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Abstract

In this article, we propose a numerical method based on alternative Legendre polynomials for approximating

the solutions of two-dimensional linear and nonlinear Volterra-Fredholm integral equations. Alternative Legendre
polynomials, known for their some special features and simplicity in constructing operational matrices, provide

an efficient basis for this method. By employing the integration and product operational matrices of alternative

Legendre polynomials, the integral equations are reduced to a system of algebraic equations, simplifying the
computational process. Error analysis is conducted to assess the method’s accuracy, and several examples are

presented to validate the high precision and efficiency of the proposed approach. The results confirm the accuracy
and effectiveness of the method in solving complex integral equations.
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1. Introduction

The study of integral equations, particularly Volterra-Fredholm integral equations, plays a crucial role in the
mathematical modeling of various physical and engineering phenomena. These equations are often challenging to
solve due to their inherent complexity, especially when dealing with nonlinearities and multiple dimensions. In recent
years, numerous numerical techniques have been developed to address such complexities. The primary aim of this
article is to introduce a novel numerical method for solving two-dimensional nonlinear Volterra-Fredholm integral
equations of the form:

g(x, y) = f(x, y) + λ1

∫ x

0

∫ y

0

φ1(x, y, t, s)θ1(t, s, g(t, s))dtds

+ λ2

∫ 1

0

∫ 1

0

φ2(x, y, t, s)θ2(t, s, g(t, s))dtds, (x, y) ∈ D = [0, 1]× [0, 1], (1.1)

where λ1 and λ2 are arbitrary constants, and g(x, y) is the unknown function defined in D. The functions f(x, y),
φ1(x, y, t, s), and φ2(x, y, t, s) are known functions defined onD2 andD4, respectively. Also, the functions θϖ(t, s, g(t, s)),
for ϖ = 1, 2, are continuous on the domain D = [0, 1]× (−∞,+∞) and depend on g in a nonlinear manner. The exis-
tence and uniqueness of the solution to two-dimensional nonlinear integral equations can be found in [1, 13, 22, 23, 26].

The problem involves both Volterra and Fredholm components, making it a mixed-type integral equation, which
further adds to its complexity. Several methods have been developed for solving two-dimensional (2D) integral equa-
tions, each aiming to reduce the integral equation to a system of algebraic equations, facilitating easier computation.
Notable contributions in this area include the works of Babolian et al. [2], Mirzaee et al. [12], Ordokhani et al. [20],
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and Rashidinia et al. [16], where various polynomial-based and collocation methods have been employed. These tech-
niques typically involve expanding the unknown function in terms of a suitable basis, which allows for the reduction
of the original problem to a finite-dimensional system.

In this paper, we propose a novel approach based on alternative Legendre polynomials (ALPs) for approximating
the solutions of two-dimensional nonlinear Volterra-Fredholm integral equations. Polynomials, especially orthogonal
ones, are powerful mathematical tools for solving integral equations due to their flexibility, orthogonality properties,
and the ease with which they can be manipulated in computational frameworks. In particular, alternative Legendre
polynomials have desirable features such as orthogonality over a finite interval and simple recursive relations, which
make them ideal for use in operational matrix methods.

The main contribution of this paper lies in the construction and application of operational matrices for integration
and multiplication based on ALPs. These operational matrices are employed to transform the integral equations into
a system of algebraic equations, significantly reducing the computational complexity of the problem. By doing so,
the computational process becomes more efficient, and higher accuracy can be achieved with fewer polynomial terms,
making this method particularly attractive for solving high-dimensional problems.

Operational matrices have been extensively utilized in the literature for the numerical solution of various types of dif-
ferential and integral equations. Examples include the works of Chen and Hsiao [9], Sannuti [21], Razzaghi and Yousefi
[24], Hwang and Shih [15], Paraskevopoulos [18], Chan and Wang [7], Yousefi and Behroozifar [6], Paraskevopoulos et
al. [19], and Horng and Chou [14]. Among the various classes of polynomials used in these methods, ALPs have shown
superior computational efficiency and accuracy, particularly when applied to nonlinear integral equations, making
them the focus of this study.

Bazm et al. [5] used alternative Legendre polynomials (ALPs) to solve one-dimensional (1D) Volterra-Fredholm
integral equations. We provide a detailed overview of alternative Legendre polynomials, including their definitions,
properties, and the construction of the corresponding operational matrices for the numerical solution of one-dimensional
(1D) integral equations as a preliminary step. Then, we extend the method to the two-dimensional Volterra-Fredholm
integral equation described in Eq. (1.1). Error analysis is conducted to assess the method’s accuracy, and several
examples are presented to demonstrate the high precision and efficiency of the proposed approach. The results confirm
the accuracy and effectiveness of the method in solving complex integral equations.

2. Fundamentals of 1D-ALPs

In this section, we will briefly review the ALPs and some of the operational matrices used in this article, as well as
the approximation of a univariate function.

Deifnition 2.1 ([8]). The first family of 1D-ALPs is defined as follows:

Λlmα(x) =
m−α∑
κ=0

(−1)κ
(
m− α

κ

)(
m+ α+ κ+ 1

m− α

)
xα+κ, α = 0, 1, . . . ,m. (2.1)

According to the weight function w = 1, the ALPs are orthogonal on the interval [0, 1], and every term in the set
Λlm = {Λlmα(x)}mα=0 has degree m.

One of the key matrices introduced in this article, which plays a central role in reducing the solution of integral
equations to systems of algebraic equations, is the diagonal matrix ν1D. This matrix is also utilized in the numerical
treatment of two-dimensional integral equations. We begin by defining

Ψ(x) = [Λlm0(x),Λlm1(x), . . . ,Λlmm(x)]T ,

and, using the function Ψ(x), the following relation is obtained:

ν1Dx =

∫ 1

0

Ψ(x)ΨT (x) dx = diag

{
1

2ι+ 1

}m

ι=0

, (2.2)

where ν1Dx
is a diagonal matrix of order (m+ 1)× (m+ 1), and Ψ(x) is an (m+ 1)× 1 column vector.
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Another important matrix is the operational matrix of integration, defined by the relation
∫ x

0
Ψ(t) dt ≃ T1DΨ(x),

where Ψ(x) is the vector of ALPs as defined in (2.2), and T1D = [ταr]
m
α,r=0 denotes the operational matrix for one-

dimensional ALP integration of order (m+1)× (m+1). The entries ταr are given explicitly by the following formula:

ταr = (2r + 1)
m−α∑
κ=0

(−1)κ
(
m−α
κ

)(
m+α+κ+1

m−α

)
α+ κ+ 1

m−r∑
l=0

(−1)l
(
m−r

l

)(
m+r+l+1

m−r

)
α+ r + l + κ+ 2

. (2.3)

Now, given a univariate function hm(x), its approximation is computed as follows [10]:

hm(x) =
m∑

α=0

hαΛlmα(x), (2.4)

where the coefficients hα are given by

hα =
⟨h(x),Λlmα(x)⟩
⟨Λlmα,Λlmα⟩

= (2α+ 1)⟨h(x),Λlmα(x)⟩, α = 0, 1, . . . ,m. (2.5)

3. Fundamentals of 2D-ALPs

We use ALPs to address problems related to integral equations. The extension of ALPs to two dimensions is a
novel approach presented in this article. Below, we define and approximate functions of two and four variables. Let
Ψ(x, y) be a vector composed of two-variable ALPs:

Ψ(x, y) = [Λlm0m0(x, y),Λlm0m1(x, y), . . . ,Λlm0mm(x, y),Λlm1m0(x, y), . . . , (3.1)

Λlm1mm(x, y), . . . ,Λlmmm0(x, y), . . . ,Λlmmmm(x, y)]T , (x, y) ∈ D.

