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Abstract

The stochastic Heisenberg ferromagnetic spin chain equation (SHFSCE) is a fundamental part of modern mag-
netism theory. The long-range ferromagnetic ordering magnetism with nonlinearity was explained by SHFSCE.

It also shows the magnetism of various insulating crystals and interacting spins. Furthermore, ferromagnetism

is fundamental to modern industry and technology and serves as the foundation for a number of electrical and
electromechanical devices, such as generators, electric motors, and electromagnets. In this work, the nonlinear

(2+1)-dimensional HFSCE is effectively solved using the improved modified extended (IME) tanh function tech-
nique, and its exact solutions are examined. We therefore give several new precise solutions, such as Jacobi elliptic

functions (JEFs), (bright, singular, dark) solitons, rational solutions, singular periodic solutions, Weierstrass ellip-

tic doubly periodic type solutions, and exponential solutions. These new solutions have never been reported before
in the models studied. Single solitons that have never been seen before are the novel solutions for the research

model. Furthermore, the discovered solutions are used to create a number of fascinating 2D and 3D figures. The

geometrical representation of the SHFSCE provides the dynamical information required to describe the physical
phenomena. The results are crucial for understanding and studying the (2+1)-dimensional SHFSCE. In order

to find distinct soliton solutions and other accurate solutions for various kinds of nonlinear differential equations

(NLDEs), more studies on the IME tanh function technique may help. This discovery represents a significant
breakthrough in our understanding of the complex and unpredictable behaviour of this mathematical model.
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1. Introduction

Examining traveling wave solutions for nonlinear evolution equations (NLEEs) is essential for understanding the
inner workings of complicated processes. Over the past few decades, significant advancements have been made in
the fields of electromagnetism, mechanics of liquids, atomic materials, complex physics, electrical engineering, optical
fibers, and geochemistry, among others, and numerous effective and proficient techniques for obtaining analytical
traveling wave solutions have been discovered in the literature [1, 2, 4, 11, 16, 20, 48]. As a consequence, a great deal
of mathematicians and physicists attempted to devise different techniques to find solutions to these kinds of equations.
Soliton theory is important for many nonlinear models when it comes to explaining many intricate events in the field of
NLEEs. Soliton dynamics in various models have been researched by many scientists [3, 5, 18, 23, 32, 35, 50]. Systems
having unexpected implications are studied using the mathematical technique known as stochastic partial differential
equations (SPDEs) [8, 10, 38, 45]. For real or artificially generated complex systems, these kinds of equations can be
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utilized to simulate a broad range of stochastic dynamics. The basis of SPDE theory is modern stochastic analysis
and the study of deterministic partial differential equations. It is possible to derive effective solutions for non-negative
partial differential equations, which can aid in the understanding of many physical processes.

The last few years have seen major advancements in the research of NLDEs of water wave models in [24] using Lie
symmetry analysis. The generalized (3+1) dimensional cubic quasi-linear Schrödinger equation with certain spatial
distribution parameters was solved mathematically precisely by Kumar et al. [22] using space-time periodic traveling
wave solutions. Bulut et al. [14] used the potent sine-Gordon expansion approach to look for solutions to several
significant nonlinear mathematical models that emerge in nonlinear sciences. The soliton solutions with dual power
law nonlinearity and fourth-order dispersion to the nonlinear Schrödinger equation were studied by Zayed et al. [47],
and many various investigations were done on different models [6, 19, 33].

One of the most crucial equations in contemporary magnetic theory for explaining the behavior of nonlinear magnets
is the (2+1)-dimensional SHFSCE. In the soliton theory, the (2+1)-dimensional SHFSCE is of great importance as
a suitable equation describing spin-long ferromagnetic ordered interactions and several insulating magnetic crystal
characteristics [49]. Soliton solutions for the (2 + 1)-dimensional SHFSCE are characterized by high-quality and
qualitative research for numerous phenomena and applications in a range of domains, such as ferromagnetic materials,
nonlinear optics, and optical fibers. Meanwhile, at the classical and semiclassical continuous limits, the Heisenberg
model of ferromagnetic spin chains with diverse magnetic interactions connected to NLEEs shows a clean and orderly
behavior [46]. Another viable option for triggering spin reversal events in ferromagnets is inhomogeneous exchange
interactions [15]. To create accurate traveling wave solutions, the authors of [25] used the modified Kudryashov and
another transformation approach called Darboux in 2014. Inc et al.’s [21] approach of using the generalized tanh and
complex envelope functions allowed them to resolve the soliton solutions of the Heisenberg ferromagnetic spin chain
(HFSC) problem in two dimensions. Ma et al. [30] investigated soliton solutions of the 2D-HFSC problem in 2018
using the Jacobi elliptic approach and an enhanced F-expansion method. Using the Hirota bi-linear approach, Li
and Ma [26] selected appropriate polynomial functions in bi-linear forms. As a result, the existence condition and
solution for the one-order rogue waves were found. Using the novel extended FAN sub-equation approach, Osman et
al. [34] looked into the various wave structures of the 2D-HFSC equation. The authors in [13] utilized the improved
F-expansion technique and modified simple equation (MSE) to provide exact solutions for the HFSCE. They used the
Jacobi elliptic functions (JEFs) approach to examine the HFSCE in [17]. The HFSCE for the novel accurate solitary
solutions was studied by Sahoo and Tripathy [37] using a modified version of Khater’s approach. The authors of
[49] examined many exact solutions in deterministic form for the (2+1)-dimensional HFSCE, based on Jacobi Elliptic
function concepts.

