uxxu:cy + 5 Uy Uggy + B uxwxuy}

o . .
A1 = —, time translation;

ot

Ao = —, space translation;
0z

0 0 .
Ag = ya—y + Z&’ scaling;
0 0

Ay = fxg +2y— -3t + ui, scaling;

ox dy ot ou
Ag =F(t,2) (%, space & time dependent shift
0 , 0 .
Ag =G (2) 3 +52G (2) Bg Space dependent shift ;

A7 = (BxH; (t,z) — oy H, (t,2)) (,% — B H(t2) (% space & time dependent shift.

Case 2. A\ = 28. Here Eq. (1.4) permits the following point symmetries:

0
b, = e time translation;
P, = —, space translation;
9y
$3 = —, space translation;
0z
0 0 0 0
Py = —1— +2y— — 3t= +u—, scaling;
4 x8x+ yay 8t+u6u’ scaling;
0
®5 = F (z,1) 5q SPace & time dependent shift;
U
0 0 a 0
P =—xr— —22— —3t— + u—, scaling;

Ox 0z ot ou

®, =5G(2) ﬁﬁy +0z2G" (2) a%’ space dependent shift ;

0 0
®5 = (fx Hy (2,t) — oy H, (2,1)) e B H (z,t) 5, Space & time dependent shift.
U x
2.1. Invariant solutions for case 1. In order to obtain symmetry reductions, one has to solve the associated
Lagrange equations

dt dx dy B dz B du (2.3)
gl(t’ x? y? Z’u) 52(t’ x’ y’ Z? u) 53(t’ x? y’ Z7u) 54(t’x’y’ Z’ u) T’(t’ x’ y’ Z? u) '
First we make use of the summation of symmetries A; and Ag. This summation leads to the invariants of the form
shown below.

f ==, gzz, h=t—In(y), 60=u. (2.4)

(&)
ENE
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Courtesy of the above invariants one naturally ends up with following nonlinear partial differential equation

9B0s05rg+39B0ssr 05+ g\Os0rg —gB0sgn + B0

+ 80500 +XOs0pn — 9055559 = BOnn — 00559 = Oppppn = 0. (2.5)
It can be shown that the point symmetries of (2.5) are as follows.
0 5, 0 0 0 0
‘I’I_%a ‘I’z—g ﬂi—’—gﬂi_fé%a lI’3_F1(gah)%a

£ o) 5~ £ (R em)

The linear combination of ¥, and W3 generates the invariant that are shown below.

X=f Y=g, tv=0-h (2.6)
The above invariant lead to the following nonlinear partial different equation that is illustrated below.
Yixxxxy —YB¢xxx ¢y —YBYx¥xxy —YAUxx¥xy — B¥xxx +pxxy = 0. (2.7)
The point symmetries of (2.7) are as depicted below.
0 8 0 0 0
= — =-X—-2Y — In(Y))=—
0
=-Y?B =+ (X6+Y
X4 5 +( +YB) - o9
We employ symmetry x4 and it naturally produces two invariant that are demonstrated below,
X
v=2X, P:w—y—g+ln( ).
Consequently, using the above invariants one ends up with linear ordinary differential equation that is illustrated below
vBP" (v) + AP" (v) = 0. (2.8)

The integration of the above linear ordinary differential equation and reverting back to our original variables x,y, z,t
leads to the exotic invariant solution to Eq. (1.4) that takes the form as shown below.

u(z,y, z,t) = (ﬁzcl + Bxzeco + Bm% zes — Bz In(y) — Bz In (y) + Btz + (5:103/) (2.9)

1
Bz

In similar spirit of manipulating the underlying point symmetries of (1.4) one ends up with the following solutions:

u(z,y, z,t) = L <6\ﬁzln )+®\/£zln< )+Q(5\/y+\/ﬁzcl—2®\/iz>7 (2.10)
itz y
I = Q28 In® (y) + 2026% In (y) In (;) +026% In? (;) +40%62 In (y) + 4026 In (Z)
—2QpBz In (y) — 2Q8z In (y) +4025% — 4QB + 5 4+ z2, (2.11)

u(z,y, z,t) = % (ﬂz cr—(t—x)Bzea+ B(x—1t) e zes+ QBz In(z) — oyt + 6yx). (2.12)

Group invariant solution (2.10) is obtained from invoking the linear combination of Ag, As, A7 with the arbitrary
functions are confined to be non-zero constants F'(t, z) = © and H (t, z) = . Similarity solution (2.12) is a consequence
of the summation of Az, As with the restriction of F (¢, z) = 2, where 2 is a non-zero constant.

