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Abstract

The Bézier curve technique is a numerical method often adopted for solving complex differential equations, includ-
ing fractional differential equations. The quantum analogue of fractional differential equations extends classical

fractional differential equations into the quantum domain, involving fractional calculus within quantum mechanic
frameworks. In this sequel, the stated Liouville-Caputo type p-fractional differential equation ( pFDE ) is solved

by utilizing the Bézier curve method. Firstly, the p-fractional differential equation is transformed into the equiva-

lent systems of weakly singular p-integral equations by many results of fractional p-calculus. Secondly, the Bézier
curve method is used to solve the latter systems of weakly singular p-integral equations. The stated method is

an approximation method which has very small errors as it gives very good results. Numerical examples are also

given to check the validity of the BCM technique.
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1. Introductions and Motivations

Fractional modeling has become applicable in different sciences during the past three decades or more. In addition,
many physical and engineering topics has attracted much attention for researchers (see [7, 8, 17, 23]). The fractional
calculuses (FC) generalizes the operations of differentiation and integration to non-integer orders. FC emerged as
an main tool for the study of dynamical systems, since fractional order operators are non-local and capture the
history of dynamics. The p-fractional calculuses is the Liouville-Caputo type p-fractional calculus (pFC). In stochastic
analysis fields and quantum mechanics, we can find the p-fractional calculus. The Liouville-Caputo type p-fractional
calculus is one of the classical p-fractional calculuses. Some scientists have studied the existence of solutions for the
Liouville-Caputo type p-fractional boundary value problems, (see [2, 4, 6, 9, 16, 18]).

Jarad et al.[19] studied the stability of Liouville-Caputo type p-fractional non-autonomous systems by using Lya-
punov’s direct technique.

On the numerical methods, some techniques were presented to achieve an approximate solution of the pFDE [1].
Then, the convergence of these techniques was found (see [22]). In [26], the difference method was used to solve the
Liouville-Caputo type pFDE . The variational iteration technique and the Lagrange multipliers technique are used
to study the Liouville-Caputo type pFDE (see [24]). For this problem, the utilization of the Bézier curve method
(BCM) [10] is a new idea. Also this approach is simple to utilize. Therefore, we consider BCM for this problem.
Additionally many researchers utilized the BCM: For example, the numerical solution for delay differential equation
(DDE) is obtained by [13] and [14], and some examples for linear optimal control systems with pantograph delays is
achieved by BCM [15]. Although the use of this method is very straightforward and simple (see the results). For the
collocation technique, one can refer to [3, 5, 20].
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In this paper, The approximate solution of IVPCpF via BCM is stated. The lemma is exhibited for truncated error.
Also, some numerical examples are stated to verify our technique.

The organization of the paper is sorted as follows: Section 1 describes the introduction and motivation of the
basic idea. Basic preliminaries are appearing in section 2. The Bézier curve method is introduced in section 4. The
application of the current method is simulated in section 5. The last section 6 is dedicated to a concluding remark on
the article.

2. Basic Preliminaries

Definition 2.1. (see [11]) Let p ∈ (0, 1] and

[t]p =
1− pt

1− p
, t ∈ R,

where R is the set of real numbers. The p-analogue of the power function (t− s)n with n ∈ N0 = N ∪ {0} is

(t− s)0 = 1, (t− s)n =
n−1∏
i=0

(t− pis), n ∈ N, t, s ∈ R,

where N is the set of natural numbers. For 0 ≤ s ≤ t, we have

(t− s)(β) = tβ
∞∏
i=0

t− pis

t− pβ+is
, (2.1)

where β > 0 and 0 < |p| < 1. Note that, if s = 0 then t(β) = tβ . For t0 ≤ t1 ≤ t, we have

(t− t0)
(β) ≥ (t− t1)

(β)
,

where 0 < |p| < 1, β ∈ C\{−n : n ∈ N ∪ {0}}, C is the set of complex number, and N = {1, 2, 3, . . .}, then

Γp(β) = (1− p)1−β(1− p)(β−1),

Γp(β + 1) = [β]Γp(β),Γp(1) = 1,

where [β] =
(
1− pβ

)
/(1− p).

