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Abstract r )

In this article, we propose a numerical method based on alternative Legendre polynomials for approximating
the solutions of two-dimensional linear and nonlinear Volterra-Fredholm integral equations. Alternative Legendre
polynomials, known for their some special features and simplicity in constructing operational matrices, provide
an efficient basis for this method. By employing the integration and product operational matrices of alternative
Legendre polynomials, the integral equations are reduced to a system of algebraic equations, simplifying the
computational process. Error analysis is conducted to assess the method’s accuracy, and several examples are
presented to validate the high precision and efficiency of the proposed approach. The results confirm the accuracy
and effectiveness of the method in solving complex integral equations.
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1. INTRODUCTION

The study of integral equations, particularly Volterra-Fredholm integral equations, plays a crucial role in the
mathematical modeling of various physical and engineering phenomena. These equations are often challenging to
solve due to their inherent complexity, especially when dealing with nonlinearities and multiple dimensions. In recent
years, numerous numerical techniques have been developed to address such complexities. The primary aim of this
article is to introduce a novel numerical method for solving two-dimensional nonlinear Volterra-Fredholm integral
equations of the form:

z ry
o(x,9) = f@y) + A /0 /0 o1, )81 (1, 5, (1, ))dids

+ /\2/0 /0 wa(z,y,t,8)02(t, s,9(t, s))dtds, (z,y) € D =10,1] x [0,1], (1.1)

where A1 and Ay are arbitrary constants, and g(x,y) is the unknown function defined in D. The functions f(z,y),
v1(x,y,t,s), and @a(z,y,t,s) are known functions. Also, the functions 0 (¢, s, g(t, s)), for w = 1,2, are continuous on
the domain [0, 1] X (=00, +00) and depend on g in a nonlinear manner. The existence and uniqueness of the solution
to two-dimensional nonlinear integral equations can be found in [1, 11, 22, 23, 26].

The problem involves both Volterra and Fredholm components, making it a mixed-type integral equation, which
further adds to its complexity. Several methods have been developed for solving two-dimensional (2D) integral equa-
tions, each aiming to reduce the integral equation to a system of algebraic equations, facilitating easier computation.
Notable contributions in this area include the works of Babolian et al. [3], Mirzaee et al. [13], Ordokhani et al. [16],
and Rashidinia et al. [19], where various polynomial-based and collocation methods have been employed. These tech-
niques typically involve expanding the unknown function in terms of a suitable basis, which allows for the reduction
of the original problem to a finite-dimensional system.
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In this paper, we propose a novel approach based on alternative Legendre polynomials (ALPs) for approximating
the solutions of two-dimensional nonlinear Volterra-Fredholm integral equations. Polynomials, especially orthogonal
ones, are powerful mathematical tools for solving integral equations due to their flexibility, orthogonality properties,
and the ease with which they can be manipulated in computational frameworks. In particular, alternative Legendre
polynomials have desirable features such as orthogonality over a finite interval and simple recursive relations, which
make them ideal for use in operational matrix methods.

The main contribution of this paper lies in the construction and application of operational matrices for integration
and multiplication based on ALPs. These operational matrices are employed to transform the integral equations into
a system of algebraic equations, significantly reducing the computational complexity of the problem. By doing so,
the computational process becomes more efficient, and higher accuracy can be achieved with fewer polynomial terms,
making this method particularly attractive for solving high-dimensional problems.

Operational matrices have been extensively utilized in the literature for the numerical solution of various types
of differential and integral equations. Examples include the works of Chen and Hsiao [8], Sannuti [21], Razzaghi
and Yousefi [20], Hwang and Shih [12], Paraskevopoulos [17], Chan and Wang [6], Yousefi and Behroozifar [24],
Paraskevopoulos et al. [18], and Horng and Chou [10]. Among the various classes of polynomials used in these
methods, ALPs have shown superior computational efficiency and accuracy, particularly when applied to nonlinear
integral equations, making them the focus of this study.

Bazm et al. [5] used alternative Legendre polynomials (ALPs) to solve one-dimensional (1D) Volterra-Fredholm
integral equations. We provide a detailed overview of alternative Legendre polynomials, including their definitions,
properties, and the construction of the corresponding operational matrices for the numerical solution of one-dimensional
(1D) integral equations as a preliminary step. Then, we extend the method to the two-dimensional Volterra-Fredholm
integral equation described in Eq. (1.1). Error analysis is conducted to assess the method’s accuracy, and several
examples are presented to demonstrate the high precision and efficiency of the proposed approach. The results confirm
the accuracy and effectiveness of the method in solving complex integral equations.

2. FUNDAMENTALS OF 1D-ALPS

In this section, we will briefly review the ALPs and some of the operational matrices used in this article, as well as
the approximation of a univariate function.

Deifnition 2.1 ([7]). The first family of 1D-ALPs is defined as follows:

Al () :nf(—l)“(m_o‘> (m+o‘+“+1)xa+“, a=0,1,...,m. (2.1)

KR m—«
k=0

According to the weight function w = 1, the ALPs are orthogonal on the interval [0, 1], and every term in the set
Aly = {Alpo(2)}0, has degree m.

One of the key matrices introduced in this article, which plays a central role in reducing the solution of integral
equations to systems of algebraic equations, is the diagonal matrix v1p. This matrix is also utilized in the numerical
treatment of two-dimensional integral equations. We begin by defining

U(x) = [Mlmo(2), A1 (2), . .., My ()]

and, using the function ¥(z), the following relation is obtained:

m

1
1
_ T — dj
Vip, = /0 U(z)U* (z) dx = diag { S }L_O , (2.2)

where v1p, is a diagonal matrix of order (m + 1) x (m + 1), and ¥(z) is an (m + 1) x 1 column vector.