(=)=
E)NE
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2.2. Invariant solutions for case 2. We now turn our attention to case 2 and as a result of manipulation of the
Lagrange Eqs. (2.3) leads to the observations depicted below.

Observation 1. The addition of symmetries @5, @7, and ®g and letting Fy(z,t) =T, G(z) =Y, and H(z,t) = Q
then solving the resulting Lagrange equations, gives four invariants, viz.,

Qy-—-Yzx -Ypu+Ty
f Z? g ) Y ) Yﬁ ( 3)
The substitution of the above invariants into Eq. (1.4) gives
2Q8 Opnn 05 + 298 9}2Lh —Qp tgghh -Y6 thh — TOnnn — QO0ppnnn =0, (2.14)

where 6 is a function of (f,g,h). Solvmg Eq. (2.14) and make use of the invariants (2.13), we conclude that the

group-invariant solution of Eq (1.4)
Qy-Y
u(t,z,y, 2) QQY,BC (SQ Qy—Ya)c +12¢; tanh (—202 —tes + (y—Yw - cl> 954
Qy-Y
760421 In ( tanh <262 —teg + w — cl> — 1> QY
Qy-Y
+6¢2 In (— tanh <—ZCQ —tes + % — cl> + 1> QY +2QYB Fy (2,t) ¢
—02Bycs — QY dyca + QY Bres + Y25xey + QT yes +TY x04) , (2.15)

where ¢1, o, ¢3,¢4,9,Y, 8,0 are arbitrary constants and Fj (z,t) an arbitrary fuction of z,¢.
Observation 2. We now choose symmetries Z ®1, R ®3, ®5, P7 and Pg. Again, letting F(z,t) =T, G(z) =

and H(z,t) =  and solve the characteristics equation to get the following four invariants

f__Ry—Yﬁz Yﬁt—uy h__Qy—Yx 9__Ty—Yﬂu

- vg 9T v "7 y o Y7 YB3
The insertion of these invariants into Eq. (1.4) and solve the resulting partial deferential equation, yields
tanh T (Ry—-Ypz)c . QY68 —RT) (Yt —Zy) o N (Qy—-Ya)c
Y263 EY258 Y

1
U(t,l’,y,Z) = _ﬁ

—Cl) YﬁC4 - Y,BCg < Ty) d (216)

as the group-invariant solution of Eq. (1.4), where ¢1, ¢4, ¢5,¢6,2,Z,Y, T, R, 3,6 are arbitrary constants. Observation
3. Lastly, we take the linear combination of symmetries E®4, Y ®5 , R®3 together with symmetry Q®g where 8 H(z,t)
is taken as (2, gives

Ry—Yz Yt—Zy

= — = h:_
f v 9 ;

Qy—Yzx
Y )

0=u

)

as the invariants.
Solving Eq. (1.4) and reverting back into the original variables, we conclude that the group-invariant solution of

Eq. (1.4) is
(t,z,y,2) = —% (6 tanh <(4Q‘Zi*450303+Qﬂc304+5603) (Ry—Y 2)

(4Rci+RBcs+Ydcy)Y

Y Y

where c1, c3,cq4,¢5,,2,Y,T, R, 3,§ are arbitrary constants.

