| تعداد نشریات | 45 |
| تعداد شمارهها | 1,433 |
| تعداد مقالات | 17,655 |
| تعداد مشاهده مقاله | 57,533,734 |
| تعداد دریافت فایل اصل مقاله | 19,270,739 |
مقایسه دو محصول بارش ماهوارهای کوتاهمدت GPMGSMAP و GPMIMERG در غرب دریاچه ارومیه | ||
| نشریه مهندسی عمران و محیط زیست | ||
| مقاله 2، دوره 55، شماره 120، آذر 1404، صفحه 15-31 اصل مقاله (4.25 M) | ||
| نوع مقاله: مقاله کامل پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22034/ceej.2025.61127.2342 | ||
| نویسنده | ||
| تقی مهدوی* | ||
| گروه مهندسی عمران، واحد مراغه، دانشگاه آزاد اسلامی | ||
| چکیده | ||
| این مطالعه یک ارزیابی جامع از دو محصول بارش ماهوارهای تحقیقاتی GPM-IMERG_F و GPM-GSMaP_G در مقیاس شش ساعتی (زیر روزانه) برای فصل بارندگی (از مارس تا ژوئن 2017) با استفاده از دادههای بارش شش ساعته 17 ایستگاه سینوپتیک (Synoptic) در غرب دریاچه ارومیه ارائه میکند. روش تحقیق تکنیکهای مقایسه دادههای بارش ماهوارهای و زمینی است. اگرچه محصول GPM-IMERG_F به دلیل تصحیح با دادههای بارش ماهانه ایستگاههای زمینی مرکز جهانی بارش (GPCC) و اداره ملی اقیانوسی و جوی (NOAA) و محصول GPM-GSMaP_G بهدلیل تصحیح با دادههای بارش روزانه ایستگاههای زمینی مرکز پیشبینی اقلیم (CPC) میتوانند وضوح مکانی و زمانی دقیقتری را برای تخمین بارش ارائه دهند، ولی نتایج این مطالعه استنباط کرد که آنها هنوز هم، سوگیری قابلتوجهی را در برخی ایستگاهها ارائه میدهند. در این تحقیق برای تجزیهوتحلیل کمی دقت محصولات بارشی ماهوارهای از شش شاخصهای آماری R MBias, RBias, Bias RMSE, و MAE و برای ارزیابی قابلیت تشخیص از 7 معیار دودویی طبقهبندیشدهPOD, TSS, PC, FBI, HSS, FAR CSI استفاده شده است. در دیاگرام تیلور در همه ایستگاهها نقطه مربوط به ماهواره IMERG_F به نقطه مشاهدهشده نزدیکتر بود و درنتیجه محصول IMERG_F بهتر از محصول GSMaP_G میباشد. در تحلیل بارشهای فراگیر 6 ساعته اختلاف دو محصول خود بیشتر نمایان شد. اگرچه هر دو محصول الگوهای مکانی نسبتاً مشابهی داشتند ولی محصول GPM-IMERG_F دقت و قابلیت تشخیص بسیار بهتری نسبت به محصول GPM-GSMaP_G داشت. بهطوریکه محصول GPM-IMERG_F منحنی چگالی احتمالی تجمعی بسیار نزدیک به ایستگاهها را از نظر شدت بارندگی بازتولید کرد و همینطور عملکرد محصول GPM-IMERG_F از نظر توپوگرافی و ارتفاعی بهتر از محصول GPM-GSMaP_G بود. این مطالعه برای کاربران این محصولات در منطقه مورد مطالعه با ارزش خواهد بود و میتواند در کاربردهایی مانند کاهش خطر بلایای طبیعی و مدلسازی هیدرولوژیکی، بهویژه در مناطقی با شبکه بارانسنج پراکنده پشتیبانی کند. | ||
| کلیدواژهها | ||
| GPM-GSMaP؛ GPM-IMERG؛ بارش شش ساعته؛ غرب دریاچه ارومیه | ||
| مراجع | ||
|
Anjum MN, Ahmad I, Ding Y, Shangguan D, Zaman M, Ijaz MW, Yang M, “Assessment of IMERG-V06 precipitation product over different hydro-climatic regimes in the Tianshan Mountains”, North-Western China, Remote Sensing, 2019, 11 (19), 2314. https://doi.org/10.3390/rs11192314 Anjum MN, Ding Y, Shangguan D, Ahmad I, Ijaz MW, Farid HU, Adnan M, “Performance evaluation of latest integrated multi-satellite retrievals for Global Precipitation Measurement (IMERG) over the northern highlands of Pakistan”, Atmospheric Research, 2018, 205, 134-146. https://doi.org/10.1016/j.atmosres.2018.02.010 Beria H, Nanda T, Singh Bisht D, Chatterjee C, “Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale”, Hydrology and Earth System Sciences, 2017, 21 (12), 6117-6134. https://doi.org/10.5194/hess-21-6117-2017 Biswas SK, Chandrasekar V, “Cross-validation of observations between the GPM dual-frequency precipitation radar and ground based dual-polarization radars”, Remote