(=)=
E)NE
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Another important matrix is the operational matrix of integration, defined by the relation fow U(t)dt ~ Thip¥(x),
where W(x) is the vector of ALPs as defined in (2.2), and Tip = [Tar]y o denotes the operational matrix for one-
dimensional ALP integration of order (m+ 1) X (m +1). The entries 7, are given explicitly by the following formula:

m—o (_1)5 (m,a) (m+a+n+1) m—r (_1)1 (mfr) (m+r+l+1)

Tar:(2r+1)’; a,il—/f—klmia ; a+rl+l+,:—?2 (23)
Now, given a univariate function h,,(z), its approximation is computed as follows [9]:
hon(z) = i haMlpma (), (2.4)
a=0
where the coefficients h, are given by
he = ((z), Alma () = 2a+ 1){(h(z), Alpe(z)), a=0,1,...,m. (2.5)

<Alma7 Alma>

3. FUNDAMENTALS OF 2D-ALPS

We use ALPs to address problems related to integral equations. The extension of ALPs to two dimensions is a
novel approach presented in this article. Below, we define and approximate functions of two and four variables. Let
U(z,y) be a vector composed of two-variable ALPs:

\I/(SC, y) = [AlmOmO(m; y)7 AlmOml(my y)7 s 7Alm0mm ('1:’ y)y Almlmo ('l:a y)7 e (31)
At (2, 9)s -+ s Mmoo (2, 9), -+« s My (2, 9)]"5  (2,9) € D.
The vector W¥(xz,y) is of size (m + 1)? x 1, and it can be obtained via the Kronecker product of ¥(z) and ¥(y):

Y(z,y) = ¥(z) ® V(y), (3.2)
where each element of the resulting matrix is defined by:
Almamar = Mo (2) Mo (y), o' =0,1,...,m. (3.3)

Now, let us assume that H = L?(D), so that the inner product and norm in this space are defined by:

o) b)) = [ [ hwbio.y) dedy, (3.4)

_ </01/01 |h(x,y)|2d:rdy);. (3.5)

7'Lrn = Span{AlmOmO (.’IJ, y)a Alm()ml (.’IJ, y)a sy Almmmm(ma y)}

SIS

[Pz, y)ll2 = (h(2,y), h(z, y))

Consider the finite-dimensional subspace:

The space H.,, is a closed subspace of H, and for every h(z,y) € H, there exists a unique best approximation
him(2,y) € Hpy, satisfying:

1= hlla < [[h=bll2, Vb€ Hyp (3.6)
Furthermore, we have the following representation:
hm(i',y) = Z Z haoc’Almama’ (ﬂﬁ,y) = \IIT(l‘,y)H, (37)
a=0a’'=0

where the coeflicients are given by:

((h(z,9), Alima(2)), Alimar (y))
(Mmers Mina) (Mmar s Mo

haar = = 200+ 1)(20 + 1) {1, Alma), Almar), (3.8)
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and thus, based on the ALP basis, any function h(z,y) € D can be approximated as:

W) ~ hn(2,y) = ©7 (2,9)H, (3.9)
where

H = [hoo, Rots - - s Poms P10 - - s Bams -+ s B0 -+« s B ] -+ (3.10)

The vector H is of dimension (m + 1)?
Moreover, any four-variable function ¢(x,y,t,s) € L?(D x D) can be approximated in terms of ALPs as follows:
P(@,y,t,8) = om(@,y,t,5) = W (2,y)V(t, 5), (3.11)
where
<<90(xa Y, t, 3)7 AlmLmn>, AlmL’mn’>
<Almbmfw Almbmfi> <Almb’mm’ ’ Almb’mm’)
= (2t +1)2x+ 1)(2 +1)(2k" + 1) {o(z,y, t, 8)y M (2, 1)) My (4, 8)), (3.12)

Pk k! =

and ® = Qi ]o<i im0 w'<m i @ matrix of dimension (m + 1)? x (m + 1)%. It can also be shown that the function
©m(x,y,t,s) provides the best unique approximation for the function ¢(z,y,t,s).
4. OPERATIONAL MATRICES

Theorem 4.1. Assume that the diagonal matrices vip, andvip, correspond to the vectors W(x) and ¥(y), respectively.
Then, the following relation holds:

Y2D(y., = V1D, @ V1D, (4.1)

The diagonal matriz vop,, ,, associated with the vector U(x,y), can thus be constructed from the Kronecker product
of these matriz.

Proof. Based on Eq. (2.2), the diagonal matrix corresponding to the bivariate vector ¥(x,y) is defined as follows:

V2D, / / (2, y) V" (z,y dmdy—/ / 2)] @ [W(y) ¥ (y)] da dy

=M@UWU4 M@UWHM, (42)

which confirms that vop ,  is an (m+1)% x (m +1)? matrix. O

y)
Theorem 4.2. Assume that V(z,y) is the 2D-ALPs, defined in Eq. (3.1). Then:

/ ’ / LWt ) dt ds ~ (TypAa(2)) @ (T pAmar (3)) = (Tip © Tan)¥ (2, ) = Top¥(z, 1), (4.3)

where T1p is the operational matriz defined by Eq. (2.8), and Top is the operational matriz of integration 2D-ALPs
of order (m + 1) x (m + 1)2.

Proof. Considering the integral of the vector ¥(z,y), we have:

[ fO foy AlmOmO t S) dtds
fo 0 AlmOml(t s)dtds

x Yy .
/0 /0 \I/(t7 S) dtds = fOI foy Almama’ (t» 3) dtds|’ (4.4)

LIS S Mmmin (¢, 8) dt ds
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Now, in terms of Eq. (3.3), we can write the following equation:

x Yy z )
/ / My (£, 5) dt ds = / / Ay (£) Ay (5) dt ds, (4.5)
0 0 0 0

that according to Eq. (2.1), we have:

[ [ s 7o () (510 )

/ (4.6)
m—a o ’ 1 ,
Z(—l)b<m a)(m—&—a—&—b/—i— )s‘X'H dtds, o,d',i,k=0,...,m,
g L m-—a«
where
. y m—o (_ {\k(M—Q m—+a+r+1 xa+n+1 m—a’ 1)t m—ao’ m+o/+Ll+1 o’ +i+1
/ / Alpamar (£, 8) dtds = | Y CED ) (nZa ) - SO ),( e )Y . (4.7)
o Jo e a+r+1 g o +u+1
by approximating z®t#*+! and y® Tt with the help of Eq. (2.4), we have:
m m—r l(m ’I‘) (m+r+l+1)
atr+1 ~ 2 1 m-—r Almr 4.8
=3 s ; UCI s ), (48)
, m—r’ (_1)1 (m—/r’) (m+r:|-l/’+1)
el o N T (9 1 L P Ny 4.9
y TJZ:O(T—’— )llgo O/—|—7"—|—l'—|—l,—|-2 (y)7 ( )