Definition 2.2. (see [18]) If g is a real or complex valued function, t ∈ A (on p geometry set A, where p ∈ R be an
invariant point, a subset A of C is called p geometric if pt ∈ A whenever t ∈ A), |p| ̸= 1, then

Dpg(t) =
dp
dpt

g(t) =
g(pt)− g(t)

(p− 1)t
, t ∈ A \ 0,

Dpg(0) =
dp
dpt

g(t)

∣∣∣∣
t=0

= lim
n→∞

g (tn)− g(0)

tpn
, |p| < 1.

Definition 2.3. (see [25]) Let t ∈ A(p-geometry set A), β ̸= −1,−2, . . . and β ≥ 0. The β-order p-fractional integral
of the Riemann-Liouville type with the lower limit point a is can be defined as Ip,ag(t) = g(t),

Iβp,ag(t) =
1

Γp(β)

∫ t

a

(t− ps)β−1g(s)dps.

Definition 2.4. (see [25]) Let a ∈ Tp, where Tp = {pn : 0 < p < 1, n ∈ Z∪ {0}},Z = {0,+1,−1,+2,−2, . . .}. The
β-order Riemann-Liouville type p-fractional derivative (FD) of a function g(t) : (a,∞) → R can be defined as

(
Dβ

p,ag
)
(t) =

{(
I−β
p,a g

)
(t), β ≤ 0,(

D
⌈β⌉
p,a I

⌈β1−β
p,a g

)
(t), β > 0,

where ⌈β⌉ be the smallest integer that is greater or equal to β.
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Definition 2.5. (see [25]) Let a ∈ Tp. The β-order Liouville-Caputo type p-FD of a function g(t) : (a,∞) → R can
be defined as(

cDβ
p,ag

)
(t) =

{(
I−β
p,a g

)
(t), β ≤ 0,(

I
[β]−β
p,a D

[β]
p,ag(t)

)
, β > 0.

For facility, one use the notations Iβp g(t), D
β
p g(t), and

cDβ
p g(t) instead of Iβp,0g(t), D

β
p,0g(t), and

cDβ
p,0g(t) respectively.

Definition 2.6. (see [26]) A function g defined on [0, b] is called p-absolutely continuous if g is continuous and for
t ∈ (pb, b], there exists a constant M > 0, where

∞∑
j=0

∣∣g (tpj)− g
(
tpj+1

)∣∣ ≤M.

Introduce the space AC(n)
p [0, b] =

{
Dk−1

p g ∈ ACp[0, b], k = 1, 2, . . . , n
}
, where ACp[0, b] is composed of all functions

which are p-absolutely continuous on [0, b].

Definition 2.7. Let g(t) on (t0, t1) be a real valued function on a set A. The p-integral can be defined as∫ t1

t0

g(t)dpt =

∫ t1

0

g(t)dpt−
∫ t0

0

g(t)dpt,

where ∫ x

0

g(t)dpt = (1− p)
∞∑

n=0

xpng (xpn) , x ∈ A.

Also ∫ 1

0

tdpt =
1

1 + p
, and

∫ 1

0

tndpt =
p− 1

pn+1 − 1
.

Definition 2.8. (see [9]) If β > 0, n = ⌈β⌉, t ∈ (0, b], g ∈ AC(n)
p [0, b] and Dn

p g ∈ C[0, b], then

cDβ
p g(t) = Dβ

p

g(t)− n−1∑
j=0

Dj
pg(0)

Γp(j + 1)
tj

 .

3. The Approximation Method

The initial value problem of the β-order (0 < β < 1) Liouville-Caputo type p-fractional (IVPCpF) differential
equation (0 < p < 1) can be introduced by

cDβ
p z(t) = g(t, z(t)), 0 ≤ t ≤ 1, (3.1)

z (t0) = z0, t0 ∈ Tp, t0 = 0,

where g : Tp ×Rn → Rn is continuous function, the time scale Tp = {pn : n ∈ Z} ∪ {0}, Z is the set of integers, and t
denotes time here.

Now, a difference formula is constructed to discretize the pCF,

cDβ
p z(t) = Dβ

p z(t)−
z(0)

Γp(1− β)
t−β .