In this work, we investigate the upcoming (2+1)-dimensional SHFSCE which can be read as [17, 34, 49]:

iψt + η1ψxx + η3ψxy + η2ψyy − η4ψ|ψ|2 + ϱψWt = 0, (1.1)

where

η1 = σ4(γ + γ2), η2 = σ4(γ1 + γ2), η3 = 2σ4γ2, η3 = 2σ4B. (1.2)

In this case, the wave propagation is represented by the complex-valued function ψ(x, y, t), the spatial variables are
x and y, and the time variable is t. The anisotropic parameter is designated as B [17, 34], and the lattice parameter
is represented as σ with the interaction coefficients γ, γ1 and γ2, and the parameters pertaining to magnetic coupling
coefficients are ηi, 1 ≤ i ≤ 4 [27]. Besides, ϱ represents the noise intensity coefficient, whereas one one-dimensional
standard form of the Wiener process is represented by W (t). The last term of (1.1) includes the white noise, which is
represented by Wt. The following characteristics of the Wiener process are listed in [7, 9, 12, 31, 36, 51]:

(i): W (t) has trajectories that are continuous for t ≥ 0.
(ii): There are independent increments for s < t in W (t)−W (s).
(iii): The distribution of W (t)−W (s) is normal, with variance = t− s and mean = 0.

Thus, the search for soliton solutions in the aforementioned SHFSC model in (1.1) serves as our primary source of
inspiration. We want to do this by utilising the IME tanh function algorithm, a freshly developed and trustworthy
technique. The approach has the potential to resolve unresolved issues from earlier research. The main objective of the
IME tanh function algorithm is to find analytical solutions for a specific generalized stochastic nonlinear Schrödinger
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problem. The fundamental objective is to simplify the equation while preserving its key aspects. Standardization
makes it easier to find exact solutions and offers crucial details about the behaviour of the system that the SPDE
defines.

This work’s analytical methodology is based on symbolic computation, which necessitates substantial algebraic
operations that are frequently performed using computer algebra programs like Mathematica or Maple. Symbolic
approaches might require intricate and time-consuming computations, but they are effective for obtaining precise
closed-form solutions. The variational method, Hamiltonian-based methods, and Wang’s direct mapping method
[28, 29, 43, 44], on the other hand, provide straightforward and simplified frameworks that can lessen the computing
load and expedite the solution process, but all these methods don’t provide a wide range of exact solution like the
method implemented in this paper. These non-symbolic techniques have been effectively used to derive soliton and
wave structures with little algebraic overhead, and they are especially useful for specific classes of nonlinear evolution
equations. Talking about these techniques not only puts the selected strategy in context but it also identifies possible
avenues for further research that prioritize computing efficiency [39–42].

1.1. Motivation of this study. In spintronic systems, where thermal noise and quantum fluctuations are important,
the SHFSCE is essential for simulating magnetization dynamics. Its stochastic character mimics the actual conditions
seen in magnetic materials at the nanoscale. Designing reliable spin-based devices requires an understanding of noise-
driven spin wave propagation and stability, which may be gained by studying exact solutions of this model. This
serves as the driving force for the analytical investigation conducted in this paper.

1.2. More physical background about Eq. (1.1). The SHFSCE represents the interaction of deterministic spin-
precession driven by exchange interactions and random fluctuations caused by the environment. This approach is
essential for studying magnetization dynamics under non-equilibrium situations, such as noise-induced switching,
stochastic resonance, and the suppression or amplification of spin wave propagation. Furthermore, it provides a
theoretical framework for investigating stability qualities, coherence loss, and localization phenomena in spin chains
subjected to thermal noise effects, which are critical to the operation of spintronic memory and logic components
at the nanoscale. Thus, analytical investigations of this equation, particularly those providing precise or soliton-like
solutions, are critical for understanding and managing noise-driven spin dynamics in modern magnetic systems.