Substituting Eqgs. (4.8) and (4.9) into Eq. (4.7), the following equation is obtained:

T () (M) T () () (M

/ / Mlpamer (t, s) dt ds ~ g (2r +1) ZZ:O a*:LHJF{”“* ; a+r+l+::2 Al (z)  (4.10)
S [ I T IO,
=0 L= =0

where

SR
S el

which according to Eqgs. (4.10), (4.11), and (4.12), we have:

T y m m
/ / Almame(t,s) dtds ~ (Z(Tm'ra/r/)Almr(x)Almr/(y)) : (4.13)
0 0 r=0 \r'=0
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now by substituting Eq. (4.13) into Eq. (4.4), we can conclude:

< Z TOT’TOTIAlmeT/ (IL’, y))

r’=0

%
it

NgE!

m
Z TOrTlr’Almer’ (.’IJ, y)
r’'=0

< Z TerOr’Almrmr’ (IL’, y)) ! (414)
r’'=0

ﬁ
I
<}
I

NIE

x oy
/ / U(t,s)dtds ~
o Jo

%
Il
=3

3

Z ( Z TmrTmr/Almrmr’ (1'7 y))

Lr=0 =0

O

Theorem 4.3. Suppose that T = [Y00, Y01 - - - Yoms V105 - -« » Yims - - « s Ym0s - - - » Ymm) - 8 @ (m + 1)% x 1 vector. Then
we have:

U(a,y) U7 (2, y)T ~ T (2, y), (4.15)

where ' = oo arlo<iau ar<m 18 the operational matrix of the product for 2D-ALPs and of order (m+1)? x (m+1)?,
in which:

’A}Qauo/ = (20& + 1)(20/ + 1) Z Z Ver'Stkal k' o (416)
k=0kx'=0
where
1 1
Stk ko = <AlmHmHIAlmLmbl7 Almama’> = / / Almnmm' (.’E, y)AlmLmL’ (.’17, y)Almama’ (.’IJ, ?J) dx dya (417)
0 0
Proof. At first, we assume:
Z Z 'Yﬁn/AlmOmO (1'7 y)Almnmn/ (x; y)
k=0 k=0
Z /Z ’YNH’AlmOml (.’I}, y)Almﬁmm’ (SC, y)
. RTTLO ”50
V() (2, )0 = | S 3 v Mo (@, y) Mo (2, ) | 5 (4.18)
k=0 k=0
20 ’ZO Wnn’Almmmm(xv y)AlmnmN’ (:I;a y)
which, according to Egs. (3.7) and (3.8), leads to the following approximation:
AlmLmL/(x, y)Almnmn’ (.T, y) = Z Z bLnaL’n’a’Almama’ (ZL’, y)a (419)
a=0a’=0
in which
bu{al/n’a’ = (20[ + 1)(20/ + 1) <AlmLmL/ (‘T? y)Almmmra’ (937 y), Almama’ (‘T; y)>7 (420)
Substituting Eq. (4.20) into Eq. (4.19), we get:
AlmLmL/Almrcmn’ = Z Z (20& + 1)(204/ + 1)<AlmLmUa Almnmn/v Almama’>Almam(x/7 (421)

a=0a’'=0

(=)=
E)NE
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which, according to Eqs. (4.18) and (4.21), leads to:

Z Z Wﬁm’AlmLmL’Almnmn — Z Z Ver! Z Z 20é + 20/ + 1)<AlmLmL’7 Almnmn’a Almama’>Almamo¢’7
K=0kK'= k=0 k'= a=0a/=0
where

Skal kol = <AlmLmL/Almnmn’7 Almama’> = / / AlmLmL/ (Iv y)Almmmm’ (SC, y)Almama’ ($, y) dx dya
0

Substituting Eq. (4.23) into Eq. (4.22), the following equation is obtained:

Z Z ’Ymc’AlmLmL’ (Iay)Almnmn (1‘ y Z Z 205 + 1) 20[ +1 Z Z Ver!Stkal v o’ Alamar (Ly),
k=0 ~r'=0 a=0a’'=0 =0k’
Assuming
;?LOLL/OL’ = (204 -+ 1)(2C¥/ + ]-) Z Z Yer!Stkal kK o’
k=0kx'=0

we can rewrite Eq. (4.24) as

Z Z ’Yﬁn’AlmLmL x y)A merme’ (1'7 y) =~ Z Z ’?Low/a’Almama’ (.’E, y),

k=0 k'=0 a=0a’'=0

Finally, substituting Eq. (4.26) into Eq. (4.18), we obtain:

’AYOaOo/Almama’ ($7 y)

NgE
NgE

Q
I
o
Q\
I
o

NgE
NgE

&Oala’AZmama’ ({)37 y)

Q
]
o
Q\
I
o

NE
NE

:YlaOoz’Almama’ (I7 y)

Q
I
o
Q\
|
o

U (z,y) U7 (z,y)T ~

NgE!
NgE!
Y

lala’ Almama’ (J}, y)

Q
I
o
Q\
I
o

3

La=

m
Z ’YmomLoz’Almama (33 y)
0a’=0

5. NUMERICAL METHOD

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

To solve Eq. (1.1), we propose a numerical method utilizing multiplication, integral, and diagonal operational
matrices. By employing 2D-ALPs operational matrices, we transform the nonlinear integral equations into an algebraic

system. To achieve this, we assume the following:

771(37,'9) = 91(x>yag($>y))7
n2(z,y) = O2(2,y, 9(2,y)).
Substituting Eqgs. (5.1) and (5.2) into Eq. (1.1) yields:

T Y 1 1
g(x,y) = f(2,y) + M / / (@, .t $)u (b, 5) di ds + Ao / / pa(@, 9,1, 8)1ia(t, 5) dt ds,
0 0 0 0
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where 7 (z,y) and nz(z,y) are the unknown functions to be determined. By substituting Eq. (5.3) into Egs. (5.1)
and (5.2), we obtain:

Ty 1,1
771($ay) = 01 <x7yaf(xay) +)‘1/ / wl(z,yata S)nl(tvs) dtds +)\2/ / 902(%3/,75»3)772(15,5) dtds) ’ (54)
o Jo o Jo
and
z oy 1,1
772(1'7:'4) = 02 <x7yaf(xay) +)\1 / / Sol(x,yvta S)nl(tvs) dtds +)\2/ / Lpg(x,y,t78)772(t,$) dt d8> . (55)
o Jo o Jo
To find the unknown functions 7y (z,y) and n2(x,y), we approximate these functions using 2D-ALPs as follows:

m(z,y) ~ ‘I’T(w Y)a1,

2z, y) = U (2,9)qs,
5.6
QDl(.’E,yﬂf,S) \IIT(Z. y)q)l ( ) ( )
@2(x7y7t’3) (l‘ y)q)2 ( )

where ¢; and g are unknown vectors of size (m + 1)? x 1. Substituting these approximations and Egs. (4.1), (4.3),
and (4.15) into Egs. (5.4) and (5.5) the integral terms in Eq. (5.3) can be expressed as follows:

//cplxy,tsm dtdSN// T2, y)®1W(t,s)VT (¢, 5)q) dt ds

=yt xycbl// (t, s)UT(t,s)q dt ds

—‘I’T(l’;y)‘bl/ / @ (t,s)dtds (5.7)

Ty

—‘I’T(x,y)q’ltﬁ/ / U(t,s)dtds
o Jo

~ U (z,y) @11 Top ¥ (2, y),

and

1
/ / wa(x,y,t, s)na(t, s dtdSN/ / (z,y) DU (t, s)UT (¢, 5)qo dt ds
o Jo

= \IIT(x,y)(PQ/ / U(t,s)UT(t,5)qo dt ds (58)
0o Jo
~ U (2,y) P22,
where vop is defined by Eq. (4.1). Substituting Eqs. (5.6), (5.7), and (5.8) into Egs. (5.4) and (5.5) results in:
\I/T<xay)Q1 =0, (x7yaf(xay) +)‘1\IJT(x7y)(I)1quT2D\II($7y)+A2 33 Y (I)QVQDQQ) ) (59)
U (2,9)q2 = 02 (z,y, f(2,y) + MUT (2,9) 210 Top ¥ (2, y) + AW (2, y)Paropge) - (5.10)
We use the set of Gauss-Chelyshkov collocation points for [ =0,...,m
(@i, 1) = (Mms1,0(@) = 0, Almy1,0(yi) = 0)
By applying the collocation method to Egs. (5.8) and (5.9) at these points, we obtain:
U2,y = 01 (2o, w0, f(@,y) + M8 (2, y) @11 Top ¥ (2, i) + AU (20, 11) Paropge) | (5.11)
U (@, ) g2 = 02 (2, y0, f(@,u) + A8 (2, y) @11 Top ¥ (2, i) + AoV (20, 1) Paropge) - (5.12)

(=)=
E)NE
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These equations constitute a system of (m + 1) x 2 nonlinear algebraic equations, containing the same number of
unknowns. After solving this system, the approximate solution to Eq. (1.1) can be derived by combining the equations:

Im(z,y) = f(2,y) + MU (2,9) 21 Top ¥ (2, y) + AV (2, y)P2r2pao. (5.13)
6. CONVERGENCE ANALYSIS

Let C™™(D) denote the space of functions h : D — R with continuous partial derivatives. Specifically, let
8Ir‘rl€

a La K
The purpose of this section is to obtain an upper bound for any function approximated by 2D-ALPs.
Theorem 6.1. Assume that h(x,y) € C™TL™mTY(D) and that
hm(l', y) = \IIT(m’ y)Ha

is the best approximation of h in terms of its expansion using ALPs. In this case, we have:

1 Wws
|h = hmll2 < (m 1 )zt <w1 +w2+(m—|—1)!22m+1> ) (6.1)

where the constants wi, we, and ws satisfy the following relations:

e (a,y) = h(z,y),  (zy) €D, Kr=0,..,m,

O™ h(z,y)
gy« 6.2
(wyep | dgmtt | =D (62)
O™ h(z,y)
N e (09
0> 2h(x, y)
MY <. 6.4
X | Gyt | S W (6.4)

Proof. Let Py, m(z,y) be the interpolating polynomial of h at the points(z;,yx), where I,k = 0,...,m and x; = yj,
are the roots of the shifted Chebyshev polynomial of degree m + 1 in [0, 1]. For every(z,y) € D, we have:

™ h(C,y) o n(z, o)
h(a:,y) - Pm,m(xay) = amerl m+ 1 | amerl m + ]_ | H vy yk
82m+2h(CI " m m
= Gam gy er ol H T —x H Y= Yk)s (6.5)

where Cv 9, C/7 Ql € [07 1]
According to the estimate for the Chebyshev interpolation points, we have:

w3
|h(2,y) — Prm(z,y)| < (m + D122t (Wl + w2 + (m—l—l)'QQm‘H) ) (6.6)

and since h,,, is the best unique approximation of A in H,,, we have:

I~ o < I - Pmmnz—//\ o(,) ~ Pran(e,v)? i dy

1 ws 2

(R S (P N L
T \(m D2zmtt N g 192wt ) )

Hence, the following relation is obtained:

1 ws
Ih = hullz < (m + 1)122m+1 <“’1 et (m + 1)!22m+1> '
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Now, let us assume

Then

(wl + wo +

”h - hmH2 <

(m+1)
w3
w/
o

F. MOHAMMADI, F. MIRZAEE, E. SOLHI AND S. MAHMOUDI

122m+l — o,

o
(m+ 1)!22m+1> -

Theorem 6.2. Suppose that p(x,y,t,s) € CThmtLmtlmtl(D s« D) and that

@m('ra y7 ta 3) = \IIT($7 y)@\ll(ty 8)7

is the approzimation of @ in terms of its expansion using ALPs. In this case, we have:

where the constants wi,wa, ..