The vector Ψ(x, y) is of size (m+ 1)2 × 1, and it can be obtained via the Kronecker product of Ψ(x) and Ψ(y):

Ψ(x, y) = Ψ(x)⊗Ψ(y), (3.2)

where each element of the resulting matrix is defined by:

Λlmαmα′ = Λlmα(x)Λlmα′(y), α′ = 0, 1, . . . ,m. (3.3)

Now, let us assume that H = L2(D), so that the inner product and norm in this space are defined by:

⟨h(x, y), b(x, y)⟩ =
∫ 1

0

∫ 1

0

h(x, y)b(x, y) dx dy, (3.4)

∥h(x, y)∥2 = ⟨h(x, y), h(x, y)⟩ 1
2 =

(∫ 1

0

∫ 1

0

|h(x, y)|2 dx dy
) 1

2

. (3.5)

Consider the finite-dimensional subspace:

Hm = span{Λlm0m0(x, y),Λlm0m1(x, y), . . . ,Λlmmmm(x, y)}.

The space Hm is a closed subspace of H, and for every h(x, y) ∈ H, there exists a unique best approximation
hm(x, y) ∈ Hm satisfying:

∥h− hm∥2 ≤ ∥h− b∥2, ∀b ∈ Hm. (3.6)

Furthermore, we have the following representation:

hm(x, y) =
m∑

α=0

m∑
α′=0

hαα′Λlmαmα′(x, y) = ΨT (x, y)H, (3.7)

where the coefficients are given by:

hαα′ =
⟨⟨h(x, y),Λlmα(x)⟩,Λlmα′(y)⟩
⟨Λlmα,Λlmα⟩⟨Λlmα′ ,Λlmα′⟩

= (2α+ 1)(2α′ + 1)⟨⟨h,Λlmα⟩,Λlmα′⟩, (3.8)
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and thus, based on the ALP basis, any function h(x, y) ∈ D can be approximated as:

h(x, y) ≃ hm(x, y) = ΨT (x, y)H, (3.9)

where

H = [h00, h01, . . . , h0m, h10, . . . , h1m, . . . , hm0, . . . , hmm]T . (3.10)

The vector H is of dimension (m+ 1)2 × 1.
Moreover, any four-variable function φ(x, y, t, s) ∈ L2(D ×D) can be approximated in terms of ALPs as follows:

φ(x, y, t, s) ≃ φm(x, y, t, s) = ΨT (x, y)ΦΨ(t, s), (3.11)

where

φικι′κ′ =
⟨⟨φ(x, y, t, s),Λlmιmκ⟩,Λlmι′mκ′⟩

⟨Λlmιmκ,Λlmιmκ⟩⟨Λlmι′mκ′ ,Λlmι′mκ′⟩
= (2ι+ 1)(2κ+ 1)(2ι′ + 1)(2κ′ + 1)⟨⟨φ(x, y, t, s),Λlmιmκ(x, t)⟩,Λlmι′mκ′(y, s)⟩, (3.12)

and Φ = [φικι′κ′ ]0≤ι,κ,ι′,κ′≤m is a matrix of dimension (m + 1)2 × (m + 1)2. It can also be shown that the function
φm(x, y, t, s) provides the best unique approximation for the function φ(x, y, t, s).

4. Operational Matrices

Theorem 4.1. Assume that the diagonal matrices ν1Dx
and ν1Dy

correspond to the vectors Ψ(x) and Ψ(y), respectively.
Then, the following relation holds:

ν2D(x,y)
= ν1Dx

⊗ ν1Dy
. (4.1)

The diagonal matrix ν2D(x,y)
, associated with the vector Ψ(x, y), can thus be constructed from the Kronecker product

of these matrix.

Proof. Based on Eq. (2.2), the diagonal matrix corresponding to the bivariate vector Ψ(x, y) is defined as follows:

ν2D(x,y)
=

∫ 1

0

∫ 1

0

Ψ(x, y)ΨT (x, y) dx dy =

∫ 1

0

∫ 1

0

[Ψ(x)ΨT (x)]⊗ [Ψ(y)ΨT (y)] dx dy

=

[∫ 1

0

Ψ(x)ΨT (x) dx

]
⊗
[∫ 1

0

Ψ(y)ΨT (y) dy

]
, (4.2)

which confirms that ν2D(x,y)
is an (m+ 1)2 × (m+ 1)2 matrix. □

Theorem 4.2. Assume that Ψ(x, y) is the 2D-ALPs, defined in Eq. (3.1). Then:∫ x

0

∫ y

0

Ψ(t, s) dt ds ≃ (T1DΛlmα(x))⊗ (T1DΛlmα′(y)) = (T1D ⊗ T1D)Ψ(x, y) = T2DΨ(x, y), (4.3)

where T1D is the operational matrix defined by Eq. (2.3), and T2D is the operational matrix of integration 2D-ALPs
of order (m+ 1)2 × (m+ 1)2.

Proof. Considering the integral of the vector Ψ(x, y), we have:

∫ x

0

∫ y

0

Ψ(t, s) dt ds =



∫ x

0

∫ y

0
Λlm0m0(t, s) dt ds∫ x

0

∫ y

0
Λlm0m1(t, s) dt ds

...∫ x

0

∫ y

0
Λlmαmα′(t, s) dt ds

...∫ x

0

∫ y

0
Λlmmmm(t, s) dt ds


, (4.4)
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Now, in terms of Eq. (3.3), we can write the following equation:∫ x

0

∫ y

0

Λlmαmα′(t, s) dt ds =

∫ x

0

∫ y

0

Λlmα(t)Λlmα′(s) dt ds, (4.5)

that according to Eq. (2.1), we have:

∫ x

0

∫ y

0

Λlmαmα′(t, s) dt ds =

∫ x

0

∫ y

0

(
m−α∑
κ=0

(−1)κ
(
m− α

κ

)(
m+ α+ κ+ 1

m− α

)
tα+κ

)

·

m−α′∑
ι=0

(−1)ι
(
m− α′

ι

)(
m+ α′ + ι+ 1

m− α′

)
sα

′+ι

 dt ds, α, α′, ι, κ = 0, . . . ,m,

(4.6)

where

∫ x

0

∫ y

0

Λlmαmα′(t, s) dt ds =

(
m−α∑
κ=0

(−1)κ
(
m−α
κ

)(
m+α+κ+1

m−α

)
xα+κ+1

α+ κ+ 1
·
m−α′∑
ι=0

(−1)ι
(
m−α′

ι

)(
m+α′+ι+1

m−α′

)
yα

′+ι+1

α′ + ι+ 1

 , (4.7)

by approximating xα+κ+1 and yα
′+ι+1 with the help of Eq. (2.4), we have:

xα+κ+1 ≃
m∑
r=0

(2r + 1)

m−r∑
l=0

(−1)l
(
m−r

l

)(
m+r+l+1

m−r

)
α+ r + l + κ+ 2

Λlmr(x), (4.8)

yα
′+ι+1 ≃

m∑
r′=0

(2r′ + 1)
m−r′∑
l′=0

(−1)l
′(m−r′

l′

)(
m+r′+l′+1

m−r′

)
α′ + r′ + l′ + ι+ 2

Λlmr′(y), (4.9)