The following is the structure of our article: Section 1 delivers an overview of the proposed model along with an
explanation of its theory. Given in Section 2, these are the prominent features of the IME tanh function algorithm.
In Section 3, all of the results are summarised using Wolfram Mathematica software, which does a thorough symbolic
calculation to get these few classes of accurate solutions. The dynamic wave patterns of numerous different soliton
solutions are visually shown in Section 4 using both 2D and 3D simulations. In Section 5, we present some discussion
about the obtained results. Section 6 presents the conclusions of the work.

2. Preliminaries of the IME tanh function algorithm

The IME tanh function algorithm is a helpful tool for PDE solutions. It can solve complex boundary conditions and
offers accurate and efficient solutions for both linear and nonlinear equations. It also provides easily understood and
implementable answers. It provides an understandable physical explanation of the solutions, which helps to explain
the underlying phenomena. In this section, we outline the key elements of the IME tanh function algorithm that will
be used in this research. Consider the succeeding NLPDE [1, 2]:

P (℧,℧t,℧x,℧y,℧xx,℧tt,℧xt,℧xy, . . .) = 0, (2.1)

here P denotes a polynomial function with its argument ℧(x, y, t) accompanied to its respective partial derivatives.
Step (I): Here, our goal is to change Eq. (2.2), an NLPDE, into a non-linear ordinary differential equation (NLODE).
To do this, we use the following transformation:

℧(x, y, t) = V(ζ)ei(κx+ly−ct), ζ = ax+ by − ωt, (2.2)

here V(ζ) denotes the amplitude component of the solution, and κ, l, c, a, b and ω are defined as real constants
which shall be calculated lately in the progress of the work.
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Next, we combine Eq. (2.2) with Eq. (2.1), allowing us to build the necessary NLODE as follows:

S(V, V ′, V ′′, V ′′′, . . .) = 0, ′ =
d

dζ
. (2.3)

Step (II): According to the used algorithm, the general form of the solution for Eq. (2.3) is as follows:

V(ζ) =
M∑

j=0

AjGj(ζ) +
M∑

j=1

BjG−j(ζ), (2.4)

here the parameters Aj and Bj (j = 1, 2, ...,M) stand for constants in the solution equation that will be computed.
This provides the necessary condition that neither AM nor BM can be zero at the same time.
Step (III): In order to assess the positive integer M, the balancing principle (BP) is employed to Eq. (2.3). And the

function G(ζ) also satisfies the following constrain:

(G′(ζ))
2
=

(
dG
dζ

)2

= τ0 + τ1G(ζ) + τ2G2(ζ) + τ3G3(ζ) + τ4G4(ζ), (2.5)

while τl (0 ≤ l ≤ 4) represent constant values that shall assist in identifying potential solution scenarios.
By selecting different certain values of τ0, τ1, τ2, τ3 and τ4, Eq. (2.5) may have the following general solutions:
Result 1: When τ0 = τ1 = τ3 = 0,

G(ζ) =
√

−τ2
τ4

sech [ζ
√
τ2] , τ2 > 0, τ4 < 0,

G(ζ) =
√
−τ2
τ4

sec
[
ζ
√
−τ2

]
, τ2 < 0, τ4 > 0.

Result 2: When τ1 = τ3 = 0,

G(ζ) =

√
− ℵ2τ2
(2ℵ2 − 1) τ4

cn

[
ζ

√
τ2

2ℵ2 − 1

]
, τ2 > 0, τ4 < 0, τ0 =

ℵ2
(
1− ℵ2

)
τ22

4 (2ℵ2 − 1)
2
τ4
,

G(ζ) =

√
− ℵ2

(2− ℵ2) τ4
dn

[
ζ

√
τ2

2− ℵ2

]
, τ2 > 0, τ4 < 0, τ0 =

(
1− ℵ2

)
τ22

(2− ℵ2)
2
τ4
,

G(ζ) =

√
− ℵ2τ2
(ℵ2 + 1) τ4

sn

[
ζ

√
−τ2

ℵ2 + 1

]
, τ2 < 0, τ4 > 0, τ0 =

ℵ2τ22

(ℵ2 + 1)
2
τ4
.

G(ζ) = ϵ

√
− τ2
2τ4

tanh

(√
−τ2

2
ζ

)
, τ2 < 0, τ4 > 0, τ0 =

τ22
4τ4

,

G(ζ) = ϵ

√
τ2
2τ4

tan

(√
τ2
2
ζ

)
, τ2 > 0, τ4 > 0, τ0 =

τ22
4τ4

,

where ℵ is the modulus of the JEFs, 0 ≤ ℵ ≤ 1 and ϵ = ±1.

Result 3: When τ0 = τ1 = τ4 = 0,

G(ζ) = −τ2
τ3

sech2
(√

τ2
2

ζ

)
, τ2 > 0,

G(ζ) = −τ2
τ3

sec2
(√

−τ2
2

ζ

)
, τ2 < 0.

