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Abstract

The obstacle problem is a specific contact problem that can be formulated as a variational inequality or comple-

mentary problem in function spaces. Such problems often yield non-smooth solutions, making it challenging to

find a suitable numerical approximation. In this paper, we present a meshfree method for numerically solving
an obstacle problem. In proposed method the interpolating moving least square approximation is utilized in the

element-free Galerkin approach. Implementing this method on a computer is straightforward and effective. To

ensure the efficiency of the proposed method, we have investigated the convergent of the proposed method. Ad-
ditionally, we have solved several examples of the obstacle problem using the proposed method. The numerical

results obtained confirm the theoretical achievements and demonstrate the method’s effectiveness and accuracy.
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1. Introduction

Contact problems are a group of important problems in solid mechanics that study the deformation of solids that
are in contact with each other at some point. The issues faced by this family can be used to explain a wide range
of physical events, from modeling how a basketball hits the backboard to how a locomotive’s brakes operate. One
of the most important issues in this category is the obstacle problem. The obstacle problem deals with modeling the
state change of an elastic membrane in contact with a smooth obstacle while being subjected to a known force. To
put it more precisely, you can envision the edges of an elastic membrane fixed at the boundary of a region, with a
force being applied to the surface of this membrane in the considered region. Along the path of deformation, there
are one or more obstacles with smooth external surfaces within this region. In the obstacle problem, the objective is
to determine the final shape of the membrane.

The obstacle problem can be formulated as an elliptic variational inequality. In mathematical literature, a variational
inequality is an inequality involving a functional that must hold for all values within a convex subset of a space [26].
Such an issue is often encountered in optimization theory and related problems. For the obstacle problem explained
above, if we assume the area where the elastic membrane is located is represented by D ⊂ Rn, n = 1, 2, its boundary
by ∂D, the position of the membrane with y and the force applied to it by g ∈ C(D), and the surface of the obstacle
situated in the path of the membrane by z ∈ C(D), then the model of the obstacle problem will lead to the following
inequality [13]:

Find

y ∈ O :=
{
f ∈ H1(D) | f ≤ z a.e. in D & f |∂D= yb

}
, (1.1)
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such that

(∇y,∇(y − u)) ≤ (g, y − u) ∀u ∈ O, (1.2)

where the standard notation H1(D) is used to refer to the Sobolov function space of order 1 from L2(D) with the
inner product denoted by (·, ·). The important issue here is that the functional inequality (1.2) must hold for all values
of u ∈ O. Therefore, solving such a problem can be a significant challenge. Most variational inequality problems
with similar characteristics do not have analytical solutions, thus highlighting the need for designing an efficient and
accurate numerical method to address them. The set O represents the range of admissible changes for the desired
elastic membrane. This set can also manifest in different forms; for instance, if obstacle are placed on both sides of
the membrane, this set will appear as follows [25]:

O :=
{
f ∈ H1(D) | t ≤ f ≤ z a.e. in D & f |∂D= yb

}
. (1.3)

In this case, we refer to the problem as a bilateral obstacle problem.
Considering the physics of the problem, the computational domain D will be divided into two parts. In one part,

the membrane will collide with the obstacle, while in the other part, at its maximum displacement under the assumed
force, will not make contact with the obstacle. The main objective in this problem is to determine the boundary or
boundaries between these two regions. In other words, this problem is one of free boundary problems [7]. This specific
nature of the issue causes non-smoothness in the solution function along the priori unknown free boundary, which will
affect the accuracy of numerical methods.

So far, numerous numerical methods have been proposed for solving obstacle problem. Finite difference methods
[21] and finite element methods [2, 3] are among the most popular classical numerical approaches. Wavelet-baseds
methods have also been utilized in some articles like as [14] for solving obstacle problem. Additionally, the discrete
Galerkin method has been employed in [16, 30] to tackle this issue.

In recent decades, a new numerical method known as meshless methods has been increasingly used to solve mathe-
matical problems. The main characteristic of this family of methods is their independence from a regular grid in the
computational domain of the problem [6]. Notable examples include the element-free Galerkin method [17], generalized
finite differences[4], and meshless local Petrov-Galerkin method [29], which have also been employed for the numerical
solution of obstacle problem.