Let 0 = t0 < t1 < . . . < tN = 1 ∈ Tp be a nonuniform partition of [0, 1], tk = pN−k(1 ≤ k ≤ N), △t1 =

pN−1, △tk = pN−k − pN−k+1(2 ≤ k ≤ N), where N ≥ 1, N ∈ Z+, g(t, s) = (t − ps)(−β)z(s), g(pt, t) = 0,
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therefore one may have

cDβ
p z (tn) = DpI

1−β
p z (tn)−

z(0)

Γp(1− β)
t−β
n

= Dp
1

Γp(1− β)

∫ tn

0

(tn − ps)
(−β)

z(s)dps−
z(0)

Γp(1− β)
t−β
n

=
1

Γp(1− β)

∫ tn

0

Dp (tn − ps)
(−β)

z(s)dps−
z(0)

Γp(1− β)
t−β
n ,

then

cDβ
p z (tn) =

1

Γp(−β)

∫ tn

0

(tn − ps)
(−β−1)

z(s)dps−
z(0)

Γp(1− β)
t−β
n

=
1

Γp(−β)

n∑
k=1

∫ tk

tk−1

(tn − p)
(−β−1)

z(s)dps−
z(0)

Γp(1− β)
t−β
n . (3.2)

For discretizing the integral in (3.2), one may have

L1,k(s) =
s− tk−1

△tk
z (tk) +

tk − s

△tk
z (tk−1) , s ∈ [tk−1, tk] , k = 1, 2, . . . , N.

Theorem 3.1. Assume that 0 < β, p < 1, z(t) be a continuous function on [0, 1], M1 = sup0≤t≤1

∣∣D2
pz(t)

∣∣, then for
any fixed δ (0 < δ < 1, tn(n ≤ (1− δ)N) the truncation error r (tn) can be written by:

|r (tn)| <
M1(1− p)2p(2−β)δN

4 (1− pβ) (1− p1−β) |Γp(−β)|
.

Proof. See [26]. □

4. The Bézier Curve Method

Let k be a chosen positive integer and {t0 ≤ t1 ≤ . . . ≤ tk = tf} be a partition of [t0, tf ]. The idea is utilizing BCM
to approximate the solutions z(t). Define the Bézier polynomials of degree n over the interval [tj−1, tj ] as follows:

zj(t) =
n∑

r=0

wj
rBr,n

(
t− tj−1

h

)
, (4.1)

where h = tj − tj−1, and

Br,n

(
t− tj−1

h

)
:=

(
n

r

)
1

hn
(tj − t)

n−r
(t− tj−1)

r
,

is the Bernstein polynomial of degree n over [tj−1, tj ], and w
j
r are unknown control points.

Also, one may have

CT =< zj(t), ϕ(t) > Q−1
n ,

C =
[
c0 c1 . . . cn

]
.

For Ω = [tj−1, tj ], and Tn(t) =
[
1 t . . . tn

]T
, we have

ϕ(t) =< B0,n(t), . . . , B0,n(t) >,

< zj(t), ϕ(t) > =

∫
Ω

zj(t)ϕ
T (t)dt

= [< zj(t), B0,n(t) >< zj(t), B1,n(t) > . . . < zj(t), Bn,n(t) >] ,



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-12 5

where the (n+ 1)× (n+ 1) matrix Qn are considered as

Qn =< ϕ(t), ϕ(t) >=

∫
Ω

ϕ(t)ϕT (t)dt

=

∫
Ω

(
ψΩ
nTn(t)

) (
ψΩ
nTn(t)

)T
dt

= ψΩ
n

∫
Ω

Tn(t) (Tn(t))
T
dt

(
ψΩ
n

)T
= ψT

nGΩ,n

(
ψΩ
n

)T
,

and

GΩ,n =


(tj − tj−1)

(t2j−t2j−1)
2 . . .

(tn+1
j −tn+1

j−1 )
n+1

(t2j−t2j−1)
2

(t3j−t3j−1)
3 · · · (tn+2

j −tn+2
j−1 )

n+2
...

...
...