Result 4: When τ3 = τ4 = 0,

G(ζ) = − τ1
2τ2

+ exp (ϵ
√
τ2 ζ) , τ2 > 0, τ0 =

τ21
4τ2

,
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G(ζ) = − τ1
2τ2

+
ϵτ1
2τ2

sin
(√

−τ2 ζ
)
, τ0 = 0, τ2 < 0,

G(ζ) = − τ1
2τ2

+
ϵτ1
2τ2

sinh (2
√
τ2 ζ) , τ0 = 0, τ2 > 0,

G(ζ) = ϵ

√
−τ0
τ2

sin
(√

−τ2 ζ
)
, τ1 = 0, τ0 > 0, τ2 < 0,

G(ζ) = ϵ

√
τ0
τ2

sinh (
√
τ2 ζ) , τ1 = 0, τ0 > 0, τ2 > 0.

Result 5: When τ0 = τ1 = 0, τ4 > 0,

G(ζ) = −
τ2 sec

2

(√
−τ2
2

ζ

)
2ε
√
−τ2τ4 tan

(√
−τ2
2

ζ

)
+ τ3

, τ2 < 0,

G(ζ) =
τ2 sech

2

(√
τ2
2

ζ

)
2ε
√
τ2τ4 tanh

(√
τ2
2

ζ

)
− τ3

, τ2 > 0, τ3 ̸= 2ε
√
τ2τ4,

G(ζ) = 1

2
ε

√
τ2
τ4

(
1 + tanh

(√
τ2
2

ζ

))
, τ2 > 0, τ3 = 2ε

√
τ2τ4.

Step (IV): Rendering Eq. (2.3) with the solution that seems to be provided in Eqs. (2.4) and (2.5) will generate a

polynomial in G(ζ). Mathematical software like Wolfram Mathematica or Maple programs may be utilized to solve an
algebraic system of non-linear equations that arises when the coefficients of Gk(ζ), (k = 0,±1,±2, ...), are set equal to
zero. For the traveling wave in Eq. (2.1), there are thus several exact solutions that we can obtain.

The following table represents a comparison between the implemented methodology and the other analytical methods.

Table 1. Comparison of the IME Tanh Function method with other analytical techniques

Method Solution Types Symbolic Complexity Computational Tools Flexibility
IME Tanh method Solitons, periodic, many other types High Maple, Mathematica High
Variational Method Approximate soliton-like Low–Medium Optional Medium
Hamiltonian-based Method Conservative wave structures Medium Optional Medium
Wang’s Direct Mapping Method Exact soliton and wave solutions Low Optional High
G′/G Expansion Method Soliton, exponential, rational Medium Maple, Mathematica Medium
Sine-Cosine Method Periodic, solitary Low–Medium Optional Medium
Tanh-Coth Method Solitary wave, shock Medium Maple, Mathematica Medium

3. Stochastic soliton solutions retrieval

In this part, the IME tanh function algorithm is utilized to create all possible solutions for Eq. (1.1). To achieve
this, we utilize the transformation shown below:

ψ(x, y, t) = H(ζ)ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), ζ = x+ y − ϑt, (3.1)

where H(ζ) denotes the amplitude part of the solution and ℓ, k , ω, ϑ are certain constant parameters. When (3.1)
is substituted into Eq. (1.1) and the real and imaginary parts could be separated, respectively, to yield

(η1 + η2 + η3)H′′ −
(
η2k

2 − η3kℓ+ ω + η1ℓ
2 − ϱ2

)
H− η4H3 = 0, (3.2)
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(−2η2k + η3(ℓ− k) + 2η1ℓ+ ϑ)H′ = 0. (3.3)

After vanishing the coefficient of H′ in Eq. (3.3), one can obtain the soliton velocity as:

ϑ = − (−2η2k + η3(ℓ− k) + 2η1ℓ) . (3.4)

Therefore, using the BP described in section 2 between H′′ and H3, we may establish the exact solution form for Eq.
(3.2), as follows:

H(ζ) = A0 + A1G(ζ) +
B1

G(ζ)
. (3.5)

If the solution form in Eq. (3.5) is replaced with the limitation in Eq. (2.5), then there exists a polynomial in G(ζ)
resulting from the substitution in Eq. (3.2). When all terms with the same powers are added together and eventually
equal to zero, an algebraic system of nonlinear equations is produced, which will be

