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Abstract ’ N

In this paper, we conduct a detailed stability analysis and investigate the occurrence of Hopf bifurcation in a
temporal predator-prey model that incorporates hunting cooperation among predators. Building on this, we extend

the model to a spatiotemporal domain to explore how spatial diffusion influences the dynamics. Our simulations
reveal the emergence of distinct spatial patterns, such as cold spots indicating regions of low prey density and hot
spots corresponding to high predator concentration. Notably, we observe that increasing the diffusion rates leads
to the formation of more sharply concentrated and spatially structured patterns. To further enrich the model, we
introduce a time delay representing the gestation or response time in predator-prey interactions. The inclusion
of delay significantly alters the dynamics: while the non-delayed model supports stationary spatial patterns, the
delayed model gives rise to complex oscillatory structures that evolve over time, highlighting the critical role of
delay in generating temporal fluctuations in pattern formation.
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1. INTRODUCTION

The prey-predator model, also known as the Lotka—Volterra model, is a foundational concept in the field of math-
ematical ecology that describes the dynamic interaction between two interdependent populations: the prey, which
serves as a food source, and the predator, which depends on the prey for survival. This classical model provides criti-
cal insights into population fluctuations, species coexistence, and ecological balance. Over time, it has been extended
and refined to incorporate more realistic features observed in natural systems. One such extension involves the concept
of hunting cooperation, a behavior where individuals within a group work together to capture prey more effectively.
This collaborative strategy increases hunting success and can significantly alter population dynamics by enhancing
the predatory efficiency. The idea of cooperative hunting was first mathematically discussed in the ecological con-
text by Alves et al. [1]. It has been observed in various social animal species, including wolves, dolphins, and killer
whales, where individuals coordinate movements, roles, or timing to improve the outcome of predatory attempts [13].
Incorporating such behavioral ecology into mathematical models enriches their biological realism and helps explain
patterns of survival and dominance in nature.

To study the spatial distribution and movement of species, this work extends the classical predator-prey framework
by incorporating diffusion terms, allowing populations to disperse in a two-dimensional habitat. The motivation for
including spatial effects stems from the seminal work of Alan Turing on the chemical basis of morphogenesis [8, 17].
Turing showed that a uniform steady state, stable in the absence of diffusion, can become unstable when spatial
diffusion is introduced a process now widely known as Turing instability. This phenomenon is the mathematical
underpinning of pattern formation in nature, responsible for structures such as animal skin markings, vegetation
patches, and reaction-diffusion systems. In systems exhibiting Turing instability, the resulting spatial patterns are
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typically stationary and include spot and stripe formations. These are known as Turing patterns, and they occur
when diffusion destabilizes an otherwise stable steady state. In contrast, non-Turing patterns emerge in regions where
the system is inherently unstable, with or without diffusion. These include time-evolving patterns such as spirals,
target waves, and chaotic structures. Such patterns generally arise in what is known as the Turing-Hopf or non-Turing
domain, and are characterized by their dynamic, non-stationary nature [18, 24].

To further capture ecological realism, we introduce discrete time delays into the predator-prey interaction terms
[7, 19, 21]. These delays account for biological lags such as gestation periods, maturation times, or delays in the effect
of consumption on population growth. In natural systems, the consequences of events like successful predation do
not manifest instantaneously but are reflected in population changes after a certain time lag. Time delays have been
shown to introduce a range of dynamical behaviors into ecological models, including oscillatory solutions, loss or gain
of stability, and the onset of complex behaviors such as chaos, depending on the magnitude of the delay and system
parameters [11-14].

Despite the increasing attention to delayed and diffusive models in ecology, the literature addressing the combined
effects of spatial diffusion, cooperative hunting, and discrete time delays remains scarce. Most existing studies treat
these aspects in isolation. Therefore, our goal is to construct and analyze a comprehensive mathematical model
that unifies all three phenomena within a two-dimensional spatial framework. This approach enables us to study
how cooperation among predators, species movement, and temporal lags jointly influence the dynamics and spatial
organization of ecological populations. While previous works, such as those by Yang et al. [22], Song et al. [15],
and Li et al. [6], have explored the stability and bifurcation structures in diffusive predator-prey models with one-
dimensional spatial variation, our study extends this to the more complex two-dimensional spatial setting. This
extension allows us to examine richer pattern formations and explore how these patterns evolve under varying delay
conditions. Furthermore, we plan to investigate, in future work, the stability of the system in one-dimensional spatial
domains using normal form theory, particularly analyzing how the variation in the delay parameter, denoted by w,
affects system dynamics.