Substituting Eqs. (4.8) and (4.9) into Eq. (4.7), the following equation is obtained:

∫ x

0

∫ y

0

Λlmαmα′(t, s) dt ds =
m∑
r=0

(2r + 1)

[
m−α∑
κ=0

(−1)κ
(
m−α
κ

)(
m+α+κ+1

m−α

)
α+ κ+ 1

m−r∑
l=0

(−1)l
(
m−r

l

)(
m+r+l+1

m−r

)
α+ r + l + κ+ 2

]
Λlmr(x) (4.10)

·
m∑

r′=0

(2r′ + 1)

m−α′∑
ι=0

(−1)ι
(
m−α′

ι

)(
m+α′+ι+1

m−α′

)
α′ + ι+ 1

m−r′∑
l′=0

(−1)l
′(m−r′

l′

)(
m+r′+l′+1

m−r′

)
α′ + r′ + l′ + ι+ 2

Λlmr′(y),

where

ταr = (2r + 1)

m−α∑
κ=0

(−1)κ
(
m−α
κ

)(
m+α+κ+1

m−α

)
α+ κ+ 1

m−r∑
l=0

(−1)l
(
m−r

l

)(
m+r+l+1

m−r

)
α+ r + l + κ+ 2

, (4.11)

τα′r′ = (2r′ + 1)
m−α′∑
ι=0

(−1)ι
(
m−α′

ι

)(
m+α′+ι+1

m−α′

)
α′ + ι+ 1

m−r′∑
l′=0

(−1)l
′(m−r′

l′

)(
m+r′+l′+1

m−r′

)
α′ + r′ + l′ + ι+ 2

, (4.12)

which according to Eqs. (4.10), (4.11), and (4.12), we have:

∫ x

0

∫ y

0

Λlmαmα′(t, s) dt ds =
m∑
r=0

(
m∑

r′=0

(ταrτα′r′)Λlmr(x)Λlmr′(y)

)
, (4.13)
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now by substituting Eq. (4.13) into Eq. (4.4), we can conclude:

∫ x

0

∫ y

0

Ψ(t, s) dt ds ≃



m∑
r=0

(
m∑

r′=0

τ0rτ0r′Λlmrmr′(x, y)

)
m∑
r=0

(
m∑

r′=0

τ0rτ1r′Λlmrmr′(x, y)

)
m∑
r=0

(
m∑

r′=0

τ1rτ0r′Λlmrmr′(x, y)

)
...

m∑
r=0

(
m∑

r′=0

τmrτmr′Λlmrmr′(x, y)

)


. (4.14)

□

Theorem 4.3. Suppose that Γ = [γ00, γ01, . . . , γ0m, γ10, . . . , γ1m, . . . , γm0, . . . , γmm]T is a (m + 1)2 × 1 vector. Then
we have:

Ψ(x, y)ΨT (x, y)Γ ≃ Γ̂Ψ(x, y), (4.15)

where Γ̂ = [γ̂ιαι′α′ ]0≤ι,α,ι′,α′≤m is the operational matrix of the product for 2D-ALPs and of order (m+1)2× (m+1)2,
in which:

γ̂ιαι′α′ = (2α+ 1)(2α′ + 1)
m∑

κ=0

m∑
κ′=0

γκκ′ςικαι′κ′α′ , (4.16)

where

ςικαι′κ′α′ = ⟨Λlmκmκ′Λlmιmι′ ,Λlmαmα′⟩ =
∫ 1

0

∫ 1

0

Λlmκmκ′(x, y)Λlmιmι′(x, y)Λlmαmα′(x, y) dx dy, (4.17)

Proof. At first, we assume:

Ψ(x, y)ΨT (x, y)Γ =



m∑
κ=0

m∑
κ′=0

γκκ′Λlm0m0(x, y)Λlmκmκ′(x, y)

m∑
κ=0

m∑
κ′=0

γκκ′Λlm0m1(x, y)Λlmκmκ′(x, y)

m∑
κ=0

m∑
κ′=0

γκκ′Λlm1m0(x, y)Λlmκmκ′(x, y)

...
m∑

κ=0

m∑
κ′=0

γκκ′Λlmmmm(x, y)Λlmκmκ′(x, y)


, (4.18)

which, according to Eqs. (3.7) and (3.8), leads to the following approximation:

Λlmιmι′(x, y)Λlmκmκ′(x, y) ≃
m∑

α=0

m∑
α′=0

bικαι′κ′α′Λlmαmα′(x, y), (4.19)

in which

bικαι′κ′α′ = (2α+ 1)(2α′ + 1)⟨Λlmιmι′(x, y)Λlmκmκ′(x, y),Λlmαmα′(x, y)⟩, (4.20)

Substituting Eq. (4.20) into Eq. (4.19), we get:

Λlmιmι′Λlmκmκ′ ≃
m∑

α=0

m∑
α′=0

(2α+ 1)(2α′ + 1)⟨Λlmιmι′ ,Λlmκmκ′ ,Λlmαmα′⟩Λlmαmα′ , (4.21)
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which, according to Eqs. (4.18) and (4.21), leads to:

m∑
κ=0

m∑
κ′=0

γκκ′Λlmιmι′Λlmκmκ′ =
m∑

κ=0

m∑
κ′=0

γκκ′

m∑
α=0

m∑
α′=0

(2α+ 1)(2α′ + 1)⟨Λlmιmι′ ,Λlmκmκ′ ,Λlmαmα′⟩Λlmαmα′ , (4.22)

where

ςικαι′κ′α′ = ⟨Λlmιmι′Λlmκmκ′ ,Λlmαmα′⟩ =
∫ 1

0

∫ 1

0

Λlmιmι′(x, y)Λlmκmκ′(x, y)Λlmαmα′(x, y) dx dy, (4.23)

Substituting Eq. (4.23) into Eq. (4.22), the following equation is obtained:

m∑
κ=0

m∑
κ′=0

γκκ′Λlmιmι′(x, y)Λlmκmκ′(x, y) =
m∑

α=0

m∑
α′=0

[
(2α+ 1)(2α′ + 1)

m∑
κ=0

m∑
κ′=0

γκκ′ςικαι′κ′α′

]
Λlmαmα′(x, y), (4.24)

Assuming

γ̂ιαι′α′ = (2α+ 1)(2α′ + 1)
m∑

κ=0

m∑
κ′=0

γκκ′ςικαι′κ′α′ , (4.25)

we can rewrite Eq. (4.24) as:

m∑
κ=0

m∑
κ′=0

γκκ′Λlmιmι′(x, y)Λlmκmκ′(x, y) =
m∑

α=0

m∑
α′=0

γ̂ιαι′α′Λlmαmα′(x, y), (4.26)

Finally, substituting Eq. (4.26) into Eq. (4.18), we obtain:

Ψ(x, y)ΨT (x, y)Γ =



m∑
α=0

m∑
α′=0

γ̂0α0α′Λlmαmα′(x, y)

m∑
α=0

m∑
α′=0

γ̂0α1α′Λlmαmα′(x, y)

m∑
α=0

m∑
α′=0

γ̂1α0α′Λlmαmα′(x, y)

m∑
α=0

m∑
α′=0

γ̂1α1α′Λlmαmα′(x, y)