...
(tn+1

j −tn+1
j−1 )

n+1

(tn+2
j −tn+2

j−1 )
n+2 · · · (t2n+1

j −t2n+1
j−1 )

2n+1


and ψΩ

n is the (n+ 1)(n+ 1) matrix, where

ψΩ
n = ψn+1An+1,

ψn+1(i+ 1, j + 1) =

{
(−1)j−i

hj

(
n
i

)(
n−i
j−i

)
, i ≤ j,

0, j > i,

and for i, j = 0, 1, . . . , n, we have

An+1(i+ 1, j + 1) =

{(
i
j

)
(−a)i−j , j ≤ i,

0, j > i.

Lemma 4.1. Let the function zexact : [tj−1, tj) −→ R be n+1 times continuously differentiable, zexact ∈ Cm+1 [tj−1, tj ]
and Y = Span {ψi,m | i = 0, 1, . . . , n,m = 0, 1, . . . , k − 1}, if CTϕ is the best approximation zexact out of Y , then we
have

∥zexact − CTϕ∥2 ≤ M

(n+ 1)!kn+1
√
3n+ 3

,

M = max
t∈[tj−1,tj ]

∣∣∣z(n+1)
exact (t)

∣∣∣ .
Proof. Suppose that the Taylor polynomial of order n for the function zexact = gexact on

[
m
k ,

m+1
k

)
as

ym(t) = gexact

(m
k

)
+ g′

(m
k

)(
t− m

k

)
+ . . .+ g(n)

(m
k

) (
t− m

k

)n
n!

,

m = 0, 1, . . . , k − 1, we can compute

|g(t)− yn(t)| ≤ ∥g(n+1)(η)∥
(
t− m

k

)n+1

(n+ 1)!
, η ∈

[
m

k
,
m+ 1

k

)
,
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then, we have

∥g − CTϕ∥22 =

∫
[tj−1,tj ]

∣∣g(t)− CTϕ(t)
∣∣2 dt

=
k−1∑
m=1

∫
[mk ,m+1

k ]

∣∣g(t)− CTϕ(t)
∣∣2 dt

≤
k−1∑
m=1

∫ m+1
k

m
k

|g(t)− ym(t)|2 dt

≤
k−1∑
m=1

∫
[mk ,m+1

k ]

[
g(n+1)(η)

(
t− m

k

)n+1

(n+ 1)!

]2

dt

≤ M2

(n+ 1)!2

k−1∑
m=0

∫
[mk ,m+1

k ]

(
t− m

k

)2n+2

dt

=
M2

[(n+ 1)!]2k2n+2(2n+ 3)
.

Now, the proof is completed. □

Note: Also, we have

dBr,n(τ)

dτ
= n (Br−1,n−1(τ)−Br,n−1(τ)) ,

dzj(τ)

dτ
=

n−1∑
r=0

nwj
rBr−1,n−1(τ)−

n−1∑
r=0

nwj
rBr,n−1(τ)

=
n−1∑
r=0

nwj
r+1Br,n−1(τ)−

n−1∑
r=0

nwj
rBr,n−1(t)

=
n−1∑
r=0

Br,n−1(τ)n
(
wj

r+1 − wj
r

)
.

By substituting zj(t), Eqs. (3.1) and (4.1), one may achieve a simplified problem, then, this problem can be solved by
Maple 16. The convergence of this method is similar the method in [15]. In [12], for

cDβ
p zi(t) = fi (t, z1, z2, . . . , zn) , t0 ≤ t ≤ 1, i = 1, 2, . . . , n,

Dj
pzi (t0) = bij , bij ∈ R, i = 1, . . . , n, j = 0, 1, . . . , ⌈β⌉ − 1,

we have

zi(t) =

⌈β⌉−1∑
j=0

bij
Γp(j + 1)

tj +
(1− p)

Γp(β)

∞∑
k=0

tpk
(
t− tp(k+1)

)(β−1)

fi
(
tpk, z1

(
tpk

)
, . . . , zn

(
tpk

))
dps,

be done in the following step

• Degree raising case of the Bézier polynomial approximation.

Remark 4.2. Consider the following system:
cDβ

p z(t) = g(t, z(t)) = A(t)z(t) + F (t), 0 ≤ t ≤ 1, (4.2)

z (t0) = z0.

Sufficient conditions for the existence and uniqueness of the solution of the pantograph delay differential Equation
(4.2) are
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• the z(t) is continuous;
• the right-hand side of (4.2) satisfies Lipschitz condition;
• the right-hand side of (4.2) is bounded.