L (vi-= )cg_(Qy—Ym)c4+cl>c4_ﬂ65>7 (2.17)
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20¢
15}
1.5f

-10 1.0+

0.5~

Y

-5 5

tanh(-20, £+1.x+2)+ 11

Figure 1. Profiles of solutions (2.16) with T =0.1,Y =1, R=1,2=01,2=1,0 =-01,8=1,y=1,z=1,¢c1 =
1,62:170321764:1.

3. LOCAL CONSERVATION LAWS

This section is dedicated to the construction of conservation laws [28-30] of Eq. (1.4) courtesy of multiplier method.
Conservation laws play a fundamental role in understanding and analyzing systems governed by partial differential
equations. They provide a mathematical framework for studying the behavior of physical quantities, such as mass,
momentum, and energy, as they evolve in space and time. Conservation laws ensure that these quantities are preserved
within a given domain, meaning that their total amount remains constant over time. They dictate the principles of
mass, momentum, and energy balance, allowing us to quantify how these quantities are transferred, transformed, or
stored within a system. By applying the laws of conservation to a system described by partial differential equations,
we can gain insights into the underlying dynamics and predict how the system will evolve in response to external forces
or internal interactions. These conservation laws are derived from the fundamental principles of physics and apply to
a wide range of phenomena, including fluid dynamics, heat transfer, electromagnetism.

In order to compute the multiplier for Eq. (1.4), one needs to solve over-determined system of linear partial
differential equations that arise naturally from the expansion of

0(AE)
= 0, (3.1)

where 6% is the Euler Lagrange operator, A denotes the multiplier function which in this context is assumed to be of
order zero and E represent Eq. (1.4). The analysis of Eq. (3.1) prompts the following lemma.

an

BE
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Figure 2. Profiles of solutions (2.17) with ¥ =1, R =1,£2=0.1,Q=1,0=-01,8=1,y=1,2=1,c1 = 1,¢c3 =

1,042170521.

Lemma 3.1. Let A be a zeroth order conservation law multiplier, then a generalized (8+1)-dimensional nonlinear
evolution equation admits infinitely many zeroth order multipliers of the form

1
A=uFy(t)+ 1 22 F(t) + F> (t,y,2) + (F3 (y,2) + Fy (t,2))
if and only if A =28 and (Fy, Fy, F3, Fy) being arbitrary functions with respect to their arguments.
Proof. A straightforward but lengthy computation from Eq. (3.1). |

The application of the above lemma reveals the following conservation laws:
1

sz—ﬁ(

22Uy F' (1) + dung, F (t) — 2uguy F (t) — 2u, F' (1)) B,
1 1 1 1 1
7 = —géxuzF' (t) — EﬂzzutyF’ (t) + 65x2umF’ (t) + gﬂuuyF’ (t) + gﬂutuyF (t)
1 2 1 1
- géu,;uzF (t) + géuusz (t) — gﬂuutyF (t) — §,Bu2umyF (t) — gﬂuiuyF (t)

1 2 1 3 3
— guzyF’ (t) — 5umuzyF (t) + gumzuyF (t) + E:cumyF’ (t) + gumumyF (t)
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4 1 1 5 1
— 5uumzyF (t) — 5x2uxmyF' (t) + ﬂuyﬁF” (t) + ﬂﬁxZumuyF’ () — ﬂﬁarzuumyF' (t)
1 8 7 1 1
+ éﬁmzuxuxyF’ (t) + §Buuxu$yF (t) + §ﬁuumuyF () — gﬂxuxuyF’ (t) + éﬁmuuxyF' (1),
1 1 1 1 1
Ty = ﬂ,B:::ZUQCF" (t) — EﬂxzumF’ (t) — éﬁqu” (t) + EﬁxutF’ (t) + §ﬂu2ume (t)
1 1 1 1 1
- EﬂxuiF’ (t) — gﬂuuth (t) + éﬂutuxF (t) — EuixF (t) — EUMFI (t)
1 1 1 1
+ — Buttptipe F (1) + — Brlutipes F' (t) + = fruptipe F' (1) — — Bruug, F' (t)
3 24 8 12
1 1 1 1 1
— guummF (t) — §ﬁuiF (t) + gumusz (t) — %ﬁummF' (t) + EummF’ t),