In this work, we first consider a temporal predator-prey model with logistic growth in the prey and cooperative
hunting among predators. The delayed interaction is incorporated in the predator growth term to account for realistic
time lags. In the initial analysis, presented in section 2, we establish the existence of equilibrium points, derive
conditions for local stability, and identify criteria under which a Hopf bifurcation occurs at the interior equilibrium.
We then extend this temporal model by incorporating spatial diffusion, resulting in a delayed spatio-temporal model
described by partial differential equations. This is presented in section 3, where we analyze the Turing instability
condition for both the delayed and non-delayed systems. Through linearization and perturbation analysis, we determine
the parameter regimes under which spatially heterogeneous patterns can emerge. To support the theoretical findings,
section 4 presents a series of numerical simulations conducted on the delayed spatio-temporal model. These simulations
illustrate various types of pattern formation including spots, stripes, and oscillatory structures and demonstrate how
the inclusion of delay affects the emergence and stability of these patterns. The numerical results are shown to be
consistent with the analytical predictions and highlight the intricate interplay between diffusion, delay, and cooperative
behavior. The paper concludes in section 5, where we summarize the main findings, discuss their ecological implications,
and propose directions for future research.

2. TEMPORAL MODEL

In this section we introduce the temporal model and present a brief review of the results obtained. The temporal
model considered in [1] is a prey-predator model with hunting cooperation and logistic growth in prey along with a
specialist predator and is of the form

dn n

an = ™ (1 - E) — (A + ap)np, (2.1a)
p =e(A+ ap)np — uP, (2.1b)
dty

where n(t1) and p(t1) are prey and predator densities, respectively. Parameters r are the intrinsic growth rate, k
the carrying capacity of prey, u the death rate of the predator, and e the conversion efficiency. The term (A + ap)
an
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incorporates the hunting cooperation of predators into the model where A and a are the hunting cooperation parameters.
All of the mentioned parameters are positive. Here we follow the non-dimensionalization process for the model (2.1) to
reduce the number of parameters. Suppose N, P and ¢ are new nondimensional variables; we use the transformation
N=%,P= %p and t = rt;. The non-dimensional prey-predator model is given by

% — N(1=N)—(1+aP)NP, (2.2a)
P
Cth =c¢(1+aP)NP —mP, (2.20)

where, a = {3, ¢ = # and m = £. Initial conditions are N(0) = Ny > 0, P(0) = Py > 0. The ecologically

feasible steady states are points of intersection of N(1 — N) — (1 +aP)NP =0 and ¢(1 + aP)NP —mP =0 in R2.
Irrespective of the parameter values, the system of Eq. (2.2) possesses three equilibrium points on the boundary of
RZ, (a) Eg = (0,0), the trivial equilibrium, and (b) E; = (1,0), the axial equilibrium point. Coexisting equilibrium

point(s) E = (N, P) is given by P = ";;]CVN , where N is positive roots of the cubic equation

ac®N? — ac®?N? —meN +m? = 0. (2.3)

In the Eq. (2.3) we can say that the sign changes two times, so by Descartes ruleof signs, either two positive roots are
possible or zero positive roots. It is very difficult to find the explicit expression for equilibrium points. So, we discuss
the dynamics for the considered model by choosing the set of parameters as below.

2.1. Hopf bifurcation for temporal model. The Jacobian evaluated at the coexisting equilibrium point (N*, P*)
is given by

aip  ao1
J =
[ bio  bo1 } ’

where, a19p = —N*, ag1 = —(1 4+ 2aP*)N*, b1 = ¢(1 + aP*)P* and bg; = caN*P*. The Hopf-bifurcation condition
can obtained by equating trace(Jg+)|a=ay=0, det(Jgr) |a=ay>0 and

%(tmce(J £4)) |la=ay7# 0 . The Hopf-bifurcation threshold value ay is obtained by the equation (¢4 1)N* = m. Here
we cannot find the bifurcation threshold in terms of parameters. So, we take a set of parameters ¢ = 0.85, m = 0.8 for
which one interior equilibrium point is calculated whose stability changes at the Hopf bifurcation point ag = 4.5195
where the stability of (N*, P*) changes from stable to unstable, as shown in Figure 1.