4.1. The convergence of the approximate solution. One may consider the following problem:

I(z(t), cDβ
p z(t)) =

cDβ
p z(t)−A(t)z(t) = F (t), 0 ≤ t ≤ 1, (4.3)

z (t0) = z0 = a ∈ R.

Lemma 4.3. For a polynomial in Bézier form

z(t) =

n1∑
i=0

ci,n1
Bi,n1

(t),

then we have∑n1

i=0 c
2
i,n1

n1 + 1
≥

∑n1+1
i=0 c2i,n1+1

n1 + 2
≥ . . . ≥

∑n1+m1

i=0 c2i,n1+m1

n1 +m1 + 1
,

where ci,n1+m1 is the Bézier coefficients of z(t) after it is degree-elevated to degree n1 +m1.

Proof. See [27]. □

Theorem 4.4. If the problem (4.3) has a unique C1 continuous solutions z̄, then the approximate solutions obtained
by the control-point-based method converges to the exact solution z̄ as the degree of the approximate solution tends to
infinity.

Proof. Given an arbitrary small positive number ϵ > 0, by the Weierstrass theorem (see [21]) one can easily find
polynomials Q1,N1

(t) of degree N1 such that

||a−Q1,N1
(0)||∞ ≤ ϵ

16
,

where ||.||∞ stands for the L∞-norm over [0, 1].
In general, Q1,N1

(t) does not satisfy the boundary conditions. After a small perturbation with linear and constant
polynomials β, for Q1,N1

(t), we can obtain polynomial P1,N1
(t) = Q1,N1

(t)+β such that P1,N1
(t) satisfies the boundary

condition P1,N1(0) = a. Thus Q1,N1(0) + β = a. Then, we have

∥a−Q1,N1
(0)∥∞ = ∥β∥∞ ≤ ϵ

16
,

∥cDβ
pP1,N1

(t)− cDβ
p z̄(t)||∞ =

∥∥∥∥∥∥Dβ
p

(P1,N1
(t)− z̄(t))−

n−1∑
j=0

Dj
p (P1,N1(0)− z(0))

Γp(j + 1)
tj

∥∥∥∥∥∥
∞

≤
∥∥Dβ

p (P1,N1(t)− z̄(t))
∥∥
∞ <

ϵ

5
,

Now, let define

LPN (t) = L(P1,N1
(t), cDβ

pP1,N1
(t)) = cDβ

pP1,N1
(t)−A(t)P1,N1

(t) = F (t),

for every t ∈ [0, 1]. Thus for N ≥ N1, we have an upper bound for the following residual:

∥LPN (t)− F (t)∥∞ = ∥L
(
P1,N1(t),

cDβ
pP1,N1(t)

)
∥∞ ≤ ∥cDβ

pP1,N1(t)− cDβ
p z̄(t)∥∞ + ∥A(t)∥∞∥P1,N1(t)− z̄(t)∥∞

≤ C1(
ϵ

5
+
ϵ

5
) < C1ϵ,

where C1 = 1+ ∥A(t)∥∞ is a constant. Since the residual R(PN ) := LPN (t)− F (t) is a polynomial, we can represent
it by a Bézier form. Therefore

R(PN ) :=

m1∑
i=0

di,m1
Bi,m1

(t),
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then from Lemma 1 in [27], there exists an integer M(≥ N) such that when m1 > M , we have∣∣∣∣∣ 1

m1 + 1

m1∑
i=0

d2i,m1
−
∫ 1

0

(R(PN ))2dt

∣∣∣∣∣ < ϵ,

thus

1

m1 + 1

m1∑
i=0

d2i,m1
< ϵ+

∫ 1

0

(R(PN ))2dt < ϵ+ C2
1ϵ

2.

Suppose z(t) is approximated solution of (4.3) obtained by the control-point-based method of degree m2 (m2 ≥ m1 ≥
M). Let

R
(
z(t), cDβ

pP1,N1(t)
)
= L

(
z(t), cDβ

pP1,N1(t)
)
− F (t) =

m2∑
i=0

ci,m2Bi,m2(t),m2 ≥ m1 ≥M, t ∈ [0, 1].