0 = −η2k2A0 + η3kℓA0 − η1ℓ
2A0 +

1

2
η1τ1A1 +

1

2
η2τ1A1 +

1

2
η3τ1A1 − η4A

3
0 − ωA0 − 6η4A1A0B1

+ A0ϱ
2 +

1

2
η1τ3B1 +

1

2
η2τ3B1 +

1

2
η3τ3B1,

0 = 2η1τ0B1 + 2η2τ0B1 + 2η3τ0B1 − η4B
3
1,

0 = −3η4A0B
2
1 +

3

2
η1τ1B1 +

3

2
η2τ1B1 +

3

2
η3τ1B1,

0 = −η2k2B1 + η3kℓB1 − η1ℓ
2B1 − 3η4A1B

2
1 − 3η4A

2
0B1 + η1τ2B1 + η2τ2B1 + η3τ2B1 − ωB1 +B1ϱ

2,

0 = −η2k2A1 + η3kℓA1 − η1ℓ
2A1 + η1τ2A1 + η2τ2A1 + η3τ2A1 − 3η4A

2
0A1 − ωA1 − 3η4A

2
1B1 + A1ϱ

2,

0 =
3

2
η1τ3A1 +

3

2
η2τ3A1 +

3

2
η3τ3A1 − 3η4A0A

2
1,

0 = 2η1τ4A1 + 2η2τ4A1 + 2η3τ4A1 − η4A
3
1.

(3.6)

Solving these equations in (3.6) with the Wolfram Mathematica program allows us to get the following results, but
satisfying the condition that A1 and B1 cannot both be zero simultaneously.
Result (1) : If τ0 = τ1 = τ3 = 0, then we got

A0 = B1 = 0, A1 = ±

√
2 (η1 + η2 + η3) τ4

η4
, τ2 =

η2k
2 − η3kℓ+ ω + η1ℓ

2 − ϱ2

η1 + η2 + η3
.

By considering the raised set, Eq. (1.1) has the following solutions:

(1.1): If τ2 > 0, τ4 < 0, so:

ψ1.1(x, y, t) = ±

√
−2 (η1 + η2 + η3) τ2

η4
sech [(x+ y − ϑt)

√
τ2] e

i(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.7)

that denotes a bright soliton solution under the condition that η4 (η1 + η2 + η3) < 0.
(1.2): If τ2 < 0, τ4 > 0, so:

ψ1.2(x, y, t) = ±

√
−2 (η1 + η2 + η3) τ2

η4
sec

[
(x+ y − ϑt)

√
−τ2

]
ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.8)

that describes a singular periodic solution when satisfying the constraint η4 (η1 + η2 + η3) > 0.
(1.3): If τ2 = 0, τ4 > 0, so:

ψ1.3(x, y, t) = −

√
2(η1+η2+η3)

η4

x+ y − ϑt
ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.9)
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which denotes a rational solution when satisfying the constraint η4 (η1 + η2 + η3) > 0.

Result (2) : If τ1 = τ3 = 0, then

(2.1): A0 = B1 = 0, A1 = ±

√
2 (η1 + η2 + η3) τ4

η4
, τ2 =

η2k
2 − η3kℓ+ ω + η1ℓ

2 − ϱ2

η1 + η2 + η3
.

(2.2): A0 = A1 = 0, B1 = ±

√
2 (η1 + η2 + η3) τ0

η4
, τ2 =

η2k
2 − η3kℓ+ ω + η1ℓ

2 − ϱ2

η1 + η2 + η3
.

Considering set (2.1), Eq. (1.1) has the following solutions:

(2.1,1): If τ2 < 0, τ4 > 0, and τ0 =
τ2
2

4τ4
, then:

ψ2.1,1(x, y, t) =

√
− (η1 + η2 + η3) τ2

η4
tanh

[
(x+ y − ϑt)

√
−τ2

2

]
ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.10)

and it is considered as a dark soliton solution such that η4 (η1 + η2 + η3) > 0.

(2.1,2): If τ2 > 0, τ4 > 0, and τ0 =
τ2
2

4τ4
, then:

ψ2.1,2(x, y, t) =

√
(η1 + η2 + η3) τ2

η4
tan

[
(x+ y − ϑt)

√
τ2
2

]
ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.11)

that is a singular periodic solution such that η4 (η1 + η2 + η3) > 0.

(2.1,3): If τ2 > 0, τ4 < 0, τ0 =
ℵ2(1−ℵ2)τ2

2

(2ℵ2−1)2τ4
, and 0 < ℵ ≤ 1, a JEF solution is raised provided that ℵ ̸= 1√

2
and

η4 (η1 + η2 + η3) < 0:

ψ2.1,3(x, y, t) = ±ℵ

√
2 (η1 + η2 + η3) τ2

η4 (1− 2ℵ2)
cn(x+ y − ϑt)ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.12)

when setting ℵ = 1, a bright soliton solution can be raised as:

ψ2.1,4(x, y, t) = ±

√
−2 (η1 + η2 + η3) τ2

η4
sech[x+ y − ϑt]ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t). (3.13)

(2.1,4): If τ2 > 0, τ4 < 0, τ0 =
(1−ℵ2)τ2

2

(2−ℵ2)2τ4
, η4 (η1 + η2 + η3) < 0, and 0 < ℵ ≤ 1, a JEF solution is constructed

as:

ψ2.1,5(x, y, t) = ±ℵ

√
−2 (η1 + η2 + η3)