FIGURE 1. One-dimensional bifurcation diagram with respect to « for fix parameters m = 0.8, ¢ =
0.85. The blue curve represents the stable equilibrium, and the red curve represents the unstable
equilibrium.
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3. DELAYED SPATIO-TEMPORAL MODEL

Generally, most of the prey-predator models typically consider temporal changes in species densities without ac-

counting for spatial heterogeneity or biological delays. However, in realistic ecosystems, both spatial movement and
time delays due to processes such as gestation or maturation significantly influence population behavior.
In this work, we extend a standard predator-prey model by incorporating spatial diffusion and a discrete time delay,
resulting in a spatio-temporal reaction-diffusion system with delay. The prey and predator populations, denoted by
n(z,t) and , p(z,t) respectively, diffuse through space with diffusion coefficients d; and dy. The predator’s reproduc-
tion depends on the past densities of both species, introducing a biologically motivated delay 7;. The resulting model
captures more realistic dynamics, including pattern formation and potential destabilization due to delay effects. The
newly obtained spatio-temporal model with delay is given by

d

M (1 — ﬁ) — (A +ap)np + d1 Vn, (3.1a)

dt k

P _ oo dy V2 3.1b

E_e( +ap7’1)n7'1p71_ﬂp+ 2 b, ( . )
where p;, = p(t1 — 1) and n,, = n(t; — 7). Now, under the same transformation used above for the dimensio_nal
variable n, p and ¢; and the transformation for the dimensional space variable Z, i are given by x = \/%Tl and y = \/%Tl’

the non-dimensional equation is given by
ON

5 =N(@=N)=(1+aP)NP+VN, (3.2a)
%IZ — ¢(1+ aP,)N, P, — mP + dV2P (3.2b)

where d = 3—?, 7 =rn and V? = 63—;2 + 53—;2. Here, we discuss the stability criteria for the system of Eq. (3.2) for

two scenarios. The first is for without delay, and the second is for with delay. The stability criteria is discussed by
perturbing the system of Eq. (3.2) around the homogeneous steady-state (N*, P*) assuming the perturbation to be
small and the linearized model of Eq. (3.2) at (N*, P*) is given by

ON

5 = G0N +anP + VN, (3.3a)

opP , 2

o :b01P+010N(t—T)+C()1P(t—7')+dv P, (3.3b)
where b; = —m, ¢19 = b1, co1 = ¢(1+2aP)N and such that by; = b{; + co1. Assume the perturbed solution of model

(3.2) is of the following form [20, 25]:

(3)- (5 ) (e

where Ay is the growth rate and k is the wave number. Substituting Eq. (3.4) in the system of Eq. (3.3), we get the
characteristic equation for the delayed spatio-temporal model, which is given by

A2 + (—a10 — b/01 + (1 + d)kQ))\ + (k‘2 — a10)(dk2 — b/01) + (—001)\ + (a10 — k‘2)001 — a01clo)67)‘7 =0. (35)

3.1. Turing instability condition for 7 = 0. Put 7 = 0 in Eq. (3.5), we get the characteristic equation for the non
delayed diffusive model of system of Eq. (3.2) is given by

A%+ (a10 + bor — k* — dk*)X + dk* — k*(a10d + bo1) + a10bo1 — ag1bio = 0. (3.6)

As discussed in [5, 16, 23], the Turing instability condition is the condition where the steady state is stable for the
temporal model and becomes unstable for the diffusive model. The mathematical condition for the Turing instability
for without delay model is given by

a1o +bo1 <0, aibor — apibio >0 and ajod + boy > 2v/d(a1obor — aoibio)-

The wave threshold value is k. = 4/ %.