Most meshless methods for solving boundary value problems are based on obtaining the weak form of the problem,
which can be applied in both local and global manners. In both cases, numerical integration can ultimately be used
to derive a linear system, and solving this system will yield an approximation of the solution to the problem. In
the global method, integration is performed over the entire computational domain. But in the case of local weak
form methods, there is no need to define a mesh of points, and the integration operation is performed not over the
entire region but just over subdomains that may have overlaps [9]. However, it should be noted that often in local
methods, error analysis may not be possible. Additionally, these methods have a greater dependence on the selection
of parameters such as shape parameters.

The element free Galerkin method (EFGM) uses a global weak form in which moving least squares (MLS) shape
functions are employed as test and trial functions [24]. These basic functions do not possess the delta Kronecker
property as an effective feature in approximation. For this reason, the essential boundary conditions cannot be
implemented directly in this method. To overcome this weakness, the use of the interpolating moving least square
(IMLS) shape function instead of MLS shape function is recommended in [15]. These functions take advantage of the
Kronecker delta property. Subsequently, the obtained method is also referred to as the interpolating element free
Galerkin method (IEFGM) [9].

In this work, we will present a meshless method based on the use of the interpolating element-free Galerkin method
to solve the obstacle problem. To this end, a combination of this meshless method with an efficient algorithm for
solving obstacle problems, known as the active set algorithm, has been employed. Additionally, the error analysis of
the method has been investigated. In fact, the main objective of this paper is to demonstrate that the interpolation
method is a globally weak form method that, just as it has been useful for solving PDE problems, can also be beneficial
in solving variational inequalities such as obstacle problems.
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The outline of the rest of the paper is as follows. In the next section, we will first address the active set algorithm
for solving the obstacle problem. Then, in the third section, we will examine the IMLS shape functions and how to
use them in IEFGM for solving obstacle problem. In the fourth section, we will present the convergence analysis of
the method, and in the fifth section, we will provide several numerical examples to assess the accuracy and efficiency
of the method.

2. Interpolating element free Galerkin method

First, we need to introduce the MLS and IMLS shape functions. Let ΞI = {xl}NI

l=1 ⊂ D and Ξb = {xl}Nb

l=1 ⊂ ∂D.
By considering N = NI +Nb, the set Ξ = {xl}Nl=1 := ΞI ∪ Ξb is all selected nodes in the computational domain. For
y, the function which must be approximated, let y = {yl = y(xl)}Nl=1. In MLS literature, we can approximate y by

y(x) ≃ ȳ(x, x̄) :=
M∑
l=1

cl(x)Pl(x̄) = Pt(x̄) · c(x), (2.1)

where x̄ ∈ Ξ is the point in local influenced domain of xi determined by a radial weight function wi(x). The coefficients
cl(x) are chosen in such a way as to minimize

N∑
l=1

[
m∑

k=1

ck(x)Pk(xl)− yl

]2
wl(x). (2.2)

According to [22], we can prove that

c(x) =
(
PtQ(x)P

)−1
PtQ(x)y, (2.3)

where P is a N ×M matrix with elements Pm(xn) when m = 1, . . . , N and m = 1, . . . ,M and Q = diag(w1(x), . . . ,
wN (x)). So, if we define the MLS shape function as

S(x) = (S1(x), · · · , SN (x)) = Pt(x)
(
PtQ(x)P

)−1
PtQ(x), (2.4)

we have MLS approximation by

ȳ(x) = S(x)y =
N∑
l=1

Sl(x)yl. (2.5)

An important point to consider is that this approximation cannot interpolate the function values at the desired points.
To establish the interpolating conditions and from now on, we set the weight function as the following singular radial
base function [5]

wl(x) =

{
∥x− xl∥−γ , ∥x− xl∥ ≤ r,

0, o.w.
(2.6)

By defining an inner product as

(y, z)w =
N∑
l=1

wl(x)ylzl, (2.7)

its associated norm is as ∥y∥w = (y, y)
1
2
w.Now if we assume that P1(x) = 1, we can put

B1,x(x) =
P1(x)