...
m∑

α=0

m∑
α′=0

γ̂mαmα′Λlmαmα′(x, y)


. (4.27)

□

5. Numerical Method

To solve Eq. (1.1), we propose a numerical method utilizing multiplication, integral, and diagonal operational
matrices. By employing 2D-ALPs operational matrices, we transform the nonlinear integral equations into an algebraic
system. To achieve this, we assume the following:

η1(x, y) = θ1(x, y, g(x, y)), (5.1)

η2(x, y) = θ2(x, y, g(x, y)). (5.2)

Substituting Eqs. (5.1) and (5.2) into Eq. (1.1) yields:

g(x, y) = f(x, y) + λ1

∫ x

0

∫ y

0

φ1(x, y, t, s)η1(t, s) dt ds+ λ2

∫ 1

0

∫ 1

0

φ2(x, y, t, s)η2(t, s) dt ds, (5.3)
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where η1(x, y) and η2(x, y) are the unknown functions to be determined. By substituting Eq. (5.3) into Eqs. (5.1)
and (5.2), we obtain:

η1(x, y) = θ1

(
x, y, f(x, y) + λ1

∫ x

0

∫ y

0

φ1(x, y, t, s)η1(t, s) dt ds +λ2

∫ 1

0

∫ 1

0

φ2(x, y, t, s)η2(t, s) dt ds

)
, (5.4)

and

η2(x, y) = θ2

(
x, y, f(x, y) + λ1

∫ x

0

∫ y

0

φ1(x, y, t, s)η1(t, s) dt ds +λ2

∫ 1

0

∫ 1

0

φ2(x, y, t, s)η2(t, s) dt ds

)
. (5.5)

To find the unknown functions η1(x, y) and η2(x, y), we approximate these functions using 2D-ALPs as follows:

η1(x, y) ≃ ΨT (x, y)q1,

η2(x, y) ≃ ΨT (x, y)q2,

φ1(x, y, t, s) ≃ ΨT (x, y)Φ1Ψ(t, s),

φ2(x, y, t, s) ≃ ΨT (x, y)Φ2Ψ(t, s),

(5.6)

where q1 and q2 are unknown vectors of size (m + 1)2 × 1. Substituting these approximations and Eqs. (4.1), (4.3),
and (4.15) into Eqs. (5.4) and (5.5) the integral terms in Eq. (5.3) can be expressed as follows:∫ x

0

∫ y

0

φ1(x, y, t, s)η1(t, s) dt ds ≃
∫ x

0

∫ y

0

ΨT (x, y)Φ1Ψ(t, s)ΨT (t, s)q1 dt ds

= ΨT (x, y)Φ1

∫ x

0

∫ y

0

Ψ(t, s)ΨT (t, s)q1 dt ds

≃ ΨT (x, y)Φ1

∫ x

0

∫ y

0

q̂1Ψ(t, s) dt ds

≃ ΨT (x, y)Φ1q̂1

∫ x

0

∫ y

0

Ψ(t, s) dt ds

≃ ΨT (x, y)Φ1q̂1T2DΨ(x, y),

(5.7)

and ∫ 1

0

∫ 1

0

φ2(x, y, t, s)η2(t, s) dt ds ≃
∫ 1

0

∫ 1

0

ΨT (x, y)Φ2Ψ(t, s)ΨT (t, s)q2 dt ds

= ΨT (x, y)Φ2

∫ 1

0

∫ 1

0

Ψ(t, s)ΨT (t, s)q2 dt ds

≃ ΨT (x, y)Φ2ν2Dq2,

(5.8)

where ν2D is defined by Eq. (4.1). Substituting Eqs. (5.6), (5.7), and (5.8) into Eqs. (5.4) and (5.5) results in:

ΨT (x, y)q1 = θ1
(
x, y, f(x, y) + λ1Ψ

T (x, y)Φ1q̂1T2DΨ(x, y) + λ2Ψ
T (x, y)Φ2ν2Dq2

)
, (5.9)

ΨT (x, y)q2 = θ2
(
x, y, f(x, y) + λ1Ψ

T (x, y)Φ1q̂1T2DΨ(x, y) + λ2Ψ
T (x, y)Φ2ν2Dq2

)
. (5.10)

We use the set of Gauss-Chelyshkov collocation points for l = 0, . . . ,m:

(xl, yl) = (Λlm+1,0(xl) = 0,Λlm+1,0(yl) = 0)

By applying the collocation method to Eqs. (5.8) and (5.9) at these points, we obtain:

ΨT (xl, yl)q1 = θ1
(
xl, yl, f(xl, yl) + λ1Ψ

T (xl, yl)Φ1q̂1T2DΨ(xl, yl) + λ2Ψ
T (xl, yl)Φ2ν2Dq2

)
, (5.11)

ΨT (xl, yl)q2 = θ2
(
xl, yl, f(xl, yl) + λ1Ψ

T (xl, yl)Φ1q̂1T2DΨ(xl, yl) + λ2Ψ
T (xl, yl)Φ2ν2Dq2

)
. (5.12)



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-22 9

These equations constitute a system of (m+ 1)2 × 2 nonlinear algebraic equations, containing the same number of
unknowns. After solving this system, the approximate solution to Eq. (1.1) can be derived by combining the equations:

gm(x, y) = f(x, y) + λ1Ψ
T (x, y)Φ1q̂1T2DΨ(x, y) + λ2Ψ

T (x, y)Φ2ν2Dq2. (5.13)

6. Convergence Analysis

Let Cm,m(D×D) denote the space of functions h : D×D → R with continuous partial derivatives. Specifically, let

h(ι,κ)(x, y) =
∂ι+κ

∂xι∂yκ
h(x, y), (x, y) ∈ D, ι, κ = 0, . . . ,m,

The purpose of this section is to obtain an upper bound for any function approximated by 2D-ALPs.

Theorem 6.1. Assume that h(x, y) ∈ Cm+1,m+1(D) and that

hm(x, y) = ΨT (x, y)H,

is the best approximation of h in terms of its expansion using ALPs. In this case, we have:

∥h− hm∥2 ≤ 1

(m+ 1)!22m+1

(
ω1 + ω2 +

ω3

(m+ 1)!22m+1

)
, (6.1)

where the constants ω1, ω2, and ω3 satisfy the following relations:

max
(x,y)∈D×D

∣∣∣∣∂m+1h(x, y)

∂xm+1

∣∣∣∣ ≤ w1, (6.2)

max
(x,y)∈D×D

∣∣∣∣∂m+1h(x, y)

∂ym+1

∣∣∣∣ ≤ w2, (6.3)

max
(x,y)∈D×D

∣∣∣∣ ∂2m+2h(x, y)

∂xm+1∂ym+1

∣∣∣∣ ≤ w3. (6.4)

Proof. Let Pm,m(x, y) be the interpolating polynomial of h at the points(xl, yk), where l, k = 0, . . . ,m and xl = yk
are the roots of the shifted Chebyshev polynomial of degree m+ 1 in [0, 1]. For every(x, y) ∈ D, we have:

h(x, y)− Pm,m(x, y) =
∂m+1h(ζ, y)

∂xm+1(m+ 1)!