_ < -
||<,0 @m“Q = (m+ 1)[22m+1

1

w11 + w12 + w3 + wig

(w1 + wo + w3 +wy +

W5 + we + Wy + ws + wy + wio

(m + 1)122m+1

(m + 1)1224m+2

max
(z,y,t,s)EDXD

max
(z,y,t,s)EDXD

max
(z,y,t,s)€EDXD

max
(z,y,t,s)€DXD

max
(z,y,t,s)EDXD

max
(x,y,t,s)EDXD

max
(z,y,t,s)EDXD

max
(z,y,t,8s)EDXD

max
(z,y,t,s)€DXD

max
(z,y,t,s)EDXD

axm+1
8ym+l

8tm+1

asm+1

8m+1<p(x’ y? t? S)
am+1cp(x7 y? t? S)

8m+1(p(x’ y) t? S)

8w’m+laym+1
P20z, y,t, 5)

6$m+1atm+1

D H1Psm

aym+18tm+1

aym+1asm+1
82m+2(,0(l‘, Y, ta S)

atm+188m+1

P30, y,t, 5)

max
(z,y,t,8s)EDXD

max

axm+1 8ym+latm+1
a3m+3

()O(:E, y7 t’ s)

(z,y,t,s)EDXD

amerl 8ym+l astrl

W15
(m + 1)1326m+3 |~
. w15 satisfy the following relation:

Ot o(x,y,t, s)

Swla

< wa,

§w37

S Wy,

SU)5,

Swﬁv

S wr,

SU)S»

Swga

S w10,

S w11,

S w12,

(6.9)

(6.10)
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83m+3gp(x’y’t73)
Oxmtlggm+1Hgm+1
P 3oz, y,t, )
max
(z,y,t,5)€Dx D | Qymt1gtmtigsm+1
84m+4§0($ y,t s)
3xm+18ym+1 atm+1 aSm+1

max

< wis
(z,y,t,s)EDXD - ’

< W14,

max < wis.

(w,y,t,s)€DXxD

11

Proof. Let Py mm.m(z,y,t,s) be the interpolating polynomial of ¢(z,y,t,s) at the points (z;, Yk, trr, Sgr), where
Lk UK =0,....,mand 2y = yp = ty = s are the roots of the shifted Chebyshev polynomial of degree m + 1

in [0,1]. For every (x,y,t,s) € D x D, we have:

8m+1 8m+l

Chyats - Ql7t5 ks
dzm 1 (m + 1)! ZI—[mixl 8ym+1m—|—1 ljoy ue)

L,O(l', Y, t? S) - Pm,m,m,m($, Y, t: 3) =

+8m+1 o(x,y, A1, s) ﬁ ) am+1 (z,y,t,01) ﬁ (5 — 50)
otmt+l(m 4 1)! t dsmt(m +1)! k
I'=0 Kk’ =0
P 20(Gay 02,1 8) T -
axnz+1aym+1(m + 1)|2 H (l’ T ) H (y yk)
1=0 k=0

0" 2 0(Cs y Aoy s) T il
Gz HIatm T (m + 1)12 H (z —m1) H (t—1t)
=0 1'=0
82m+280(c47y7ta0-2) - i
— 8xm+188m+1(m+1)|2 H(IE*.’El) H (S*Sk/)
=0 k' =0
82m+2¢(1‘7g37A375) - i
_ 8ym+18tm+1(m ¥ 1)!2 H (y - yk) H (t — tl’)

B
Il
<}
I
<}

82m+2<‘0(:r7 04,1, 0'3)

- dymHt19sm+ (m + 1)12

:13
—3
w

I

»

X

(Y — yx)

e
I
<)
X
Il
o

s {0 [
axmin;;ffé;ﬁi’fi{ +) g ﬁ)(x — @) Iﬁ)(y ~ Yk) lf[O (t—tr)
gttty o= T o= TT (- s)
+ ammigln;;gﬁf&(fi)l) (x — 1) ﬁ (t—tv) ﬁ (s — sr)

|
<}

o

83m+530(‘,1‘, 07, A77 0-7)

Qymtlotm+igsmtl(m 4 1)13

||:js 1‘3:3

(y yi) [T =t) TT (s —swr)

k’=0

iz

Il
<)

'™ p(Cs, 08, As, 08) - .
8xm+18ym+18tm+lasm+l m+ 1)4 H H Y —ur) H (t—tv) H (s = swr)
k=0 =0
w1 + w2 + w3 +wsq n ws +w6+w7+w8+w9 + wio
- (m+1)122m+1 (m + 1)1224m+2
w1 + wiz + w1z + wis w15 (6.11)
(m + 1)!326m+3 (m+ 1)!428m+4’ ’
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where (1 — (s, 01 — 08, A1 — Ag,01 — 08 € [0,1]. Now, according to Eq. (6.8), we have:

4 10 14
" Wi NS W s
w _Zwl+zv+zv2+v3. (6.12)
1=1 1=5 1=11
Thus,
w//
o~ ol < -, (6.13)
where (1 — (s, 01 — 08, A1 — Ag,01 — 08 € [0,1]. Now, according to Eq. (6.8), we have:
4 0 U
- ! o ®15
w wal+ZU+ZU2+U3. (6.14)
1=1 1=5 I=11
Thus,
w//
lp = pmllz < = (6.15)

(|
Theorem 6.3. Suppose g(x,y) is the exact solution of Fq. (1.1) and gm(x,y) is its approzimate solution obtained

from the 2D-ALPs method. Also, Assume further that the nonlinear term satisfies a Lipschitz condition, as follows:
11 (2,9) = Neom (@, Y)|| < L llg(z, ) — gm(z,9)ll, @ =1,2,

and
1 — |\ |Ly (M7 + M) — |Xo| Lo (My + MY) > 0.

Then, we obtain the following upper error bound:

N + [\ | M{M{ + [Xo| M5MY

|Li (M1 + M]") — |A2|La (M2 + MY)

- <
lo(w:9) = gm(@9)l < 75

(1) For all (x,y,t,s) € D X D, max |z (z,y,t,8)| = My, w=1,2,
(2) For all (z,y) € D, max [ng(z,y)| = ML, w=1,2,

(3) maX'f(xvy) - fm(ﬁr7y)| = N7

(4) max |pm(z,y,t,8) — pom(z,y,t,8)| = ML, w=1,2.