(=)=
E)NE
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3.2. Hopf-bifurcation for 7 # 0. In order to derive the Hopf bifurcation condition, assume that A = iw (w > 0) is
a root of Eq. (3.5). Then we have

—w? + (—ayg — by, + (1 + d)k?)iw + (K — a19)(dk? — bj;) + (—coriw + (a10 — k*)cor — agicio)e” ™ = 0. (3.7)
Comparing the real and imaginary parts of the Eq. (3.7) we get,

pcos(wT) — corwsin(wr) = w? — g, (3.8a)

psin(wT) + corweos(wt) = wr, (3.8b)

where p = aioco1 — ap1c10 — co1k?, ¢ = (k* — a10)(dk?® — b)) and r = (1 +d)k? — a19 — b);. Now, squaring and adding
Eq. (3.8)a and (3.8)b we get,

wh + Prw® 4+ Qr =0, (3.9)
where P, = —c%; — 2¢+ 72 and Q) = ¢ — p?. On the basis of the roots of the Eq. (3.9), we can discuss the behavior
of the considered diffusive model. If Py > 0 and Q) > 0 are positive, then no positive w, i.e., no effect of delay. If
either P, > 0 and Q; < 0 or P, < 0 and, Qf < 0 then only one positive w and only one Hopf bifurcation occur in this
case. If P, <0, Qr > 0 and P? — 4Qy > 0 then two positive w exists and in this multiple Hopf bifurcation, the Hopf
threshold value is given by

277 1 <(w2 —q)p— 001rw2)
Tr = —= 4+ —cos R ,
w P+ cw

- (3.10)

where j =0,1,2,3..., see [2, 3].
4. NUMERICAL SIMULATION

The system of Eq. (3.2) can be solved numerically based on the finite difference method for spatial derivatives
and an explicit Euler method for temporal derivatives at the time interval [0, T] with time step At = 0.01 and space
step Az = Ay = 0.25. The initial condition taken for numerical simulations is a small perturbation around the
homogeneous steady state (N*, P*) given by N(z,y,0) = N* + €, and P(z,y,0) = P* + en,, where e = 0.001 and
&xy, NMzy are spatially uncorrelated Gaussian terms.

4.1. Pattern formation without delay. The Turing instability curve is drawn by the equation ajgd + by1 =
2\/d(a10b01 — ag1b10)- This curve divides the az— d plane into two regions, as shown in Figure 2 and the blue temporal
Hopf curve divides these two regions into four regions. The region is denoted by HSS (homogeneous steady state),
where the steady state is stable and no patterns appear in this region. The region denoted by OSC where oscillatory
patterns appear. In the region denoted below the red curve, only Turing patterns appear, as shown in Figures 3 and
4. Figure 3 shows the pattern obtained for the spatio-temporal model without delay for the prey population. In this

osc

o.08 - Hss /

0.04 - Turing Hopf domain

Pure Turing domain

FI1GURE 2. Turing and non-Turing regions in a.—d the plane for the parameters m = 0.8 and ¢ = 0.85.
The green curve represents the Turing curve, and the blue vertical line represents the Hopf-bifurcation
threshold line for the temporal model.
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FIGURE 3. Snapshots of pattern for prey at the time ¢t = 2000 for « = 1 different values of d: (a)
d=0.01 (b) d = 0.024.

pattern, we observe that for a low diffusion coefficient, prey density is spreading, and for a higher diffusion coefficient,
prey density appears in small patches of spots having low density at the center. Figure 4 shows the pattern obtained

20 40 60 80 100 120 140 180 180 200 20 40 60 80 100 120 140 180 180 200

(a) (b)

FIGURE 4. Snapshots of the pattern for the predator at the time t = 2000 for o = 1 different values
of d: (a) d =0.01, (b) d = 0.021.

for the spatio-temporal model without delay for the predator population. In this pattern, we observe that for a low
diffusion coefficient, predator density appears in small patches of spots having high density at the center, and for a
higher diffusion coefficient, predator density appears in large patches of spots having a high density at the center.