m∏
l=0

(x− xl) +
∂m+1h(x, ϱ)

∂ym+1(m+ 1)!

m∏
k=0

(y − yk)

− ∂2m+2h(ζ ′, ϱ′)

∂xm+1∂ym+1(m+ 1)!2

m∏
l=0

(x− xl)
m∏

k=0

(y − yk), (6.5)

where ζ, ϱ, ζ ′, ϱ′ ∈ [0, 1].
According to the estimate for the Chebyshev interpolation points, we have:

|h(x, y)− Pm,m(x, y)| ≤ 1

(m+ 1)!22m+1

(
ω1 + ω2 +

ω3

(m+ 1)!22m+1

)
, (6.6)

and since hm is the best unique approximation of h in Hm, we have:

∥h− hm∥22 ≤ ∥h− Pm,m∥22 =

∫ 1

0

∫ 1

0

|o(x, y)− Pm,m(x, y)|2 dx dy (6.7)

≤
∫ 1

0

∫ 1

0

(
1

(m+ 1)!22m+1

(
ω1 + ω2 +

ω3

(m+ 1)!22m+1

))2

dx dy

=

(
1

(m+ 1)!22m+1

(
ω1 + ω2 +

ω3

(m+ 1)!22m+1

))2

.

Hence, the following relation is obtained:

∥h− hm∥2 ≤ 1

(m+ 1)!22m+1

(
ω1 + ω2 +

ω3

(m+ 1)!22m+1

)
.
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□

Now, let us assume

(m+ 1)!22m+1 = υ, (6.8)(
ω1 + ω2 +

ω3

(m+ 1)!22m+1

)
= ω′.

Then

∥h− hm∥2 ≤ ω′

υ
. (6.9)

Theorem 6.2. Suppose that φ(x, y, t, s) ∈ Cm+1,m+1,m+1,m+1(D ×D) and that

φm(x, y, t, s) = ΨT (x, y)ΦΨ(x, y)

is the approximation of φ in terms of its expansion using ALPs. In this case, we have:

∥φ− φm∥2 ≤ 1

(m+ 1)!22m+1

(
ω1 + ω2 + ω3 + ω4 +

ω5 + ω6 + ω7 + ω8 + ω9 + ω10

(m+ 1)!22m+1

+
ω11 + ω12 + ω13 + ω14

(m+ 1)!224m+2
+

ω15

(m+ 1)!326m+3

)
. (6.10)

where the constants ω1, ω2, . . . , ω15 satisfy the following relation:

max
(x,y,t,s)∈D×D

∣∣∣∣∂m+1φ(x, y, t, s)

∂xm+1

∣∣∣∣ ≤ w1,

max
(x,y,t,s)∈D×D

∣∣∣∣∂m+1φ(x, y, t, s)

∂ym+1

∣∣∣∣ ≤ w2,

max
(x,y,t,s)∈D×D

∣∣∣∣∂m+1φ(x, y, t, s)

∂tm+1

∣∣∣∣ ≤ w3,

max
(x,y,t,s)∈D×D

∣∣∣∣∂m+1φ(x, y, t, s)

∂sm+1

∣∣∣∣ ≤ w4,

max
(x,y,t,s)∈D×D

∣∣∣∣∂2m+2φ(x, y, t, s)

∂xm+1∂ym+1

∣∣∣∣ ≤ w5,

max
(x,y,t,s)∈D×D

∣∣∣∣∂2m+2φ(x, y, t, s)

∂xm+1∂tm+1

∣∣∣∣ ≤ w6,

max
(x,y,t,s)∈D×D

∣∣∣∣∂2m+2φ(x, y, t, s)

∂xm+1∂sm+1

∣∣∣∣ ≤ w7,

max
(x,y,t,s)∈D×D

∣∣∣∣∂2m+2φ(x, y, t, s)

∂ym+1∂tm+1

∣∣∣∣ ≤ w8,

max
(x,y,t,s)∈D×D

∣∣∣∣∂2m+2φ(x, y, t, s)

∂ym+1∂sm+1

∣∣∣∣ ≤ w9,

max
(x,y,t,s)∈D×D

∣∣∣∣∂2m+2φ(x, y, t, s)

∂tm+1∂sm+1

∣∣∣∣ ≤ w10,

max
(x,y,t,s)∈D×D

∣∣∣∣ ∂3m+3φ(x, y, t, s)

∂xm+1∂ym+1∂tm+1

∣∣∣∣ ≤ w11,

max
(x,y,t,s)∈D×D

∣∣∣∣ ∂3m+3φ(x, y, t, s)

∂xm+1∂ym+1∂sm+1

∣∣∣∣ ≤ w12,



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-22 11

max
(x,y,t,s)∈D×D

∣∣∣∣ ∂3m+3φ(x, y, t, s)

∂xm+1∂tm+1∂sm+1

∣∣∣∣ ≤ w13,

max
(x,y,t,s)∈D×D

∣∣∣∣ ∂3m+3φ(x, y, t, s)

∂ym+1∂tm+1∂sm+1

∣∣∣∣ ≤ w14,

max
(x,y,t,s)∈D×D

∣∣∣∣ ∂4m+4φ(x, y, t, s)

∂xm+1∂ym+1∂tm+1∂sm+1

∣∣∣∣ ≤ w15.

Proof. Let Pm,m,m,m(x, y, t, s) be the interpolating polynomial of φ(x, y, t, s) at the points (xl, yk, tl′ , sk′), where
l, k, l′, k′ = 0, . . . ,m and xl = yk = tl′ = sk′ are the roots of the shifted Chebyshev polynomial of degree m + 1
in [0, 1]. For every (x, y, t, s) ∈ D ×D ×D ×D, we have:

φ(x, y, t, s)− Pm,m,m,m(x, y, t, s) =
∂m+1φ(ζ1, y, t, s)

∂xm+1(m+ 1)!

m∏
l=0

(x− xl) +
∂m+1φ(x, ϱ1, t, s)

∂ym+1(m+ 1)!

m∏
k=0

(y − yk)

+
∂m+1φ(x, y,∆1, s)

∂tm+1(m+ 1)!

m∏
l′=0

(t− tl′) +
∂m+1φ(x, y, t, σ1)

∂sm+1(m+ 1)!

m∏
k′=0

(s− sk′)

− ∂2m+2φ(ζ2, ϱ2, t, s)

∂xm+1∂ym+1(m+ 1)!2

m∏
l=0

(x− xl)

m∏
k=0

(y − yk)

− ∂2m+2φ(ζ3, y,∆2, s)

∂xm+1∂tm+1(m+ 1)!2

m∏
l=0

(x− xl)
m∏

l′=0

(t− t′l)

− ∂2m+2φ(ζ4, y, t, σ2)

∂xm+1∂sm+1(m+ 1)!2

m∏
l=0

(x− xl)
m∏

k′=0

(s− sk′)

− ∂2m+2φ(x, ϱ3,∆3, s)

∂ym+1∂tm+1(m+ 1)!2

m∏
k=0

(y − yk)
m∏

l′=0

(t− tl′)

− ∂2m+2φ(x, ϱ4, t, σ3)

∂ym+1∂sm+1(m+ 1)!2

m∏
k=0

(y − yκ)
m∏

k′=0

(s− sk′)

− ∂2m+2φ(x, y,∆4, σ4)