Proof. According to Eq. (1.1) and approximating the functions f(x,y), g(x,y), ¢1(z,y,t,s)
) SOZ(‘:U, Y, ta 3)) 01(t7 S, g(t7 8)), 92(t, S, g(t7 S)) by uSing ALPS7 we have:
l9(z,y) — gm (@, 9)| < [/ (z,y) = fm(z,9)
+ [Mlllzllyller (. vt s)m(t, s) — o1m (@, y, L, $)mm(t, s) ||
+ |)‘2|||Q02(‘T3 Y, ta S)UQ(t? S) - 902,m($, Y, ta S)T}va(t, 5) ”,
Now, considering ||z||||y|| < 1, we have:
lg(z,y) = gm (@, )| < If (2, y) = fm(z, )]
+ |)\1 | ||801(xu Y, t? 8)771 (t7 S) - QDLm(.’L', Y, ta 5)771,m(t7 S) ||
+ |)\2|||()02(.137 Y, ta 3)772(t7 8) - 4102,771(-1:’ Y, t7 S)nQ,m(tv S) ||7
which implies:
”f(may) - fm(xvy)H + |)\1|||§01(.’£, y,tv s)nl(t7 S) - 901(1'7yat, s)nl,m(t; 5)
+ 301(!@7 Y, ta 3)771,m(t7 S) - (pl,m<m7 Y, t? S)nl,m(tu S)H
+ |)\2|||Q02(-T7 Y, ta 3)772(t7 8) - @2(1‘7 Y, t7 S)nQ,m(ta 8)
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+2(2, Y, 8)n2,m (L 8) = po,m (2,951, 8)12,m (¢, 5|

<N A+ M@,y t, )l (E, ) = mm(, s)

+ler(@,y:t,8) = rm(@,ys b )l -(Imm(t s) = m ()l + [, s))

+ Pal(llp2(z,y, 1, 9)[ll[n2(t, 8) = m2.m (, 5) ||

+ llp2(z,y,t,8) = p2.m(@,y, b, 8)[| -(n2,m(t; 8) — n2(t; s)|| + [In2(t, $)I))
which by using assumptions {1}—{4}, we have:

lg(z,y) = gm (@, )| < N + M| (M1Lillg(z,y) — gm(z, v)|| + MY (Lallg(z, y) — gm(z,y)|| + M)
+ |)‘2| (M2L2||g($7y) - gm(‘r’y)H + Mé/(IQ”g(xvy) - gm(x7 y)H + Mé)) .

7. NUMERICAL EXAMPLES

In this study, we have implemented a numerical algorithm using MATLAB to evaluate the performance of the
proposed method through a series of examples. These examples enable us to compare the effectiveness of the proposed
method against other existing methods. The accuracy of the method is quantified using the following relations, which
define error terms:

em(x,y) = |g(x,y) _gm(xay”a (l‘vy) € Da (71)
lemlloo = max{em (z1, i)},

where g represents the exact solution, and g, is the approximate solution obtained via the proposed method. The
points (z;,y;) correspond to the selected collocation points used in the calculations.

Remark 7.1. In this article, we consider both dimensions equal (m = n).

Example 7.2 (]25]). Consider the following nonlinear integral equation:

gz, y) = f(z,y) / / —x—y—t—s)g° tsdtds+// —ay —ts*)g(t,s)dtds; (x,y) € D, (7.2)
where the function f(x,y) is defined as:

flzy) =2+ Ly Tasyt 4 By Sasi
Y 46y9y18y5y30

The exact solution of the equation is given by g(z,y) = 22 + 2ry. This Equation (7.2) is classified as a nonlinear
Volterra-Fredholm integral equation. To solve this problem, we employ the ALPs method, which utilizes product and
integral operational matrices.

We have compared the absolute error and maximum error of the proposed method with the methods reported in [3],
[14], and [25]. As presented in Table 1, it is evident that the error of our method is significantly lower. Additionally,
to further illustrate the effectiveness of the method, we computed the error at various points, which is summarized in
Table 2.

The graphs of the absolute error, approximate solution, and exact solution for m = 8 are displayed in Figure 1.
Furthermore, in Figure 2, we plot the progression of the absolute error for m = 2,4, and 6.

In Table 3, we provide the CPU time for all computational steps corresponding to the values of m = 4,5,6,7,8, and
9, which demonstrates the efficiency of the proposed method, particularly in handling a high volume of calculations
with increasing values of m.

Example 7.3 ([15]). Consider the following two-dimensional nonlinear integral equation:

o(2,9) = flo,y) + /0 /0 (x+y—s—D)g(t s)dtds; (x,y) € D, (7.3)
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TABLE 1. Absolute errors: |e,,(z,y)| for Example 7.2.

(2,7) Present method Method in [3] | Method in [14] | Method in [25]

’ m=4 m=6 m=38 m =8 m =38 m=4 m=6
(0.0, 0.0) | 1.83E-5 2.18E-8 2.16E-9 4.71E-6 1.73E-3 3.05E-3 8.29E-4
(0.1,0.1) | 1.08E-4 5.29E-9 5.06E-9 4.09E-4 1.65E-3 3.16E-3 8.51E-4
(0.2,0.2) | 1.17TE-4 4.29E-9 8.24E-10 1.63E-4 1.43E-3 3.50E-3 8.19E-4
(0.3,0.3) | 2.20E-4 5.03E-9 1.27E-8 8.81E-4 1.35E-3 2.72E-3 6.14E-4
(0.4, 0.4) | 4.52E-4 4.52E-9 4.62E-9 7.69E-4 1.65E-3 3.91E-5 2.89E-3
(0.5,0.5) | 1.00E-4 4.73E-9 5.83E-9 1.33E-3 3.15E-4 1.91E-3 1.02E-3
(0.6, 0.6) | 6.41E-4 6.94E-9 1.12E-8 2.71E-3 8.16E-3 3.35E-2  5.15E-3
(0.7,0.7) | 7.52E-4 8.68E-9 2.90E-8 6.21E-3 2.53E-2 2.11E-2 1.18E-2
(0.8,0.8) | 6.89E-4 6.12E-9 1.62E-8 1.20E-2 4.38E-2 3.85E-2 8.77E-3
(0.9,0.9) | 1.95E-3 2.92E-8 3.68E-8 1.88E-2 2.99E-2 8.06E-2 2.83E-2
lem |l oo 1.95E-3 2.92E-8 3.68E-8 1.88E-2 4.38E-2 8.06E-2 2.83E-2

f(z,y)

Approximated solution

n=m=8

FI1GURE 1. Plots of numerical results for Example 7.2.