∥P1∥w
=

1(∑N
l=1 wl(x)

) 1
2

. (2.8)

Performing orthogonalization algorithms on {P2, · · · , PN} respect to B1,x, we have

Bk,x(x) = Pk(x)− (Pk, B1,x)wB1(x) = Pk(x)−
∑N

l=1 Pk(xl)wl(x)∑N
l=1 wl(x)

, k = 2, . . . ,M. (2.9)
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Now, by orthogonality of B1,x to Bk,x, k = 2, . . . ,M , we can write [1]

y(x) ≃ yh(x) = vt(x)y +Bt(x)R−1(x)L(x)y, (2.10)

where

vt(x) =

[
vl :=

wl(x)∑N
l=1 wl(x)

]
l=1,...,N

,

Bt(x) = [Bk,x(x)]k=1,...,M ,

L(x) = Dt(x)W(x),

R(x) = L(x)D(x),

D(x) = [Bk,x(xl)]l=1,...,N,k=2,...,M .

By considering the approximation (2.10) the IMLS shape functions can be defined as

S∗(x) := [S∗
l (x)]

N
l=1 = vt(x) +Bt(x)R−1(x)L(x), (2.11)

and (2.10) can be summarized as

yh(x) = S∗(x)y =

N∑
l=1

S∗
l (x)yl. (2.12)

It can be seen that the IMLS shape functions have the delta Kronecker property and the approximation (2.12) satisfies
the interpolating conditions on Ξ.

Now, we are ready to use the obtained IMLS shape functions as the test and trail functions in the standard Galerkin
scheme. The delta Kronecker property of these functions causes that the boundary conditions of the boundary value
problems can be applied without the need for any other method. The obtained method is called Interpolating element
free Galerkin method (IEFGM).

3. Obstacle Problem and method of solution

Consider the obstacle problem (1.1)-(1.2). This form of the obstacle problem can be considered the weak form of
the problem. To obtain the strong form of the problem, take u = y + ϕ in Eq. (1.2) where ϕ ∈ C∞(D), ϕ|∂D = 0 and
ϕ ≥ 0: ∫

D

∇y(x).∇ϕ(x)− g(x)ϕ(x)dx ≤ 0. (3.1)

It is weak form of the following differential inequality:

−∆y(x)− g(x) ≤ 0, x ∈ D. (3.2)

Moreover, if we have the point x0 such that y(x0) < z(x0), we can find a number ϵ > 0 and a neighborhood like N(x0)
where y(x) < z(x) − ϵ for all x ∈ N(x0). So, by taking u = y ± ϵφ, where φ ∈ C∞(N(x0)) and ∥φ∥∞ ≤ 1, we have
−∆y(x0)− g(x0) = 0. Therefore, we can write the strong form of obstacle problem as the following complementarity
problem (CP) :

−∆y(x)− g(x) ≤ 0, x ∈ D, (3.3)

y(x) ≤ z(x), x ∈ D, (3.4)

(−∆y(x)− g(x)) (y(x)− z(x)) = 0, x ∈ D, (3.5)

y(x) = yb(x), x ∈ ∂D. (3.6)

This complementary problem indicates that the computational domain is divided into two sections. The first section,
where the elastic membrane will collide with the obstacle, is denoted by A and is referred to as the contact region [7].
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The second section, where the Poisson equation applies, will be denoted by B and is called the non-contact region. In
other words

A := {x ∈ D|y(x) = z(x) & −∆y(x) < g(x)}, (3.7)

B := D \ A = {x ∈ D| −∆y(x) = g(x) & y(x) < z(x)}. (3.8)

Then, it has been proven that the solution of CP (3.3)-(3.5) satisfies the following regularization conditions [12]

−∆y(x) + λ(x) = g(x), (3.9)

λ(x) := max{λ(x) + c(y(x)− z(x)), 0}, (3.10)

where λ(x) is Lagrange function and c is an arbitrary positive number.

3.1. Active set strategy. Due to non-differentiability of max operator in (3.10), the regularized system of Equations
(3.9)-(3.10) cannot be solved by usual algorithms. To do that special algorithms are needed such as the semi-smooth
Newton method [8, 28], interior point strategy [31] or active set algorithm [12]. In the following, the iteration of the
active set strategy is presented to solve the obstacle problem.