η4 (2− ℵ2)
dn(x+ y − ϑt)ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.14)

when setting ℵ = 1, a bright soliton solution can be raised as:

ψ2.1,6(x, y, t) = ±

√
−2 (η1 + η2 + η3)

η4
sech[x+ y − ϑt]ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t). (3.15)

(2.1,5): If τ2 < 0, τ4 > 0, τ0 =
ℵ2τ2

2

(1+ℵ2)2τ4
, η4 (η1 + η2 + η3) > 0, and 0 < ℵ ≤ 1, a JEF solution is raised as:

ψ2.1,7(x, y, t) = ℵ

√
−2 (η1 + η2 + η3) τ2

η4 (ℵ2 + 1)
sn(x+ y − ϑt)ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.16)

when setting ℵ = 1, we find a dark soliton solution:

ψ2.1,8(x, y, t) =

√
− (η1 + η2 + η3) τ2

η4
tanh[x+ y − ϑt]ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t). (3.17)
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Considering the set (2.2), the solutions of Eq. (1.1) will be:

(2.2,1): If τ2 < 0, τ4 > 0, and τ0 =
τ2
2

4τ4
, then:

ψ2.2,1(x, y, t) =

√
− (η1 + η2 + η3) τ2

η4
coth

[
(x+ y − ϑt)

√
−τ2

2

]
ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.18)

which is a singular soliton solution provided that η4 (η1 + η2 + η3) > 0.

(2.2,2): If τ2 > 0, τ4 > 0, and τ0 =
τ2
2

4τ4
, then:

ψ2.2,2(x, y, t) =

√
(η1 + η2 + η3) τ2

η4
cot

[
(x+ y − ϑt)

√
τ2
2

]
ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.19)

that is a singular periodic solution such that η4 (η1 + η2 + η3) > 0.

(2.2,3): If τ2 > 0, τ4 < 0, τ0 =
ℵ2(1−ℵ2)τ2

2

(2ℵ2−1)2τ4
, and 0 ≤ ℵ < 1, a JEF solution is raised provided that ℵ ̸= 1√

2
and

η4 (η1 + η2 + η3) > 0:

ψ2.2,3(x, y, t) = ±

√
−2 (η1 + η2 + η3) (1− ℵ2) τ2

η4 (2ℵ2 − 1)
nc(x+ y − ϑt)ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.20)

when setting ℵ = 0, we find a singular periodic solution:

ψ2.2,4(x, y, t) = ±

√
2 (η1 + η2 + η3) τ2

η4
sec[x+ y − ϑt]ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t). (3.21)

(2.2,4): If τ2 > 0, τ4 < 0, τ0 =
(1−ℵ2)τ2

2

(2−ℵ2)2τ4
, η4 (η1 + η2 + η3) > 0, and 0 < ℵ < 1, a JEF solution is constructed

as:

ψ2.2,5(x, y, t) = ±ℵ τ2

√
−2 (η1 + η2 + η3) (1− ℵ2)

η4 (2− ℵ2)
nd(x+ y − ϑt)ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t). (3.22)

(2.2,5): If τ2 < 0, τ4 > 0, τ0 =
ℵ2τ2

2

(1+ℵ2)2τ4
, η4 (η1 + η2 + η3) > 0, and 0 ≤ ℵ ≤ 1, a JEF solution is raised as:

ψ2.2,6(x, y, t) =

√
−2 (η1 + η2 + η3) τ2

η4 (ℵ2 + 1)
ns(x+ y − ϑt)ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.23)

when setting either ℵ = 0 or ℵ = 1, we find either a singular periodic solution or a singular soliton solution,
respectively, as:

ψ2.2,7(x, y, t) =

√
−2 (η1 + η2 + η3) τ2

η4
csc[x+ y − ϑt]ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.24)

ψ2.2,8(x, y, t) =

√
− (η1 + η2 + η3) τ2

η4
coth[x+ y − ϑt]ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.25)

Result (3) : If τ2 = τ4 = 0, τ0 ̸= 0, τ1 ̸= 0 and τ3 > 0, then

A0 = ±
τ1
√

ϱ2 − ω√
η4 (3τ2

1 + 8τ0ℓ2)
, A1 = 0, B1 = ±

4τ0
√

ϱ2 − ω√
η4 (3τ2

1 + 8τ0ℓ2)
, τ3 = − τ3

1

8τ2
0

, k = −ℓ, η1 = −η2 − η3 +
8τ0

(
ϱ2 − ω

)
3τ2

1 + 8τ0ℓ2
.

Using the obtained set, one shall obtain Weierstrass elliptic doubly periodic type solutions as:

ψ3(x, y, t) =

√
ϱ2 − ω

η4 (3τ21 + 8τ0ℓ2)

 4τ0

℘
(

1
2 (x+ y − ϑt)

√
τ3;−4τ1

τ3
,− 4τ0

τ3

) + τ1

 ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.26)
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provided that
(
ϱ2 − ω

) (
η4

(
3τ21 + 8τ0ℓ

2
))
> 0.