∂tm+1∂sm+1(m+ 1)!2

m∏
l′=0

(t− t′l)

m∏
k′=0

(s− sk′)

+
∂3m+3φ(ζ5, ϱ5,∆5, s)

∂xm+1∂ym+1∂tm+1(m+ 1)!3

m∏
l=0

(x− xl)
m∏

k=0

(y − yk)
m∏

l′=0

(t− tl′)

+
∂3m+3φ(ζ6, ϱ6, s, σ5)

∂xm+1∂ym+1∂sm+1(m+ 1)!3

m∏
l=0

(x− xl)
m∏

k=0

(y − yk)
m∏

k′=0

(s− sk′)

+
∂3m+3φ(ζ7, y,∆6, σ6)

∂xm+1∂tm+1∂sm+1(m+ 1)!3

m∏
l=0

(x− xl)
m∏

l′=0

(t− tl′)
m∏

k′=0

(s− sk′)

+
∂3m+3φ(x, ϱ7,∆7, σ7)

∂ym+1∂tm+1∂sm+1(m+ 1)!3

m∏
k=0

(y − yk)
m∏

l′=0

(t− tl′)
m∏

k′=0

(s− sk′)

− ∂4m+4φ(ζ8, ϱ8,∆8, σ8)

∂xm+1∂ym+1∂tm+1∂sm+1(m+ 1)!4

m∏
l=0

(x− xl)
m∏

k=0

(y − yk)
m∏

l′=0

(t− tl′)
m∏

k′=0

(s− sk′)

≤ ω1 + ω2 + ω3 + ω4

(m+ 1)!22m+1
+

ω5 + ω6 + ω7 + ω8 + ω9 + ω10

(m+ 1)!224m+2
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+
ω11 + ω12 + ω13 + ω14

(m+ 1)!326m+3
+

ω15

(m+ 1)!428m+4
, (6.11)

where ζ1 − ζ8, ϱ1 − ϱ8,∆1 −∆8, σ1 − σ8 ∈ [0, 1]. Now, according to Eq. (6.8), we have:

ω
′′
=

4∑
l=1

ωl +
10∑
l=5

ωl

υ
+

14∑
l=11

ωl

υ2
+

ω15

υ3
. (6.12)

Thus,

∥φ− φm∥2 ≤ ω
′′

υ
, (6.13)

where ζ1 − ζ8, ϱ1 − ϱ8,∆1 −∆8, σ1 − σ8 ∈ [0, 1]. Now, according to Eq. (6.8), we have:

ω
′′
=

4∑
l=1

ωl +
10∑
l=5

ωl

υ
+

14∑
l=11

ωl

υ2
+

ω15

υ3
. (6.14)

Thus,

∥φ− φm∥2 ≤ ω
′′

υ
. (6.15)

□

Theorem 6.3. Suppose g(x, y) is the exact solution of Eq. (1.1) and gm(x, y) is its approximate solution obtained
from the 2D-ALPs method. Also, Assume further that the nonlinear term satisfies a Lipschitz condition, as follows:

∥ηϖ(x, y)− ηϖ,m(x, y)∥ ≤ Lϖ∥g(x, y)− gm(x, y)∥, ϖ = 1, 2,

and

1− |λ1|L1 (M1 +M ′′
1 )− |λ2|L2 (M2 +M ′′

2 ) > 0.

Then, we obtain the following upper error bound:

∥g(x, y)− gm(x, y)∥ ≤ N + |λ1|L1M
′
1M

′′
1 + |λ2|L2M

′
2M

′′
2

1− |λ1|L1 (M1 +M ′′
1 )− |λ2|L2 (M2 +M ′′

2 )
,

where:

(1) For all (x, y, t, s) ∈ D ×D, max |φϖ(x, y, t, s)| = Mϖ, ϖ = 1, 2,
(2) For all (x, y) ∈ D, max |ηϖ(x, y)| = M ′

ϖ, ϖ = 1, 2,
(3) max |f(x, y)− fm(x, y)| = N,
(4) max |φϖ(x, y, t, s)− φϖ,m(x, y, t, s)| = M ′′

ϖ, ϖ = 1, 2.

Proof. According to Eq. (1.1) and approximating the functions f(x, y), g(x, y), φ1(x, y, t, s)
, φ2(x, y, t, s), θ1(t, s, g(t, s)), θ2(t, s, g(t, s)) by using ALPs, we have:

∥g(x, y)− gm(x, y)∥ ≤ ∥f(x, y)− fm(x, y)∥
+ |λ1|∥x∥∥y∥∥φ1(x, y, t, s)η1(t, s)− φ1,m(x, y, t, s)η1,m(t, s)∥
+ |λ2|∥φ2(x, y, t, s)η2(t, s)− φ2,m(x, y, t, s)η2,m(t, s)∥,

Now, considering ∥x∥∥y∥ ≤ 1, we have:

∥g(x, y)− gm(x, y)∥ ≤ ∥f(x, y)− fm(x, y)∥
+ |λ1|∥φ1(x, y, t, s)η1(t, s)− φ1,m(x, y, t, s)η1,m(t, s)∥
+ |λ2|∥φ2(x, y, t, s)η2(t, s)− φ2,m(x, y, t, s)η2,m(t, s)∥,

which implies:

∥f(x, y)− fm(x, y)∥+ |λ1|∥φ1(x, y, t, s)η1(t, s)− φ1(x, y, t, s)η1,m(t, s)
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+ φ1(x, y, t, s)η1,m(t, s)− φ1,m(x, y, t, s)η1,m(t, s)∥
+ |λ2|∥φ2(x, y, t, s)η2(t, s)− φ2(x, y, t, s)η2,m(t, s)

+ φ2(x, y, t, s)η2,m(t, s)− φ2,m(x, y, t, s)η2,m(t, s)∥
≤ N + |λ1| (∥φ1(x, y, t, s)∥∥η1(t, s)− η1,m(t, s)∥)
+ ∥φ1(x, y, t, s)− φ1,m(x, y, t, s)∥
·(∥η1,m(t, s)− η1(t, s)∥+ ∥η1(t, s)∥))
+ |λ2| (∥φ2(x, y, t, s)∥∥η2(t, s)− η2,m(t, s)∥)
+ ∥φ2(x, y, t, s)− φ2,m(x, y, t, s)∥
·(∥η2,m(t, s)− η2(t, s)∥+ ∥η2(t, s)∥) ,

which by using assumptions {1}–{4}, we have:

∥g(x, y)− gm(x, y)∥ ≤ N + |λ1| (M1L1∥g(x, y)− gm(x, y)∥+M ′′
1 L1(∥g(x, y)− gm(x, y)∥+M ′

1))

+ |λ2| (M2L2∥g(x, y)− gm(x, y)∥+M ′′
2 L2(∥g(x, y)− gm(x, y)∥+M ′

2)) .

□

7. Numerical examples

In this study, we have implemented a numerical algorithm using MATLAB to evaluate the performance of the
proposed method through a series of examples. These examples enable us to compare the effectiveness of the proposed
method against other existing methods. The accuracy of the method is quantified using the following relations, which
define error terms:

em(x, y) = |g(x, y)− gm(x, y)|, (x, y) ∈ D, (7.1)

∥em∥∞ = max{em(xl, yl)},
where g represents the exact solution, and gm is the approximate solution obtained via the proposed method. The
points (xl, yl) correspond to the selected collocation points used in the calculations.