Suppose that y(l) and λ(l) are the solution and Lagrange functions obtained in the l-th iteration of the active set
algorithm. The algorithm is initialized with y(0) = z and λ(0) = g + ∆y(0) ≥ 0. In each iterate, the contact and
non-contact set can be addressed as:

A(l+1) = {x ∈ D| λ(l)(x) + c(y(l)(x)− z(x)) > 0}, (3.11)

B(l+1) = {x ∈ D| λ(l)(x) + c(y(l)(x)− z(x)) ≤ 0}. (3.12)

Then, the following updated in the contact and non-contact regions for unknown functions are considered:

y(l+1)(x) = z(x), λ(l+1)(x) = g(x) + ∆y(l+1)(x), for x ∈ A(l+1), (3.13)

λ(l+1)(x) = 0, −∆y(l+1)(x) = g(x), for x ∈ B(l+1). (3.14)

This successive iteration continues until the stopping condition is met as B(l) = B(l+1). In the modified active set
method, the way of updating in the contact region is changed. In this case, instead of Equations (3.13), we use the
following equations for updating in A(l+1)

λ(l+1)(x) = λ(l)(x) + c(y(l)(x)− z(x)), ∆y(l+1)(x) = λ(l+1)(x)− g(x). (3.15)

In fact, the change that has been made in the modified active set method is that the Lagrange multiplier is updated
first, and then the value of the unknown function y is obtained.

4. Implementation of IEFGM on obstacle problem

Although at first glance it seems that using Equations (1.1) and (1.2) are suitable for discretization and by consid-
ering Vh as a finite dimensional subspace of H1(D), one can define the weak form of the discretized obstacle problem
as follows:

Find yh ∈ Oh ⊂ Vh (4.1)

⟨Ayh − gh, yh − uh⟩ ≤ 0, ∀uh ∈ Oh, (4.2)

but it should be noted that Vh ⊂ H1(D) and Oh ⊂ Vh cannot yield Oh ⊂ O [7]. For this very reason, we use Equations
(3.3)-(3.6) to obtain a discrete weak form for the obstacle problem.

Let Λ = {1, 2, . . . , N}. Let ΛI and Λb are subsets of Λ associated with the indices of ΞI and Ξb, respectively.
Therefore, the IEFGM discretization of the obstacle problem can be defined as the following discreted complementarity
problem (DCP):∑

l∈λI
A(S∗

l , S
∗
k)yl − gk ≤ 0,

yk − zk ≤ 0,(∑
l∈λI

A(S∗
l , S

∗
k)yl − gk

)
(yl − zl) = 0,

 where xk ∈ D, (4.3)

yk = yb(xk), where xk ∈ ∂D,
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where

A(S∗
l , S

∗
k) :=

∫
D

∇S∗
l (x)∇S∗

k(x)dx, (4.4)

gk :=

∫
D

g(x)S∗
k(x)dx−

∑
l∈λb

A(S∗
l , S

∗
k)yb(xk), (4.5)

and zk := z(xk). Now, let A := [A(S∗
l , S

∗
k)]l,k∈ΛI

and g := [gk]k∈ΛI
and z := [zk]k∈ΛI

. Then, the matrix-vector form

of DCP (4.3) is as follows:

Ay − g ≤ 0,

y − z ≤ 0, (4.6)

(Ay − g)(y − z) = 0.