Result (4) : If τ3 = τ4 = 0, then, in this case, we find:

(4.1): A0 = 0, A1 = τ1 = 0, B1 = ±

√
2 (η1 + η2 + η3) τ0

η4
, ω = (η1 + η2 + η3) τ2 − η2k

2 + η3kℓ− η1ℓ
2 + ϱ2.

(4.2): A1 = 0, B1 = ±2A0

√
τ0
τ2
, τ1 = ±2

√
τ0τ2, η4 =

(η1 + η2 + η3) τ2
2A2

0

, ω = −1

2
(η1 + η2 + η3) τ2 − η2k

2 +

η3kℓ− η1ℓ
2 + ϱ2.

From the set (4.1), we can construct the upcoming solutions such that η4 (η1 + η2 + η3) > 0:

(4.1,1): If τ0 > 0 and τ2 < 0, the following singular periodic solution shall be retrieved:

ψ4.1,1(x, y, t) =

√
−2 (η1 + η2 + η3) τ2

η4
csc

[
(x+ y − ϑt)

√
−τ2

]
ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t). (3.27)

(4.1,2): If τ0 > 0 and τ2 > 0, the following singular soliton solution will be found:

ψ4.1,2(x, y, t) =

√
2 (η1 + η2 + η3) τ2

η4
csch [(x+ y − ϑt)

√
τ2] e

i(−ℓx+ky+ωt+ϱW (t)−ϱ2t). (3.28)

From the set (4.2), we may build the next exponential solution as follows:

ψ4.2(x, y, t) = A0

(
1− τ1 ± 2

τ1 − 2τ2e
√
τ2(x+y−ϑt)

)
ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), (3.29)

provided that τ2 > 0 and τ1 − 2τ2e
√
τ2(x+y−ϑt) ̸= 0.

Result (5) : If τ0 = τ1 = 0 and τ4 > 0, then we obtain:

A0 = B1 = τ3 = 0, A1 = ±

√
−2τ4 ((k + ℓ) (η2(ℓ− k) + η3ℓ)− ω + ϱ2)

η4 (τ2 − ℓ2)
, η1 =

η2
(
τ2 − k2

)
+ η3 (kℓ+ τ2)− ω + ϱ2

ℓ2 − τ2
.

which gives either a singular periodic solution or a singular soliton solution by providing that η4
(
ℓ2 − τ2

) (
(k + ℓ) (η2(ℓ− k) + η3ℓ)− ω + ϱ2

)
>

0:

ψ5.1(x, y, t) = −

√
−2τ2 ((k + ℓ) (η2(ℓ− k) + η3ℓ)− ω + ϱ2)

η4 (ℓ2 − τ2)
csc

[
(x+ y − ϑt)

√
−τ2

]
×ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), τ2 < 0, (3.30)

ψ5.2(x, y, t) =

√
2τ2 ((k + ℓ) (η2(ℓ− k) + η3ℓ)− ω + ϱ2)

η4 (ℓ2 − τ2)
csch [(x+ y − ϑt)

√
τ2]

×ei(−ℓx+ky+ωt+ϱW (t)−ϱ2t), τ2 > 0. (3.31)

4. White noise influence on the extracted solutions

Changing the parameter values in the model under study allowed for the extraction of many categories of solutions
for Eq. (1.1). This technique has therefore been used to produce some incredible outcomes that have never been
documented or attained. Sketches of several particular solutions that the two- and three-dimensional simulation
produced highlight the physical properties of the recovered solutions. These graphical simulations will show how robust
the higher solutions are against perturbations, and they are made using MATLAB software. In Figure 1, we showed
the real part of Eq. (3.7) along the x−direction in a three-dimensional plot by using different noise strengths when the
parameters are η1 = 0.5, η2 = 0.6, η3 = 0.7, η4 = −0.8, ω = 0.7, k = 0.8, ℓ = 1, while −10 ≤ x ≤ 10. In addition,
fig. 2 displays a collective two-dimensional plot that represents all sketched plots with different noise intensities for
Eq. (3.7). It demonstrates how increasing the noise intensity ϱ leads to significant distortion and broadening of the
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solution profile, indicating a strong sensitivity of the system to stochastic perturbations. As ϱ increases, the real part
of the wavefunction deviates from its original solitonic shape, exhibiting irregular fluctuations and reduced coherence
in the spatial domain. In Figure 3, we displayed the real part of Eq. (3.7) along the y−direction in a three-dimensional
plot by using different noise strengths when the parameters take the same values from fig. 1 but −10 ≤ y ≤ 10. Figure
4 displays a collective two-dimensional plot that represents all sketched plots with different noise intensities for the
same equation. It has been observed that the surface flattens and the level of the signal diminishes. In Figure 5, we
depicted the real part of Eq. (3.10) along the x−direction in a three-dimensional plot by using different noise strengths
when the parameters are η1 = 0.7, η2 = −0.8, η3 = −0.9, η4 = −0.8, ω = 0.8, k = 0.9, ℓ = 0.8, while −10 ≤ x ≤ 10.
In addition, fig. 6 displays a collective two-dimensional plot that represents all sketched plots with different noise
intensities for Eq. (3.10). It is clear that, as ϱ increases, the originally smooth and periodic wave profile becomes
increasingly distorted, indicating that higher noise intensities significantly disrupt the wave coherence and lead to
more irregular oscillatory behavior. In Figure 7, we displayed the real part of Eq. (3.10) along the y−direction in
a three-dimensional plot by using different noise strengths when the parameters take the same values from fig. 5
but −10 ≤ y ≤ 10. Figure 8 displays a collective two-dimensional plot that represents all sketched plots with different
noise intensities for the same equation.