Exact solution

1
=z +y— —ay(a® + 42y + dzy® + °).

12

Absolute Error
n=m=8
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Absolute Error Absolute Error
n=m=2 n=m=4 x10°

0.25 4

3.5
0.2

0.15

u(x.y)

0.1

0.05

Absolute Error
n=m=6 x10°®

FI1GURE 2. Absolute errors for Example 7.2.

TABLE 2. Absolute errors: |e,,(x,y)| for Example 7.2 at different points.

(2, 9) Present method

’ m=5| m=6 | m=7
(0.05, 0.05) | 2.96E-6 | 1.02E-8 | 2.17E-8
(0.15, 0.15) | 4.09E-6 | 4.02E-9 | 4.91E-9
(0.25, 0.25) | 1.42E-5 | 4.82E-9 | 4.98E-9
(0.35, 0.35) | 8.37E-6 | 4.85E-9 | 4.97E-9
(0.45, 0.45) | 1.89E-5 | 4.38E-9 | 3.07E-9
(0.55, 0.55) | 2.19E-5 | 5.64E-9 | 4.60E-9
( )
( )
( )
( )

0.65, 0.65) | 1.90E-5 | 8.18E-9 | 9.38E-9
0.75, 0.75) | 4.68E-5 | 7.85E-9 | 9.68E-9
0.85, 0.85) | 1.80E-5 | 7.92E-9 | 2.55E-9
0.95, 0.95) | 3.35E-5 | 1.15E-7 | 3.34E-8

Ilem | oo 4.68E-5 | 1.15E-7 | 3.34E-8

15
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TABLE 3. CPU time(s) of proposed method for Example 7.2.

C\I?I(I;Ijge Compute ¢ | Compute ®; | Compute Do TS;)HTII?;'E?X Co;r;;;ute CP[?(ﬁfie(s) Max error
m =41 0.000778 | 0.009883 0.021268 0.022386 0.001766 | 0.000733 1.472287 6.06E-3
m =5/ 0.023839 | 0.023839 0.040263 0.041343 0.002087 | 0.000814 3.837237 2.04E-4
m =6 0.001223 | 0.055802 0.064608 0.065971 0.003638 | 0.000569 8.588116 3.74E-7
m =71 0.001068 | 0.128283 0.115509 0.116243 0.004143 | 0.000548 | 22.689024 3.47E-7
m =8| 0.001303 | 0.255771 0.185068 0.178971 0.006797 | 0.000784 | 60.744029 2.10E-7
m =91 0.001805 | 0.489955 0.287980 0.326172 0.007817 | 0.000811 | 165.824428 | 2.36E-7
TABLE 4. Absolute errors: |e,,(z,y)| for Example 7.3.
Legendre Chebyshev Haar

polynomials polynomials wavelet Present

(z,y) method [15] method [15] method [2] method

m =4

m=4 m =4 m = 32

(0.5, 0.5) 9.2E-10 1.1E-10 3.1E-2 4.9E-10

(0.25, 0.25) 8.0E-10 1.7E-10 3.1E-2 6.9E-11

(0.125, 0.125) 7.0E-10 8.3E-10 3.1E-2 5.6E-11

(0.0625, 0.0625) 5.3E-10 5.2E-10 3.1E-2 6.3E-13

(0.03125, 0.03125) 8.0E-10 2.5E-10 1.2E-3 1.5E-11

(0.015625, 0.015625) 1.2E-10 1.1E-10 2.2E-9 1.4E-11

llem |loo 9.2E-10 8.3E-10 3.1E-2 4.9E-10

The exact solution of the equation is given by g(x,y) = = + y. We present the numerical results of this example,
comparing the absolute error and maximum error of the proposed method for m = 4 in Table 4 with other methods,
such as Haar wavelets [2], Chebyshev polynomials [15], and Legendre polynomials [15]. The error of the proposed
method is lower compared to these methods. The plots of the absolute error, approximate solution, and exact solution
for m = 4 are shown in Figure 3. Additionally, we report the CPU time in Table 8, confirming the efficiency of the
method.

Example 7.4 ([25]). Consider the following two-dimensional integral equation:

g(z,y) = f(z,y) —l—/o /0 (t-sin(s) + 1)g(¢, s)dtds; (z,y) € D, (7.4)
where
f(z,y) = - cos(y) — W(sin(l) +3).

The exact solution of the equation is given by g(x,y) = = - cos(y). We present the numerical results of this example,
comparing the absolute error and maximum error of the proposed method with the method [25] in Table 5. The plots
of the absolute error, approximate solution, and exact solution are shown in Figures 4 and 5. Additionally, we report
the CPU time in Table 8, confirming the efficiency of the method.

Example 7.5 ([25]). Consider the following two-dimensional Volterra integral equation:

o(e,y) = f(o,y) + / ’ / “(@ -y + cos(s))g(t.s)deds;  (z,y) € D, (7.5)

where
6

Jla,y) = 55 (sin(2y) — 29) + G sin(y)(9 — 2 - sin’ ().
a0
oo
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Approximated solution Absolute Error
n=m=4 n=m=4 %10

Exact solution

F1GURE 3. Plots of numerical results for Example 7.3.

TABLE 5. Absolute errors: |e,(x,y)| for Example 7.4.