1
7 = E&xQUMF’ (t) 4+ 4ung, F (t) — 202 F (t) — 2zu, F' (t) + 2uF' (t);

1
15 = 2B (unFy (t,y,2) = 2usy F (1,9, 7)),

1 1 2
TQx = _Eﬁuuway (t7 Y, Z) - EﬁuuzwyF (tv Y, Z) + gﬁuzuwyF (ta Y, Z)

5 1 1 1 1
+ éﬁua:a:uyF (ta Y, Z) - gBUFty (tv Y, Z) - EﬁuiFy <t7 Y, Z) + gﬂutFy (ta Y, Z) - g(sua:Fz (t7 Y, Z)

1 2 1 1 4
— gﬁutyF (t,y,2) + géusz (t,y,2) + éuyﬁFt (t,y,z) + guszy (t,y,2) — gumm/F (t,y,2),

1 1 1 1 1
sz = Bﬁuumme (tay7 Z) + iﬁuwusz (757?/’ Z) - 5uwma:;vF (t,y, Z) - gﬁutlF (t7ya Z) + éﬁua:Ft (taya Z) )

1
TQZ = g‘sua:xF (tvyaz);

1
Ty = 6ﬂxuxFy (Y, 2) + 2zuzy F (y, 2) + 2uF), (y,2) = u, F (y,2),

1 2 1 1
T§ =~ faun F (4,2) + 3000 F (3,2) = 3000, F (y,2) + ¢fauky (v,2)

1 1 1 2
+ s BuuFy (y, 2) — gﬂxuiFy (y,2) + gﬂuuzyF (y,2) — gﬂuzuyF (y, 2)

g 3 1 1 2
= tay (,2)  Faey P (,2) = 00wty (5,2) — =Bttty F (3, 2) + 5 fiuatiny F (3, 2)
+ gﬁxumuyF (y,2) + émuszy (y,2) — %xummyF (y,2) — %(5’&2}7 (y,2) + %CMFZ (y,2),
Ty = —éﬁxumF (y,2) — éﬂuummF (y,2) — éﬂUiF (y,2) + éﬂutF (y,2)
e F (5,7) + guaeaF (4, 2) + 5 Bruttgua F (y,2) + 5 futiea P (y,2),
T; = %(humF (y,2) — %5U$F (y,2);3

1 1
Ty = —gﬁmuwyF (t,2) + gﬁuyF (t,2),

4 1 2 1
T = —5xumwyF (t,2) — géuzF (t,2) + §6UFZ (t,z) + gﬁuuzyF (t, 2)

2 1 2 1
- gﬁuwuyF (t,2) — gﬁxutyF (t,2) + gdajumF (t,z) — géxul.Fz (t, 2)

1 3 1 2 5
+ éﬁmuyF (t,2) + 5umyF (t,2) — EﬁmuumyF (t,2) + g,ﬁmuxuxyF (t,2) + éﬂxumuyF (t,2),

(=)=
E)NE
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1 1 1 1 1
T = —EﬁuiF (t,2) + EﬁutF (t,2) — gxummF (t,2) — g,BUFt (t,2) — gﬁxumF (t,2)
1 1 1 1 1
+ éﬁmuth (t,2) — 6,6’uumF (t,2) + 5um$F (t,2) + éﬁxuume (t,2) + §ﬂxuxumF (t,2),

1 1
TZ = gézux:cF (ta Z) - géuxF (t’ Z) ’

It is noteworthy to mention that a generalized (341)-dimensional nonlinear evolution Eq. (1.4) admits an endless
number of local conservation laws because of the arbitrary elements included in the conserved vectors. It is also worth
pointing out that a commendable inspection demonstrated that the zeroth order multipliers is indeed identical to
the first order, second order and third order multipliers. Hence one will end up with identical conservation laws. It
remains to be systematically investigated elsewhere whether the n'” order multiplier is embedded in the zeroth order
multiplier.