According to the Theorem 2.1 in [12], the solution of (4.6) satisfies the following conditions

Ay + λ = g, (4.7)

λ = max{λ+ c(y − z), 0}, (4.8)

where λ is the Lagrange variable and c is any positive number.
The Equations (4.7)-(4.8) are IMLS discritized form of (3.9)-(3.10). Therefore, active set strategy can be imple-

mented in this case. Suppose that y(l) and λ(l) are the solution and Lagrange variable in l-th iterate. The algorithm

is initialized with y(0) = z and λ(0) ≥ 0. In each iterate, the computational indices can be divided into two disjoint
part:

Λ(l)
c = {j ∈ ΛI | λ(l) + c(y(l) − z) > 0}, (4.9)

Λ(l)
n = {j ∈ ΛI | λ(l) + c(y(l) − z) = 0}, (4.10)

which are associated with contact and non-contact regions in (3.7) and (3.8), respectively. Then, the following new
updated variables are considered:

λ
(l+1)
i = 0, for i ∈ Λ(l)

c , (4.11)

y
(l+1)
i = zi, for i ∈ Λ(l)

n , (4.12)

and by the remaining variables updated by solving the following linear system

Anny
(l+1)
n = gn +Anczc, (4.13)

λ(l+1)
c = gc −Acczc −Acny

(l+1)
n . (4.14)

where the notation Anc := [Ai,j ]i∈Λ
(l)
n ,j∈Λ

(l)
c

denoted to the sum-matrix of A and all the other sub-matrix or sub-

vector notations can be defined in a same manner. The algorithm continues until the stopping condition is met

as Λ
(l)
n = Λ

(l+1)
n . In [12] , it has been proven that the active set algorithm converges uniformly under the given

assumptions, and if it stops under the considered stopping condition, the obtained solution holds true in (4.7) and
(4.8).

5. Error analysis

Suppose that y is the analytical solution of an obstacle problem. y(l) and λ(l) are the solutions obtained by active

set strategy, analytically, and y
(l)
h and λ

(l)
h are the numerical solutions of IEFGM implementation, i.e.

y
(l)
h (x) = S∗(x)y(l) =

N∑
k=1

S∗
k(x)yk, (5.1)
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λ
(l)
h = S∗(x)λ(l) =

N∑
k=1

S∗
k(x)λk, (5.2)

where h is fill distance of D, i.e. h = supx∈D minxl∈Ξ ∥x− xl∥2. We also define semi-norm for f ∈ H1(D) as follows

|f |1,D =

(
d∑

i=1

∥ ∂f

∂xi
∥2L2(D)

) 1
2

. (5.3)

Then we can prove the following theorem.

Theorem 5.1. Let y ∈ H1(D) is analytical solution of problem (1.1)-(1.2). Suppose r in (2.6) is chosen such that the
number of points in the influenced domain of each point is a finite constant. If the active set algorithm stops at a finite
number of steps then the solution of active set strategy y(l) converge to exact solution y as liml→∞ |y − y(l)|1,D = 0.

Moreover, for IEFGM solution y
(l)
h , we have limh→0,l→∞ |y − y

(l)
h |1,D = 0.

Proof. We have∫
D

[
∆y(l+1) −∆y

]2
dx =

∫
D

[
∆y(l+1) −∆y(l) − c(y(l) − z) + ∆y(l) + c(y(l) − z)−∆y

]2
dx

=

∫
D

[
∆y(l) + c(y(l) − z)−∆y

]2
−
[
∆y(l+1) −∆y(l) − c(y(l) − z)

]2
+ 2

[
∆y(l+1) −∆y(l) − c(y(l) − z)

]
·
[
∆y(l+1) −∆y

]
dx. (5.4)

Now, for any x ∈ A(l+1), according to (3.15) we have λ(l+1)(x)− λ(l)(x)− c(y(l)(x)− z(x)) = ∆y(l+1)(x)−∆y(l)(x)−
c(y(l)(x)−z(x)) = 0. On the other hand, for any x ∈ B(l+1), we have 0 ≥ λ(l)(x)+c(y(l)(x)−z(x)) = ∆y(l)(x)−g(x)+
c(y(l)(x)− z(x)). Substituting g(x) = −∆y(l+1)(x) from (3.14) leads to ∆y(l+1)(x)−∆y(l)(x)− c(y(l)(x)− z(x)) ≥ 0.
Moreover, for exact solution y of obstacle problem, using −∆y(x) ≤ g(x) and Substituting g(x) = −∆y(l+1)(x) yields
∆y(l+1)(x)−∆y(x) ≤ 0. Therefore,∫

D

[
∆y(l+1) −∆y(l) − c(y(l) − z)

] [
∆y(l+1) −∆y

]
dx ≤ 0. (5.5)