Remark 7.1. In this article, we consider both dimensions equal (m = n).

Example 7.2 ([25]). Consider the following nonlinear integral equation:

g(x, y) = f(x, y) +

∫ y

0

∫ x

0

(−x− y − t− s)g2(t, s) dt ds+

∫ 1

0

∫ 1

0

(−xy − ts2)g(t, s) dt ds; (x, y) ∈ D, (7.2)

where the function f(x, y) is defined as:

f(x, y) = x2 +
1

4
+

17

6
xy +

7

9
x3y4 +

29

18
x4y2 +

6

5
x5y2 +

11

30
x6y.

The exact solution of the equation is given by g(x, y) = x2 + 2xy. This Equation (7.2) is classified as a nonlinear
Volterra-Fredholm integral equation. To solve this problem, we employ the ALPs method, which utilizes product and
integral operational matrices.

We have compared the absolute error and maximum error of the proposed method with the methods reported in [2],
[11], and [25]. As presented in Table 1, it is evident that the error of our method is significantly lower. Additionally,
to further illustrate the effectiveness of the method, we computed the error at various points, which is summarized in
Table 2.

The graphs of the absolute error, approximate solution, and exact solution for m = 8 are displayed in Figure 1.
Furthermore, in Figure 2, we plot the progression of the absolute error for m = 2, 4, and 6.

In Table 3, we provide the CPU time for all computational steps corresponding to the values of m = 4, 5, 6, 7, 8, and
9, which demonstrates the efficiency of the proposed method, particularly in handling a high volume of calculations
with increasing values of m.
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Table 1. Absolute errors: |em(x, y)| for Example 7.2.

(x, y)
Present method Method in [2] Method in [11] Method in [25]

m = 4 m = 6 m = 8 m = 8 m = 8 m = 4 m = 6
(0.0, 0.0) 1.83E-5 2.18E-8 2.16E-9 4.71E-6 1.73E-3 3.05E-3 8.29E-4
(0.1, 0.1) 1.08E-4 5.29E-9 5.06E-9 4.09E-4 1.65E-3 3.16E-3 8.51E-4
(0.2, 0.2) 1.17E-4 4.29E-9 8.24E-10 1.63E-4 1.43E-3 3.50E-3 8.19E-4
(0.3, 0.3) 2.20E-4 5.03E-9 1.27E-8 8.81E-4 1.35E-3 2.72E-3 6.14E-4
(0.4, 0.4) 4.52E-4 4.52E-9 4.62E-9 7.69E-4 1.65E-3 3.91E-5 2.89E-3
(0.5, 0.5) 1.00E-4 4.73E-9 5.83E-9 1.33E-3 3.15E-4 1.91E-3 1.02E-3
(0.6, 0.6) 6.41E-4 6.94E-9 1.12E-8 2.71E-3 8.16E-3 3.35E-2 5.15E-3
(0.7, 0.7) 7.52E-4 8.68E-9 2.90E-8 6.21E-3 2.53E-2 2.11E-2 1.18E-2
(0.8, 0.8) 6.89E-4 6.12E-9 1.62E-8 1.20E-2 4.38E-2 3.85E-2 8.77E-3
(0.9, 0.9) 1.95E-3 2.92E-8 3.68E-8 1.88E-2 2.99E-2 8.06E-2 2.83E-2
∥em∥∞ 1.95E-3 2.92E-8 3.68E-8 1.88E-2 4.38E-2 8.06E-2 2.83E-2

Figure 1. Plots of numerical results for Example 7.2.

Example 7.3 ([17]). Consider the following two-dimensional nonlinear integral equation:

g(x, y) = f(x, y) +

∫ y

0

∫ x

0

(x+ y − s− t)g2(t, s)dtds; (x, y) ∈ D, (7.3)



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-22 15

Figure 2. Absolute errors for Example 7.2.

Table 2. Absolute errors: |em(x, y)| for Example 7.2 at different points.

(x, y)
Present method

m = 5 m = 6 m = 7
(0.05, 0.05) 2.96E-6 1.02E-8 2.17E-8
(0.15, 0.15) 4.09E-6 4.02E-9 4.91E-9
(0.25, 0.25) 1.42E-5 4.82E-9 4.98E-9
(0.35, 0.35) 8.37E-6 4.85E-9 4.97E-9
(0.45, 0.45) 1.89E-5 4.38E-9 3.07E-9
(0.55, 0.55) 2.19E-5 5.64E-9 4.60E-9
(0.65, 0.65) 1.90E-5 8.18E-9 9.38E-9
(0.75, 0.75) 4.68E-5 7.85E-9 9.68E-9
(0.85, 0.85) 1.80E-5 7.92E-9 2.55E-9
(0.95, 0.95) 3.35E-5 1.15E-7 3.34E-8
∥em∥∞ 4.68E-5 1.15E-7 3.34E-8
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Table 3. CPU time(s) of proposed method for Example 7.2.

Compute
Ψ(x, y)

Compute ς Compute Φ1 Compute Φ2
Compute
T2D matrix

Compute
ν2D

Total
CPU time(s)

Max error

m = 4 0.000778 0.009883 0.021268 0.022386 0.001766 0.000733 1.472287 6.06E-3
m = 5 0.023839 0.023839 0.040263 0.041343 0.002087 0.000814 3.837237 2.04E-4
m = 6 0.001223 0.055802 0.064608 0.065971 0.003638 0.000569 8.588116 3.74E-7
m = 7 0.001068 0.128283 0.115509 0.116243 0.004143 0.000548 22.689024 3.47E-7
m = 8 0.001303 0.255771 0.185068 0.178971 0.006797 0.000784 60.744029 2.10E-7
m = 9 0.001805 0.489955 0.287980 0.326172 0.007817 0.000811 165.824428 2.36E-7

Table 4. Absolute errors: |em(x, y)| for Example 7.3.

(x, y)

Legendre
polynomials
method [17]

m = 4

Chebyshev
polynomials
method [17]

m = 4

Haar
wavelet

method [3]
m = 32

Present
method
m = 4

(0.5, 0.5) 9.2E-10 1.1E-10 3.1E-2 4.9E-10
(0.25, 0.25) 8.0E-10 1.7E-10 3.1E-2 6.9E-11
(0.125, 0.125) 7.0E-10 8.3E-10 3.1E-2 5.6E-11
(0.0625, 0.0625) 5.3E-10 5.2E-10 3.1E-2 6.3E-13

(0.03125, 0.03125) 8.0E-10 2.5E-10 1.2E-3 1.5E-11
(0.015625, 0.015625) 1.2E-10 1.1E-10 2.2E-9 1.4E-11

∥em∥∞ 9.2E-10 8.3E-10 3.1E-2 4.9E-10

where

f(x, y) = x+ y − 1

12
xy(x3 + 4x2y + 4xy2 + y3).

The exact solution of the equation is given by g(x, y) = x + y. We present the numerical results of this example,
comparing the absolute error and maximum error of the proposed method for m = 4 in Table 4 with other methods,
such as Haar wavelets [3], Chebyshev polynomials [17], and Legendre polynomials [17]. The error of the proposed
method is lower compared to these methods. The plots of the absolute error, approximate solution, and exact solution
for m = 4 are shown in Figure 3. Additionally, we report the CPU time in Table 8, confirming the efficiency of the
method.