Define the following norm for difference approximated solution z(t) and exact solution z̄(t)

∥z(t)− z̄(t)∥ :=

∫ 1

0

∣∣cDβ
p z(t)− cDβ

p z̄(t)
∣∣2 dt. (4.4)

By (4.4), Lemma 4.3, the boundary conditions z̄(0) = a = P1,N1
(0) = z(0), we have

∥z(t)− z̄(t)∥ ≤ C|z(0)− z̄(0)|+ ∥R
(
(z(t), cDβ

p z(t))− (z̄(t), cDβ
p z̄(t))

)
∥22

= C

∫ 1

0

m2∑
i=0

(ci,m2Bi,m2(t))
2
dt ≤ C

m2 + 1

m2∑
i=0

c2i,m2
. (4.5)

The last inequality in (4.5) is obtained by Lemma 4.3, where C is a constant positive number. Hence

∥z(t)− z̄(t)∥ ≤ C

m2 + 1

m2∑
i=0

c2i,m2

≤ C

m2 + 1

m2∑
i=0

d2i,m2
≤ C

m1 + 1

m1∑
i=0

d2i,m1

≤ C(ϵ+ C2
1ϵ

2) = ϵ1, m1 ≥M.

This completes the proof. □

5. Numerical examples

Now, a numerical example of IVPCpF is stated to illustrate the BCM (Bézier Curve Method). By utilizing Maple
16, all results are obtained.

Example 5.1. We will examine our method by applying to the following IVPCpF discussed in ([25]) as given below:

cD
1
3
p z(t) = t−

3
2 z2(t), 0 < t ≤ 1, z(0) = 10−4

zexact (t) = Γp(13/6)t
7
6 /Γp(11/6) + 10−4.

By BCM and the collocation points pN−i
(
N = 10, i = 0, 1, . . . , N, β = 1

3

)
, we obtain Tables 1 and 2. The solution

graphs z can be reveal in Figure 1 (with n = 3 ).

Example 5.2. The following IVPCpF is examined (see [26])

cDβ
p z(t) = t, 0 < t ≤ 1, z(0) = z0 = 0

zexact (t) =
Γp(2)

Γp

(
5
2

) t 3
2 .
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Table 1. Absolute error of z(t) for this method and error in [25] for Example 5.1 ( N = 10, β = 1
3 , p =

1
2

)
.

t Absolute error in BCM Absolute error in [25]
1

1024 0.307597912584070× 10−3 –
1

512 4.58331289587832× 10−14 7.48751× 10−4

1
256 0.000190894208127339 1.69380× 10−3

1
128 5.70704941638134× 10−13 3.80772× 10−3

1
64 4.88584867008868× 10−13 8.55030× 10−3

1
32 0.000103365853560924 1.19196× 10−2

1
16 1.32436422939364× 10−11 4.30935× 10−2

1
8 0.00398404087914093 9.67418× 10−2

1
4 3.90912302528079× 10−12 2.17178× 10−1

1
2 0.0388958273590442 4.87548× 10−1

1 0.0159066965555552 1.09451

Table 2. Absolute error of z(t) for this method and error in [25] and [12] for Example 5.1 ( N = 10, β = 1
3 , p =

1
8

)
.

t Absolute error in BCM Absolute error in [25] Absolute error in [12]
1

810 2.91031474126313× 10−11 – –
1
89 0.77659237026844× 10−14 7.10653× 10−4 1.35645× 10−4

1
88 4.40869352346390× 10−10 1.59919× 10−3 1.35642× 10−4

1
87 4.77766630895614× 10−14 3.59173× 10−3 1.35607× 10−4

1
86 3.87464026063499× 10−14 8.06390× 10−3 1.35208× 10−4

1
85 0.00000193727690609905 1.81032× 10−2 1.30952× 10−4

1
84 1.87868519569215× 10−14 4.06404× 10−2 1.05923× 10−4

1
83 0.000212000148251494 9.12346× 10−2 3.61824× 10−3

1
82 3.88074988810772× 10−13 2.04815× 10−1 2.24448× 10−3

1
8 0.0144815408959622 4.59794× 10−1 7.76074× 10−3

1 4.27017088355797× 10−10 1.03220 6.37084× 10−3

By BCM and the collocation points pN−i, we achieve Tables 3 and 4 and Figure 2 (with n = 3).

