
تعداد نشریات | 45 |
تعداد شمارهها | 1,399 |
تعداد مقالات | 17,149 |
تعداد مشاهده مقاله | 55,259,678 |
تعداد دریافت فایل اصل مقاله | 17,591,399 |
Classifications of Different Dimensional Partial Differential Equations and Their Invariant Solutions Via Symmetry Reductions and Optimal Systems | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 03 شهریور 1404 اصل مقاله (1.42 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2025.64053.2882 | ||
نویسندگان | ||
Muhammad Irshad* 1؛ Mhammad Hussan2؛ Zulfiqar Ali1؛ Iram Jahangir1؛ Abu Sufyan1؛ Muhammad Tayyab Javed1 | ||
1Department of Mathematics, Riphah International University, Main Satyana Road, Faisalabad 38000, Pakistan. | ||
2Department of Mathematics, Government College University Faisalabad, Faisalabad 38000, Pakistan. | ||
چکیده | ||
The study analyzes the (1+2)-dimensional modified Breaking Soliton equation using classical symmetries and explores the (1+1)-dimensional heat equation and modified Boussinesq equation through Lie symmetry analysis and Lie subalgebras. Classical symmetries are derived from the solutions of nonlinear partial differential equations, and optimal systems are constructed using commutator relationships and adjoint representations. The research presents new invariant solutions and their graphical analyses, which are valuable for applied sciences and numerical simulations. Solutions explain phenomena such as circular membrane vibrations, heat conduction, and electromagnetic waves. Wave, contour, and patch contour solutions are used in sound, light, weather forecasting, medical imaging, and material science. This paper provides a comprehensive analysis of the generalized single and double reduction methods, highlighting the significance of inherited symmetries at each stage of the reduction process. | ||
کلیدواژهها | ||
Classifications؛ Symmetry reductions؛ Optimal systems؛ Invariant solutions | ||
آمار تعداد مشاهده مقاله: 2 تعداد دریافت فایل اصل مقاله: 2 |