Example 7.4 ([25]). Consider the following two-dimensional integral equation:

g(x, y) = f(x, y) +

∫ 1

0

∫ 1

0

(t · sin(s) + 1)g(t, s)dtds; (x, y) ∈ D, (7.4)

where

f(x, y) = x · cos(y)− sin(1)

6
(sin(1) + 3).

The exact solution of the equation is given by g(x, y) = x · cos(y). We present the numerical results of this example,
comparing the absolute error and maximum error of the proposed method with the method [25] in Table 5. The plots
of the absolute error, approximate solution, and exact solution are shown in Figures 4 and 5. Additionally, we report
the CPU time in Table 8, confirming the efficiency of the method.

Example 7.5 ([25]). Consider the following two-dimensional Volterra integral equation:

g(x, y) = f(x, y) +

∫ y

0

∫ x

0

(x · y2 + cos(s))g2(t, s)dtds; (x, y) ∈ D, (7.5)
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Figure 3. Plots of numerical results for Example 7.3.

Table 5. Absolute errors: |em(x, y)| for Example 7.4.

(x, y)
Present method Method in [25]
m = 7 m = 8 m = 8 m = 16

(0.0, 0.0) 7.37E-8 7.57E-9 9.50E-6 5.91E-7
(0.1, 0.1) 1.09E-7 9.74E-10 1.02E-5 4.79E-7
(0.2, 0.2) 1.13E-7 1.38E-8 5.92E-6 2.95E-7
(0.3, 0.3) 1.12E-7 7.16E-9 2.25E-5 1.30E-6
(0.4, 0.4) 1.13E-7 3.14E-9 2.07E-7 3.18E-6
(0.5, 0.5) 1.13E-7 1.70E-8 9.50E-6 5.91E-7
(0.6, 0.6) 1.13E-7 3.14E-9 3.12E-5 4.48E-6
(0.7, 0.7) 1.12E-7 7.16E-9 4.29E-5 2.89E-6
(0.8, 0.8) 1.13E-7 1.38E-8 8.49E-5 5.11E-6
(0.9, 0.9) 1.09E-7 9.69E-10 3.38E-5 1.18E-5
(1.0, 1.0) 7.37E-8 7.57E-9 9.50E-6 5.91E-7
∥em∥∞ 1.13E-7 1.38E-8 8.49E-5 1.18E-5
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Figure 4. Absoulte errors for Example 7.4.

Figure 5. Plots of numerical results for Example 7.4.

where

f(x, y) =
x6

20
(sin(2y)− 2y) +

x

9
sin(y)(9− x2 · sin2(y)).

The exact solution of the equation is given by g(x, y) = x · sin(y). We present the numerical results of this example,
comparing the absolute error and maximum error of the proposed method for m = 4, 8 with another methods in
Table 6. The plots of the absolute error, approximate solution, and exact solution are shown in Figures 6 and 7.
Additionally, we report the CPU time in Table 8, confirming the efficiency of the method.

Example 7.6 ([4]). Consider the following two-dimensional Volterra-Fredholm integral equation:

g(x, y) = f(x, y) +

∫ y

0

∫ x

0

xsg2(t, s)dtds+

∫ 1

0

∫ 1

0

(t− y)g(t, s)dtds; (x, y) ∈ D, (7.6)

where

f(x, y) =
−1

16
(16y + 16 cos(1)− 16 cos(2)− 32 sin(1) + 16 sin(2)− 16 cos(y + x)

+ 4y2x2 − x sin(2y)− x sin(2x)− 32y cos(1) + 16y cos(2) + x sin(2y + 2x)
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+ 2yx cos(2y)− 2yx cos(2y + 2x)).

The exact solution of the equation is given by g(x, y) = cos(x+ y). We present the numerical results of this example,
comparing the absolute error and maximum error of the proposed method for m = 6 with another methods in Table 7.

Table 6. Absolute errors: |em(x, y)| for Example 7.5.

(x, y)
Present method Method in [25] Method in [3]
m = 4 m = 8 m = 4 m = 8 m = 4 m = 8

(0.5, 0.5) 3.8E-6 2.2E-10 7.7E-6 1.1E-6 1.2E-1 6.0E-2
(0.25, 0.25) 2.8E-8 1.5E-11 4.5E-7 1.2E-7 7.5E-2 3.4E-2
(0.125, 0.125) 1.3E-9 1.0E-12 2.3E-6 2.1E-9 3.8E-5 1.9E-2

(0.0625, 0.0625) 7.0E-9 3.5E-14 3.0E-6 2.0E-8 1.2E-2 2.5E-6
(0.03125, 0.03125) 8.0E-9 3.5E-14 1.2E-6 4.0E-8 1.4E-2 2.9E-3
(0.015625, 0.015625) 1.0E-8 3.1E-15 3.6E-7 1.7E-8 1.5E-2 3.6E-3

∥em∥∞ 3.8E-6 2.2E-10 7.7E-6 1.1E-6 1.2E-1 6.0E-2

Figure 6. Absoule errors for Example 7.5.

Figure 7. Plots of numerical results for Example 7.5.
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Table 7. Absolute errors: |em(x, y)| for Example 7.6.

(x, y)
Method, m = 6

Present method Method in [4]
(1.0, 1.0) 3.2E-6 3.6E-6
(0.5, 0.5) 4.0E-8 1.1E-5
(0.25, 0.25) 9.2E-9 4.5E-5

(0.125, 0.125) 8.7E-8 2.2E-5
(0.0625, 0.0625) 9.7E-8 1.8E-5
(0.03125, 0.03125) 9.0E-8 1.8E-5

(0.015625, 0.015625) 8.9E-8 1.8E-5
∥em∥∞ 3.2E-6 4.5E-5

Table 8. Total CPU time (s) of examples.

Example m = 4 m = 5 m = 6 m = 7 m = 8 m = 9
Example 2 0.680725 1.716595 4.080173 9.922513 29.200006 64.32143
Example 3 0.556352 1.549495 5.058304 13.604409 35.530252 88.656782
Example 4 1.437029 7.959578 22.511002 27.06528 53.315282 127.049667
Example 5 1.065567 2.168973 7.279949 18.601045 52.242704 126.166915

The plots of the absolute error, approximate solution, and exact solution are shown in Figures 8 and 9. Additionally,
we report the CPU time in Table 8, confirming the efficiency of the method.

8. Conclusion

In this research, we successfully applied 2D-ALPs operational matrices and the collocation method to solve two-
dimensional nonlinear integral equations. A key contribution of this work is the development of explicit formulas for
product, integration, and diagonal operational matrices, which enable efficient approximation of functions involving
two and four variables. One of the significant advantages of the proposed method is that it simplifies the original
problem into a nonlinear system of algebraic equations, achieving accurate results with only a small number of basis
functions. The effectiveness of the method was demonstrated through several numerical examples, which showed that
the approach is both computationally efficient and highly accurate. Additionally, the error analysis of the method was

Figure 8. Absolute errors for Example 7.6.
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Figure 9. Plots of numerical results for Example 7.6.

rigorously examined through three theoretical theorems. Numerical experiments, presented in tabular form within
the examples, demonstrate that the proposed numerical solution achieves both high accuracy and computational
efficiency. These results validate the reliability and efficiency of the method, highlighting its potential for solving
complex nonlinear integral equations.
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