Sensing, 2018, 10 (11), 1773. https://doi.org/10.3390/rs10111773 Carr N, Kirstetter PE, Hong Y, Gourley JJ, Schwaller M, Petersen W, Xue X, “The influence of surface and precipitation characteristics on TRMM Microwave Imager rainfall retrieval uncertainty”, Journal of Hydrometeorology, 2015, 16 (4), 1596-1614. https://doi.org/10.1175/jhm-d-14-0194.1 Chang NB, Hong Y, (Eds.), “Multiscale hydrologic remote sensing: Perspectives and applications”, CRC Press. Chen F, Li X, “Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China”, Remote Sensing, 2016, 8 (6), 472. https://doi.org/10.3390/rs8060472 Chen G, Lan R, Zeng W, Pan H, Li W, “Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China)”, Journal of Climate, 2018, 31 (5), 1703-1724. https://doi.org/10.1175/jcli-d-17-0373.1 Chen S, Hong Y, Gourley JJ, Huffman GJ, Tian Y, Cao Q, Xue X, Evaluation of the successive V6 and V7 TRMM multisatellite precipitation analysis over the Continental United States”, Water Resources Research, 2013, 49 (12), 8174-8186. https://doi.org/2012/10.1002wr012795 Derin Y, Yilmaz KK, “Evaluation of multiple satellite-based precipitation products over complex topography”, Journal of Hydrometeorology, 2014, 15 (4), 1498-1516. https://doi.org/10.1175/jhm-d-13-0191.1 Dinku T, Chidzambwa S, Ceccato P, Connor SJ, Ropelewski, CF, “Validation of high‐resolution satellite rainfall products over complex terrain”, International Journal of Remote Sensing, 2008, 29 (14), 4097-4110. https://doi.org/10.1080/01431160701772526 Fang J, Yang W, Luan Y, Du J, Lin A, Zhao L, “Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China”, Atmospheric Research, 2019, 223, 24-38. https://doi.org/10.1016/j.atmosres.2019.03.001 Gebregiorgis AS, Kirstetter PE, Hong YE, Gourley JJ, Huffman GJ, Petersen WA, Schwaller MR, “To what extent is the day 1 GPM IMERG satellite precipitation estimate improved as compared to TRMM TMPA‐RT?”, Journal of Geophysical Research: Atmospheres, 2018, 123 (3), 1694-1707. https://doi.org/10.1002/2017jd027606 Guo H, Chen S, Bao A, Behrangi A, Hong Y, Ndayisaba F, Stepanian PM, “Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China”, Atmospheric Research, 2016, 176, 121-133. https://doi.org/10.1016/j.atmosres.2016.02.020 Guo H, Chen S, Bao A, Hu J, Gebregiorgis AS, Xue X, Zhang X, “Inter-comparison of high-resolution satellite precipitation products over Central Asia”, Remote Sensing, 2015, 7 (6), 7181-7211. https://doi.org/10.3390/rs70607181 Habib E, Henschke A, Adler RF, “Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA”, Atmospheric Research, 2009, 94 (3), 373-388. https://doi.org/10.1016/j.atmosres.2009.06.015 He Z, Yang L, Tian F, Ni G, Hou A, Lu H, “Intercomparisons of rainfall estimates from TRMM and GPM multisatellite products over the Upper Mekong River Basin”, Journal of Hydrometeorology, 2017, 18 (2), 413-430. https://doi.org/10.1175/jhm-d-16-0198.1 Hisam E, Mehr AD, Alganci U, Seker DZ, “Comprehensive evaluation of Satellite-Based and reanalysis precipitation products over the Mediterranean region in Turkey”, Advances in Space Research, 2023, 71 (7), 3005-3021. https://doi.org/10.1016/j.asr.2022.11.007 Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Iguchi T, “The global precipitation measurement mission”, Bulletin of the American Meteorological Society, 2014, 95 (5), 