By using (5.4) and (5.5)

∥∆y(l+1) −∆y∥2 ≤
∫
D

[
∆y(l) −∆y

]2
−
[
∆y(l+1) −∆y(l)

]2
+ 2c(y(l) − z) ·

[
∆y(l+1) −∆y

]
dx

= ∥∆y(l) −∆y∥2 − ∥∆y(l+1) −∆y(l)∥2 + 2c

∫
D

(y(l+1) − y) ·
[
∆y(l+1) −∆y

]
dx

+ 2c

∫
D

(y(l+1) − y(l)) ·
[
∆y −∆y(l+1)

]
+ (y − z) ·

[
∆y(l+1) + g

]
dx

− 2c

∫
D

(y − z) · [∆y + g] dx. (5.6)

Using Gauss theorem for the first integral in right hand sight of (5.6) leads to∫
D

(y(l+1) − y) ·
[
∆y(l+1) −∆y

]
dx = −

∫
D

[
∇y(l+1) −∇y

]2
dx. (5.7)

In addition, the value of the second integral is negative and the third integral will vanish since complementarity
condition (3.6) holds. Therefore, we can conclude that

∥∆y(l+1) −∆y∥2 ≤ ∥∆y(l) −∆y∥2 − ∥∆y(l+1) −∆y(l)∥2 ≤ ∥∆y(l) −∆y∥2. (5.8)

Consequently, (5.8) yields that liml→∞ ∆y(l) = ∆y. So, by considering (5.7), we can obtain liml→∞ |y(l) − y|1,D = 0.
Moreover, regarding to error estimate of IMLS approximation, it has been proven in Theorem 3.2 of reference [27],
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that if y(l) ∈ Hm(D) for m ≥ 1, and if r in (2.6) is chosen such that the number of points in the influenced domain of
each point is a finite constant, then

∥Dαy(l) −Dαy
(l)
h ∥∞ ≤ Cαr

m+1−|α||y(l)|1,D, |η| ≤ 2. (5.9)

By considering the definition (5.3) and the inequality (5.9) for α = 1 we have

|y(l) − y
(l)
h |1,D =

(
n∑

i=1

∥
∂(y(l) − y

(l)
h )

∂xi
∥2L2(D)

) 1
2

≤ |D|

(
n∑

i=1

∥
∂(y(l) − y

(l)
h )

∂xi
∥2∞

) 1
2

≤ n|D|C1r
m|y(l)|1,D. (5.10)

Now, by considering r = βh, it can be concluded that limh→0 |y(l) − y
(l)
h |1,D = 0. Finally, by combining of this result

with liml→∞ |y(l) − y|1,D = 0, the the desired result will be obtained. □

6. Numerical illustrations

In this section we solve two numerical examples of obstacle problems with the presented IEFGM method. The
algorithm was implemented in MATLAB software and on a PC with a 3.4 Giga-Hertz Core i5 Processor and 8
Gigabytes of RAM. Here, we choose the radius of the influence as a multiplier of fill distance, i.e. r = βh. Choosing
an β between 2 and 3 will yield more favorable results [9]. About regularization parameter c, it is important to stress
that for numerical purposes at a solution y to the variational inequality, λ(x) := max{λ(x) + c(y(x)− z(x)), 0} holds
for every c > 0 and there is no need to c → ∞ [11]. So, in our examples the regularization parameter is chosen as
c = 1.

Here, we have used composite Gaussian quadrature to calculate all the integrals. In fact, first we divided the
integration domain into several separated subdomains and then we used a Gaussian integration formula in each
subdomain. In the first example, where the integration domain is 1D, the number of divisions is 4 and the 8-point
Gauss-Lobatto-Legendre formula is used in each subdomain. In the second example, where the integration region is
2D, the number of subdomains is 16 and the 8-point Gauss-Lobatto-Legendre formula is used in each subdomain.

In general, using Gaussian formulas with a higher number of points cannot help increase accuracy. It may even
cause non-convergence and instability in the method. However, newer methods for calculating the integral in EFG
and IEFGM have been proposed in references [18] and [19].