z(t) =


0.01636697759t− 0.1558044172× 10−4 − 0.5024058425t2 + 81.81560373t3, 0 ≤ t ≤ 1

27 ,

−0.2262052280× 10−4 + 0.01296279721t+ .7150983986t2 − 3.486727697t3, 1
27 ≤ t ≤ 1

24 ,

−0.9705441908× 10−3 + 0.04755666544t+ 0.1902266620t2 − 0.06211482836t3, 1
24 ≤ t ≤ 1.
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Figure 1. The graphs of approxi-
mated and exact solution z(t) for Ex-
ample 5.1 with p = 1

2 .

Figure 2. The graphs of approxi-
mated and exact solution z(t) for Ex-
ample 5.2 with p = 1

2 , β = 1
3 .

Table 3. Absolute error for z(t) for Example 5.2 with p = 1
2 , β = 1

3

t Absolute error for this method
1

1024 0.0000305175781200000
1

512 4.44582521838544× 10−15

1
256 0.0000166726728261375
1

128 1.10127076728694× 10−13

1
64 1.24925243760732× 10−13

1
32 0.0000533475738786126
1
16 5.24244536670437× 10−12

1
8 0.000597492837855075
1
4 3.08431058471115× 10−12

1
2 0.00477994278497773
1 3.35516503469080× 10−10

Example 5.3. The following IVPCpF is examined (see [25])

cD
1
2
p z(t) = t+ t2, 0 < t ≤ 1, z(0) = z0 = 1,

zexact (t) = 1 +
Γp(2)

Γp

(
5
2

) t 3
2 +

Γp(3)

Γp

(
7
2

) t 5
2 .

By BCM and the collocation points pN−i, we achieve Table 5 (with n = 3).

6. Conclusions

The approximate solution of IVPCpF via BCM is introduced in this paper. The lemma was proved for truncated
error. This approach is computationally appealing, and decrease memory of the compuer, at the same time proceeds
the precision. Finally, several examples are provided to verify our theoretical analysis by utilizing the technique
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Table 4. Absolute error of z(t) for this method and error in for Example 5.2 ( N = 20, p = 3
5 , β = 1

2

)
.

t Absolute error in BCM Absolute error in [26]
(3/5)19 1.14677656602779× 10−16 4.44849× 10−8

(3/5)18 2.04019525271454× 10−8 –
(3/5)17 .36421444095043× 10−16 2.29471× 10−8

(3/5)16 9.75353885961235× 10−16 –
(3/5)15 6.80935073576306× 10−9 1.20204× 10−7

(3/5)14 4.83832736889063× 10−15 –
(3/5)13 4.54327696255453× 10−8 5.72027× 10−8

(3/5)12 2.20320829349898× 10−14 –
(3/5)11 2.10336874006543× 10−7 3.23198× 10−8

(3/5)10 1.34127287726958× 10−13 –
(3/5)9 0.00556820984512183 1.90138× 10−8

(3/5)8 1.95646801439808× 10−12 –
(3/5)7 1.47896693264600× 10−12 1.13302× 10−8

(3/5)6 5.95253490595637× 10−12 –
(3/5)5 .205852355915861 6.78151× 10−9

(3/5)4 8.38030166094850× 10−12 –
(3/5)3 2.01078628574158× 10−11 4.06534× 10−9

(3/5)2 0.00283916294314055 –
(3/5)1 5.72063351550467× 10−11 1.22486× 10−7

Table 5. Absolute error for z(t) for Example 5.3 with p = 1
2 .

t Absolute error in BCM
1

1024 0.305472210352359× 10−4

1
512 6.07360770651151× 10−10

1
256 0.167348306401367× 10−4

1
128 3.96908105022170× 10−10

1
64 4.81004684528357× 10−10

1
32 0.514451038466408× 10−4

1
16 1.58913326941956× 10−10

1
8 0.656960275817142× 10−3

1
4 2.44828601836389× 10−11

1
2 8.98517371616947× 10−11

1 1.00654995449645× 10−9

finding the approximate solutions of the IVPCpF and compared with the previous existing methods in the literature.
Comparing with others, the outcomes state that the technique is more accurate than others.
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