701-722. https://doi.org/10.1175/bams-d-13-00164.1 Huang WR, Liu PY, Chang YH, Liu CY, “Evaluation and application of satellite precipitation products in studying the summer precipitation variations over Taiwan”, Remote Sensing, 2020, 12 (3), 347. https://doi.org/10.3390/rs12030347 Hussain Y, Satgé F, Hussain MB, Martinez-Carvajal H, Bonnet MP, Cárdenas-Soto M, Akhter G, “Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan”, Theoretical and applied climatology, 2018, 131, 1119-1132. https://doi.org/10.1007/s00704-016-2027-z Kim JP, Jung IW, Park KW, Yoon SK, Lee D, “Hydrological utility and uncertainty of multi-satellite precipitation products in the mountainous region of South Korea”, Remote Sensing, 2016, 8 (7), 608. https://doi.org/10.3390/rs8070608 Kim K, Park J, Baik J, Choi M, “Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia”, Atmospheric Research, 2017, 187, 95-105. https://doi.org/10.1016/j.atmosres.2016.12.007 Lakshmi V, “Remote sensing of the terrestrial water cycle”, (Vol. 206), John Wiley & Sons, 2014. Li R, Shi J, Ji D, Zhao T, Plermkamon V, Moukomla S, Kruasilp J, “Evaluation and hydrological application of TRMM and GPM precipitation products in a tropical monsoon basin of Thailand”, Water, 2019, 11 (4), 818. https://doi.org/10.3390/w11040818 Liu CY, Aryastana P, Liu GR, Huang WR, “Assessment of satellite precipitation product estimates over Bali Island”, Atmospheric Research,2020, 244, 105032. https://doi.org/10.1016/j.atmosres.2020.105032 Liu J, Du J, Yang Y, Wang Y, “Evaluating extreme precipitation estimations based on the GPM IMERG products over the Yangtze River Basin, China”, Geomatics, Natural Hazards and Risk, 2020, 11 (1), 601-618. https://doi.org/10.1080/19475705.2020.1734103 Lu D, Yong B, “Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau”, Remote Sensing, 2018, 10 (12), 2022. https://doi.org/10.3390/rs10122022 Ma Y, Tang G, Long D, Yong B, Zhong L, Wan W, Hong Y, “Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau”, Remote sensing, 2016, 8 (7), 569. https://doi.org/10.3390/rs8070569 Nepal B, Shrestha D, Sharma S, Shrestha MS, Aryal D, Shrestha N, “Assessment of GPM-Era Satellite Products’ (IMERG and GSMaP) ability to detect precipitation extremes over mountainous country Nepal”, Atmosphere, 2021, 12 (2), 254. https://doi.org/10.3390/atmos12020254 Prakash S, Mitra AK, AghaKouchak A, Liu Z, Norouzi H, Pai DS, “A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region”, Journal of Hydrology, 2018, 556, 865-876. https://doi.org/10.1016/j.jhydrol.2016.01.029 Sharifi E, Steinacker R, Saghafian B, “Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results”, Remote Sensing, 2016, 8 (2), 135. https://doi.org/10.3390/rs8020135 Shi J, Yuan F, Shi C, Zhao C, Zhang L, Ren L, Liu Y, “Statistical evaluation of the latest GPM-Era IMERG and GSMaP satellite precipitation products in the Yellow River source region”, Water, 2020, 12 (4), 1006. https://doi.org/10.3390/w12041006 Sunilkumar K, Narayana Rao T, Saikranthi K, Purnachandra Rao M, “Comprehensive evaluation of multisatellite precipitation estimates over India using gridded rainfall data”, Journal of Geophysical Research: Atmospheres, 2015, 120 (17), 8987-9005. https://doi.org/10.1002/2015jd023437 Tan ML, Duan Z, “Assessment of GPM and TRMM precipitation products over Singapore”, Remote