Example 6.1. Our first example is a one-dimensional obstacle problem in D = [−1, 1]. Consider the obstacle problem
(1.1)-(1.2) with forcing function g(x) = 0 and homogeneous boundary conditions y(−1) = y(1) = yb = 0. The obstacle
is considered as z(x) = ( 12 −x2)(1− 4x2)− 1. The contact region in this example is the union of two disjoint intervals.
The IMLS shape functions are constructed with a weight function (2.6) when γ = 2 and different values of r, and
used as a basis functions in IEFGM. The distribution of nodes in the domain is assumed to be uniform. The obtained
solution by applying IEFGM with h = 0.01 and the obstacle function are plotted in Figure 1. The ability of the
method to obtain an acceptable solution is evident in this figure.

Example 6.2. The second example is devoted to a 2D obstacle problem. Let D = [−1.5, 1.5]2. The obstacle and
forcing function are constant, z(x) = 0 and g(x) = 2. The exact solution of this example is [20]

y∗(x) =

{
ln
√
x2
1 + x2

2 −
x2
1+x2

2−1
2 , for

√
x2
1 + x2

2 ≥ 1,

0, for
√
x2
1 + x2

2 < 1.

So, the contact region is the unit disc x2
1 + x2

2 ≤ 1.
In this example, the distribution of nodes in the rectangular domain is assumed to be uniform. The IMLS shape

functions are constructed with a weight function (2.6) when γ = 2 and different values of r, and used as a basis
functions in IEFGM. The obtained solution by applying IEFGM with h = 0.05 is plotted in Figure 2. Figure 3 also
shows the gridpoints that the presented algorithm has identified as contact and non-contact points.
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Figure 1. The solution function by
IEFGM and the obstacle function for
Example 6.1.

Figure 2. The solution function by
IEFGM for Example 6.2.

Moreover, Table 1 contains L2-error of the method for different choices of h and r. In this table the computational
order of error is calculated by the following formula

order =
log(E1)− log(E2)

log(h1)− log(h2)
,

where E1 and E2 are the errors associated with h1 and h2, respectively. In Table 2, the results of the current technique
are compared to some other methods. The results of the element free Galerkin method (EFG) [17] and radial points
interpolation method (RPIM) [23] and direct local boundary integral equation method (DLBIE) [10] are reported
in this table. The discretization parameters in the methods are considered in such a way that fair conditions are
established in the comparison. In all methods, the active set method is used to solve the discrete problem. The results
indicate the appropriate accuracy of the proposed method for solving the obstacle problem.

Table 1. The computed errors for Example 6.2.

r = 2.01h r = 2.20h r = 2.50h
h ∥y∗ − yh∥2 order ∥y∗ − yh∥2 order ∥y∗ − yh∥2 order
0.2 2.8415e− 02 – 3.0891e-02 – 3.1940e-02 –
0.1 7.6506e− 03 1.8930 8.3236e-03 1.8919 8.6350e-03 1.8871
0.05 2.0255e− 03 1.9173 2.1971e-03 1.9216 2.2700e-03 1.9275
0.02 3.4416e− 04 1.9344 3.6694e-04 1.9532 3.8705e-04 1.9306

Table 2. Comparison of absolute errors of different methods for Example 6.2.

h DLBIE RPIM EFG IEFGM
0.2 1.5209e− 01 4.351e-02 2.638e-02 3.1940e-02
0.1 5.3746e− 02 1.1028e-02 5.772e-03 8.6350e-03
0.05 1.4279e− 02 6.3751e-03 1.801e-03 2.2700e-03
0.02 4.9211e− 03 8.4162e-04 2.1914e-04 3.8705e-04
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Figure 3. Grid points in contact and non-contact regions for Example 6.2.

7. Conclusion

In this paper, interpolating moving least square method is employed in the element free Galerkin approach, to
solve the obstacle problem. The IEFGM is combined with an active set strategy to present an efficient algorithm for
obstacle problem. The convergence theorem of the presented method has been proven and finally, two examples of
obstacle problems have been solved by the presented method. The calculated results show that the IEFGM is efficient
and it can provide accurate solutions for the variational inequalities like as obstacle problem.
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