5. Discussion about the results

5.1. Novelties of the study. We effectively find accurate analytical solutions of the nonlinear (2+1)-dimensional
HFSCE in this work by using the IME tanh function approach. The approach produces a wide range of novel
and unreported solution configurations. We are aware of no previous presentation of these exact solutions for this
problem, especially the innovative single-soliton structures. An important addition to the analytical analysis of higher-
dimensional nonlinear evolution equations, the solutions’ uniqueness and variety demonstrate the IME tanh approach’s
power.

5.2. Physical interpretation of the obtained solutions. In the following few lines, we provide a brief description
of each solution type obtained.

• Jacobi elliptic function (JEF) solution: depicts periodic spin wave trains, in which the wave profile repeats in
space or time and seamlessly transitions into soliton forms when the elliptic modulus changes.

• Bright solitons: correlate to localized spin excitations with concentrated energy, demonstrating that stable,
particle-like spin-wave packets propagate in a ferromagnetic medium.

• Dark solitons: reflect localized dips in magnetization and are frequently regarded as phase-shifted disturbances
buried in a continuous spin background.

• Singular solitons and rational solutions: indicate spatial blow-up behaviors or highly localized structures that
may correspond to instabilities or energy concentration during noise disruption.

• Exponential solutions: illustrate decaying or amplifying spin modes, depending on the sign of the exponential
factor, and can represent gain/loss effects in open magnetic systems.

6. Conclusion and future work

To produce novel kinds of soliton solutions for the suggested model in (1.1), the IME tanh function algorithm was
applied for the first time with perfect results in the framework of the methods known in the literature. Exact solutions
to the (2+1)-dimensional SHFSCE are demonstrated by the soliton solutions that have been attained. Studying the
nonlinear spin dynamics in magnetic materials is made possible by the resultant sample of the attained solutions.
The solutions obtained have a large range of physical applications in managing spin dynamics in magnetic materials
and high-frequency wave transmission in quiet environments. In this work, we have effectively employed the IME
tanh function algorithm to provide a wide range of exact solutions for SHFSCE under different family scenarios.
These novel complex soliton solutions determined the dynamical behaviors through simulations of 2D and 3D wave
profiles by selecting the optimal values for the constant parameters. The technique used yields a large number of
single periodic solutions that are unique, such as JEFs, exponential, rational, singular periodic, and (bright, dark,
singular) solitons. Our article has the greatest number of answers when compared with what exists in the literature.
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Figure 1. Three-dimensional plots of the real part of Eq. (3.7) along the x−direction with different
noise intensities.

Prospectively, future studies can concentrate on investigating the stability and long-term features of the found solitary
wave solutions. Investigating parametric changes and their effects on the system dynamics may reveal more intriguing
events. Combining analytical and numerical approaches might lead to a deeper understanding of this complex subject.
In conclusion, the whole text’s results persuasively demonstrate how effective and potent the IME tanh function
technique mentioned above is at precisely solving NLEEs both now and in the future.
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Figure 2. Collective two-dimensional plot the real part of Eq. (3.7) along the x−direction with
different noise intensities.
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Figure 3. Three-dimensional plots of the real part of Eq. (3.7) along the y−direction with different
noise intensities.
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Figure 4. Collective two-dimensional plot the real part of Eq. (3.7) along the y−direction with
different noise intensities.
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Figure 5. Three-dimensional plots of the real part of Eq. (3.10) along the x−direction with different
noise intensities.
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Figure 6. Collective two-dimensional plot the real part of Eq. (3.10) along the x−direction with
different noise intensities.
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Figure 7. Three-dimensional plots of the real part of Eq. (3.10) along the y−direction with different
noise intensities.
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Figure 8. Collective two-dimensional plot the real part of Eq. (3.10) along the y−direction with
different noise intensities.
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