3.1. Exact solutions using the extended tan method. This section’s goal is to introduce the extended tan
method’s approach for precisely solving the nonlinear evolution equations. We review the extended tan method’s
fundamental phases in brief. The extended tan function method’s basic premise is to suppose that the solution to
(1.4) may be expressed as follows

u(r,y,2,t) = F(p) p=r(z+y+z—wt). (3:2)
From (3.2) we obtain the ordinary nonlinear differential equation
W FO(p) = BrPwE " (p) = 65°F " (p) = K'AF" (p)* — 285" F" (p)F'(p) = 0, (3.3)

which has a solution of the form
M
F(p)= > AH(p), (3.4)
i=—M

where

H (p) = tan(p),
satisfies the equation
H'(p) =1+ H(p)>. (3.5)

The homogeneous balance approach between the highest order derivative and the least order nonlinear term that occur
in (3.3) will be used to calculate the positive integer M. The parameters to be computed are A;. Since the balancing
process in this case yields M = 1, the solution to (3.3) have the following form:

F(p)=A L H ' +4+AH. (3.6)
With the aid of Mathematica, we obtain the following three cases :
Case 1
6K
p= Ay
5= 2 (ZHQA_l — 3/@(.0)
= o ,
12k
=4
A =0
Case 2
6K
/B —
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Y —

Figure 3. Profiles of solution (3.7) with 6 =1, w =1, A_1 =1, 49 =0, A1 = 1.

2 (2n2A1 + 3/<;w)

Ay ’
_ 12k
= A
A_1 = O
Case 3
§ = —wph — 162,
A =20,
6K
A—l = _Fv
6K
A]_ - E

Thus, a solution of (1.4) is
u(z,y, z,t) = A_qcot(p) + Ao + A; tan(p),

where p = k(z + y + z — wt). The graphically representation of this solution is given in Figure 3.

BIE

(3.7)



CMDE Vol. *, No. *, * pp. 1-14 11

3.2. Exact solutions using the extended Tanh method. We now apply the extended tanh function method in
this part. This technique’s fundamental premise is that the solution to (3.3) may be expressed as follows

M
F(p)= > AH(p), (3.8)
i=—M

where H (p) satisfies the Riccati equation
H'(p) =1- H*(p), (3.9)
whose solution is
H(p) = tanh(p).

The balancing process yields M = 1, thus we compute the positive integer M in the same manner as described in
section 3.1. As a result, the solutions of (3.3) have the form

F(p)=A_1H '+ Ay + A H. (3.10)
Again, we obtain the following three cases with the aid of Mathematica:
Case 1
6K
B = 1,
5 2 (26%A_1 + 3kw)
= i ,
_ 12k
=g
A =0
Case 2
6k
B=—4
5— 2 (2&2141 + 3/%))
= e )
12k
=~
A=
Case 3
§ = 16K% — Bw,
A =125,
(7
A_l - 37
6k
A1 - —F

Accordingly, a solution of (1.4) is
u(t,z,y,z) = A_ycoth(p) + Ao + A tanh(p), (3.11)

where p = k(x + y + z — wt) and the corresponding profile representation of solution (3.11) is given in Figure 4.
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Y

tanh(-t+x +0.09)+ coth 00941

Figure 4. Profiles of solutions (3.11) with 6 =1, w=1, A1 =1, Ag =0, A, = 1.

4. CONCLUSIONS

Examining exact solutions for nonlinear evolution equations has consistently been crucial to the study of mathemati-
cal physics in areas including condensed matter physics, fluid dynamics and nonlinear optics. As a crucial consequence,
we have investigated a generalized (3+1)-dimensional nonlinear evolution equation. It was found that this underlying
equation admits infinitely many point symmetries and conservation laws. Lie symmetry method along with ansatz
methods led to travelling wave solutions of physical interest. In addition, we also derived infinitely many conservation
laws of the underlying equation via the multiplier method. The solution dynamics were shown graphically and it
is anticipated that these findings may be used to better understand how nonlinear waves propagate in a variety of
nonlinear physical systems, including fluid mechanics.
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