Present method Method in [25]
m="7 m =38 m=8 m=16
( ) [7.37E-8 757690 | 9.50E-6 501E7
( ) | 1.O9E-7 9.74E-10 | 1.02E-5 4.79E-7
( )| 1.13B-7  1.38E-8 | 5.92E-6 2.95E-7
(0.3,0.3) | 1.12E-7 7.16E-9 | 2.25E-5 1.30E-6
(04, 04) | 1.13E-7 3.14E-9 | 2.07E-7 3.18E-6
(0.5,0.5) | 1.13E-7 1.70E-8 | 9.50E-6 5.91E-7
( )

( )

( )

( )

( )

(z,9)

0.0, 0.0
0.1, 0.1
0.2, 0.2

0.6, 0.6) | 1.13E-7 3.14E-9 | 3.12E-5 4.48E-6
0.7,0.7) | 1.12E-7 7.16E-9 | 4.29E-5 2.89E-6
0.8,0.8) | 1.13E-7 1.38E-8 | 8.49E-5 5.11E-6
0.9, 0.9) | 1.09E-7 9.69E-10 | 3.38E-5 1.18E-5
1.0, 1.0) | 7.37E-8  7.57E-9 | 9.50E-6 5.91E-7
Temlloo | 1.I3E-7 1.38E-8 | 8.49E-5 1.18E-5
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Absolute Error Absolute Error

n=m=7 x10® n=m=8 %10

N

FI1GURE 4. Absoulte errors for Example 7.4.

Approximated solution

Exact solution
n=m=8

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

FI1GURE 5. Plots of numerical results for Example 7.4.

The exact solution of the equation is given by g(z,y) = z - sin(y). We present the numerical results of this example,
comparing the absolute error and maximum error of the proposed method for m = 4,8 with another methods in
Table 6. The plots of the absolute error, approximate solution, and exact solution are shown in Figures 6 and 7.
Additionally, we report the CPU time in Table 8, confirming the efficiency of the method.

Example 7.6 ([4]). Consider the following two-dimensional Volterra-Fredholm integral equation:

gz, y) = f(z,y) + /Oy /Of rsg>(t, s)dtds +/0 /0 (t —y)g(t,s)dtds; (z,y) € D, (7.6)

where

—1

flzy) = 1—6(16y + 16 cos(1) — 16 cos(2) — 32sin(1) 4 16sin(2) — 16 cos(y + =) + 4y*x? — zsin(2y)
— zsin(2x) — 32y cos(1) + 16y cos(2) + zsin(2y + 2z) + 2yx cos(2y) — 2yx cos(2y + 2z)).

The exact solution of the equation is given by g(x,y) = cos(x + y). We present the numerical results of this example,
comparing the absolute error and maximum error of the proposed method for m = 6 with another methods in Table 7.
an
BE
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The plots of the absolute error, approximate solution, and exact solution are shown in Figures 8 and 9. Additionally,
we report the CPU time in Table 8, confirming the efficiency of the method.

TABLE 6. Absolute errors: |en,(z,y)| for Example 7.5.

Present method | Method in [25] | Method in [2]

(@,9) m=4 m=8 |m=4 m=8|m=4 m=2_8
(0.5, 0.5) 3.8E-6 2.2E-10 | 7.7E-6 1.1E-6 | 1.2E-1 6.0E-2
(0.25, 0.25) 2.8E-8 1.5E-11 | 4.5E-7 1.2E-7 | 7.5E-2 3.4E-2

(0.125, 0.125) 1.3E-9 1.0E-12 | 2.3E-6 2.1E-9 | 3.8E-5 1.9E-2
(0.0625, 0.0625) 7.0E-9 3.5E-14 | 3.0E-6 2.0E-8 | 1.2E-2 2.5E-6
(0.03125, 0.03125) | 8.0E-9 3.5E-14 | 1.2E-6 4.0E-8 | 1.4E-2 2.9E-3
(0.015625, 0.015625) | 1.0E-8 3.1E-15 | 3.6E-7 1.7E-8 | 1.5E-2 3.6E-3

[€m oo 38E-6 22BE-10 | 7.7E-6 1.1E-6 | 1.2E-1 6.0E-2
Absolute Error Absolute Error
n=m=6 x107 n=m=8 %10

=

u(xy
uxy

45
%107 4 %107
6 8
3.5 5
6
4 3 .
> > 4
25
2
2 2 3
? . 15 ? . 2
1 1
1
1
05 05 0.5 05 05
y 0 o0 x y 0 0 x

FIGURE 6. Absoule errors for Example 7.5.

Approximated solution

Exact solution
n=m=8

07
06
05
5 O
. 0.4
’ 03
0

1 0.2
05 05 01

0

y 0 0 X

FI1GURE 7. Plots of numerical results for Example 7.5.
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TABLE 7. Absolute errors: |e,(z,y)| for Example 7.6.

Method, m =6

(z,9) Present method | Method in [4]
(1.0, 1.0) 3.2E-6 3.6E-6
(0.5, 0.5) 4.0E-8 L1E-5
(0.25, 0.25) 9.2E-9 4.5E-5
(0.125, 0.125) 8.7TE-8 2.2E-5
(0.0625, 0.0625) 9.7E-8 1.8E-5
(0.03125, 0.03125) 9.0E-8 1.8E-5
(0.015625, 0.015625) 8.9E-8 1.8E-5
Temlloo 3.2E-6 15E-5

TABLE 8. Total CPU time (s) of examples.

Example m=4 m=2>5 m =06 m=7 m =38 m=29
Example 2 | 0.680725 | 1.716595 | 4.080173 | 9.922513 | 29.200006 | 64.32143
Example 3 | 0.556352 | 1.549495 | 5.058304 | 13.604409 | 35.530252 | 88.656782
Example 4 | 1.437029 | 7.959578 | 22.511002 | 27.06528 | 53.315282 | 127.049667
Example 5 | 1.065567 | 2.168973 | 7.279949 | 18.601045 | 52.242704 | 126.166915

8. CONCLUSION

In this research, we successfully applied 2D-ALPs operational matrices and the collocation method to solve two-
dimensional nonlinear integral equations. A key contribution of this work is the development of explicit formulas for
product, integration, and diagonal operational matrices, which enable efficient approximation of functions involving
two and four variables. One of the significant advantages of the proposed method is that it simplifies the original
problem into a nonlinear system of algebraic equations, achieving accurate results with only a small number of basis
functions. The effectiveness of the method was demonstrated through several numerical examples, which showed that
the approach is both computationally efficient and highly accurate. Additionally, the error analysis of the method was
rigorously examined through three theoretical theorems. Numerical experiments, presented in tabular form within
the examples, demonstrate that the proposed numerical solution achieves both high accuracy and computational
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FI1GURE 9. Plots of numerical results for Example 7.6.

efficiency. These results validate the reliability and efficiency of the method, highlighting its potential for solving
complex nonlinear integral equations.
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