Sensing, 2017, 9 (7), 720. https://doi.org/10.3390/rs9070720 Tan ML, Santo H, “Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia”, Atmospheric Research”, 202, 63-76. https://doi.org/10.1016/j.atmosres.2017.11.006 Tang G, Clark MP, Papalexiou SM, Ma Z, Hong Y, “Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets”, Remote sensing of environment, 2020, 240, 111697. https://doi.org/10.1016/j.rse.2020.111697 Tang G, Ma Y, Long D, Zhong L, Hong Y, “Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales”, Journal of hydrology, 2016, 533, 152-167. https://doi.org/10.1016/j.jhydrol.2015.12.008 Tian Y, Peters‐Lidard CD, “A global map of uncertainties in satellite‐based precipitation measurements”, Geophysical Research Letters, 2010, 37 (24). https://doi.org/10.1029/2010gl046008 Turk FJ, Miller SD, “Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques”, IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (5), 1059-1069. https://doi.org/10.1109/tgrs.2004.841627 Veerakachen W, Raksapatcharawong M, Seto S, “Performance evaluation of global satellite mapping of precipitation (gsmap) products over the chaophraya river basin, Thailand”, Hydrological Research Letters, 2014, 8 (1), 39-44. https://doi.org/10.3178/hrl.8.39 Vergara H, Hong Y, Gourley JJ, Anagnostou EN, Maggioni V, Stampoulis D, Kirstetter PE, “Effects of resolution of satellite-based rainfall estimates on hydrologic modeling skill at different scales”, Journal of Hydrometeorology, 2014, 15 (2), 593-613. https://doi.org/10.1175/jhm-d-12-0113.1 Wang X, Ding Y, Zhao C, Wang J, “Similarities and improvements of GPM IMERG upon TRMM 3B42 precipitation product under complex topographic and climatic conditions over Hexi region, Northeastern Tibetan Plateau”, Atmospheric research, 2019, 218, 347-363. https://doi.org/10.1016/j.atmosres.2018.12.011 Wei G, Lü H, T Crow W, Zhu Y, Wang J, Su J, “Evaluation of satellite-based precipitation products from IMERG V04A and V03D, CMORPH and TMPA with gauged rainfall in three climatologic zones in China”, Remote Sensing, 2017, 10 (1), 30. https://doi.org/10.3390/rs10010030 Xu F, Guo B, Ye B, Ye Q, Chen H, Ju X, Wang Z, “Systematical evaluation of GPM IMERG and TRMM 3B42V7 precipitation products in the Huang-Huai-Hai Plain, China”, Remote Sensing, 2019, 11 (6), 697. https://doi.org/10.3390/rs11060697 Yilmaz KK, Hogue TS, Hsu KL, Sorooshian S, Gupta HV, Wagener T, “Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting”, Journal of Hydrometeorology, 2005, 6 (4), 497-517. https://doi.org/10.1175/jhm431.1 Yuan F, Zhang L, Win KWW, Ren L, Zhao C, Zhu Y, Liu Y, “Assessment of GPM and TRMM multi-satellite precipitation products in streamflow simulations in a data-sparse mountainous watershed in Myanmar”, Remote Sensing, 2017, 9 (3), 302. https://doi.org/10.3390/rs9030302 Zhang Z, Tian J, Huang Y, Chen X, Chen S, Duan Z, “Hydrologic evaluation of TRMM and GPM IMERG satellite-based precipitation in a humid basin of China”, Remote Sensing, 2019, 11 (4), 431. https://doi.org/10.3390/rs11040431 Zhou Z, Guo B, Xing W, Zhou J, Xu F, Xu Y, “Comprehensive evaluation of latest GPM era IMERG and GSMaP precipitation products over mainland China”, Atmospheric Research, 2020, 246, 105132. https://doi.org/10.1016/j.atmosres.2020.105132 | ||
|
آمار تعداد مشاهده مقاله: 229 تعداد دریافت فایل اصل مقاله: 108 |
||