4.2. Pattern formation with delay. In this section, we see the effect of delay on the diffusive model by numerical
simulation. We have used the Eq. (3.10) to draw the Hopf threshold value as shown in Figure 5. If we take o < 4.263
then no any w obtained, i.e., the steady state is always stable. If we take a € (4.263, o) them, two w exist. So,
two Hopf-threshold values were obtained as given in the paper [10, 15, 22]. This is clearly drawn in Figure 5 which
shows that delay destabilizes the steady state. In the case without delay, the steady state is stable in the region where
a < apg and unstable in the region where a@ < ag. In case of delay, we got a red curve in the stable as well as
unstable region in which the steady state is stable on the left side of the blue curve and unstable on the right side
of the blue curve. If we introduce diffusion in the delayed model, then the red curve shifts towards the right, i.e.,

(=)=
E)NE
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the stability region increases as we increase the diffusion coefficient from d = 0 to d = 0.01. So, we can say that the
diffusion stabilizes the steady state and delay destabilizes the steady state, as shown in Figure 5. This concept has
been discussed in the paper [3] in detail.

stable region

unstable region

o SN

L L L L L L
a4 4.2 4.4 4.6 4.8 52 5.4 5.6 5.8 6

ok

FiGURE 5. Effect of diffusion on a delayed temporal model for the fixed parameters ¢ = 0.85, and
m = 0.8. The red curve represents the delayed temporal model, and the blue curve represents the
Hopf bifurcation curve for wave number k£ = 0.05 and diffusion coefficient d = 0.01.

Next, we draw the pattern for the different regions of the bifurcation diagram for both delayed and without delayed
spatio-temporal models and compare the results. If we fix the parameter « = 5 and d = 0.02 then the cold spot
pattern appears as shown in Figure 6(a) for the 7 = 0 and it is stationary with respect to time as shown in Figure
6(b). If we further increase the delay parameter 7 = 5.8 for the fix value, a and d the the cold spot pattern changes to
an oscillatory pattern as shown in Figure 6(c) and it is non stationary with respect to time as shown in Figure 6(d).

5. CONCLUSION

The proposed spatio-temporal predator-prey model with delay offers a more comprehensive framework for analyzing
ecological systems by incorporating both diffusion and time delay. The diffusion terms account for species dispersal
across space, which is crucial for understanding spatial pattern formation. Meanwhile, the inclusion of a time delay
reflects the natural lag in the predator’s response to prey availability, commonly seen in ecosystems due to gestation
periods or behavioral interactions.

In this work, we explored two scenarios:

e Pattern formation in the spatio-temporal model without delay, and
e Pattern formation in the delayed spatio-temporal model.

For the spatio-temporal model without delay, we observed the emergence of cold spot patterns for prey density
and hot spot patterns for predator density under Turing instability conditions, as shown in Figures 3 and 4. It is
evident from the figures that increasing the diffusion coefficient d leads to a corresponding increase in the size of the
spatial patches. Ecologically, this implies that both prey and predator populations tend to spread in localized groups
as diffusion increases. This behavior aligns with cooperative hunting strategies in predators and grouped movement
in prey species for survival.

In the case of the delayed spatio-temporal model, the dynamics become more complex due to the appearance of
exponential delay terms such as e =7 in the characteristic equation [2]. This makes direct analytical study challenging.
Therefore, we employed Hopf bifurcation analysis by assuming purely imaginary roots A = iw. Two key behaviors
emerged:

Stabilizing effect of diffusion and destabilizing effect of delay: As illustrated in Figure 5, increasing the diffusion
coeflicient expands the stability region of the system, while introducing or increasing the delay reduces stability.

(&)
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FIGURE 6. Snapshots of the pattern for the parameters a = 5 and d = 0.02 at the time ¢t = 1500 for
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different values of 7: (a) 7 = 0 (b) Spatial average (c) 7 = 5.8 (d) spatial average.

Transition in pattern formation due to delay: Figure 6 demonstrates that the stationary patterns observed in the
non delayed case transform into oscillatory patterns when delay is introduced. From an ecological perspective, this
indicates that, while populations may form static spatial patterns in the absence of delay, time delays can induce

temporal fluctuations, leading to dynamic oscillations in population densities.

In conclusion, the delayed spatio-temporal model captures a richer set of ecological behaviors compared to its non
delayed counterpart. Future studies may consider extending this framework to include the Allee effect and interactions
involving generalist predators, which could offer further insight into population stability and ecosystem resilience also

introduce diffusion in the epidemic model with delay studied in the paper [4].

The work was conceptualized by Saddam Hussain. The main analysis was performed by Saddam Hussain and
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