
تعداد نشریات | 45 |
تعداد شمارهها | 1,400 |
تعداد مقالات | 17,083 |
تعداد مشاهده مقاله | 55,121,432 |
تعداد دریافت فایل اصل مقاله | 17,530,312 |
مقایسهی امولژلهای آب در روغن حاوی اولئوژلاتورهای مختلف برای اصلاح چربی مورد استفاده در کیک مافین شکلاتی | ||
پژوهش های صنایع غذایی | ||
دوره 35، شماره 3، مهر 1404، صفحه 13-32 اصل مقاله (1.11 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/fr.2025.67843.1968 | ||
نویسندگان | ||
سیدمحمد نجیبی حسینی؛ بابک قنبرزاده* | ||
گروه علوم و مهندسی صنایع غذایی، دانشکدهی کشاورزی، دانشگاه تبریز | ||
چکیده | ||
زمینهی مطالعاتی: تبعات منفی ناشی از مصرف بالای اسیدهای چرب اشباع و ترانس، توجه به جایگزینهای نوین چربی مانند امولژلها را افزایش داده است. هدف: هدف از این مطالعه ارزیابی ویژگیها و پتانسیل امولژلهای بر پایهی موم زنبور عسل و موم سبوس برنج، با یا بدون گلیسرول مونواستئارات، بهعنوان جایگزین چربی در مافین شکلاتی بود. روش کار: چهار نوع امولژل حاوی 25% فاز آبی، 9% ژلاتور و 1% امولسیفایر تولید شد. این امولژلها از نظر ریزساختار، سفتی، رفتار حرارتی، پایداری فیزیکی و پایداری اکسیداتیو (عدد پراکسید) ارزیابی شدند. سپس نمونههای منتخب بهعنوان جایگزین ۲۵٪ از مارگارین در فرمولاسیون مافین استفاده و محصول نهایی از نظر رطوبت، سفتی و ویژگیهای حسی بررسی شد. نتایج: نتایج نشان دادند که امولژل موم زنبور عسل در مقایسه با موم سبوس برنج، میانگین اندازهی ذرات ریزتر (43/3 در مقابل 55/6 میکرومتر)، سفتی بیشتر (29/2 در مقابل 88/0 نیوتن) و پایداری فیزیکی و اکسیداتیو بالاتری داشت. افزودن گلیسرول مونواستئارات نیز با کاهش اندازهی ذرات، موجب افزایش سفتی و پایداری حرارتی و فیزیکی امولژلها شد. استفاده از امولژلها در مافین، منجر به تولید محصولی با رطوبت بالاتر (12/25 تا 93/26%) و بافت نرمتر (سفتی بین 26/15 تا 32/22 نیوتن) نسبت به نمونهی شاهد شد، درحالیکه تفاوت معنیداری در ویژگیهای حسی مشاهده نشد. نتیجهگیری کلی: جایگزینی ۲۵% از مارگارین با امولژل، بهویژه نمونهی بر پایهی موم زنبور عسل و گلیسرول مونواستئارات که بهترین ویژگیهای فیزیکی و شیمیایی را از خود نشان داد، یک استراتژی موفق برای تولید مافین شکلاتی با بافت نرمتر و پروفایل تغذیهای بهبودیافته بود، که تأثیر منفی بر پذیرش حسی محصول نداشت. | ||
کلیدواژهها | ||
امولژل آب در اولئوژل؛ جایگزین چربی؛ فراوردههای نانوایی؛ گلیسرول مونواستئارات؛ موم سبوس برنج؛ موم زنبور عسل | ||
مراجع | ||
Ahsan, M., Moin, A., Ashraf, H., Khan, A., & Giuffrè, A. M. (2024). Formulation and characterization of reduced fat muffins using a plant-based fat replacer. Journal of Food Science and Technology, 1–11.
American Oil Chemists' Society. (2017). Peroxide value, acetic acid-chloroform method (Official Method Cd 8-53). In Official methods and recommended practices of the AOCS (7th ed.). AOCS Press.
Azmoon, E., Saberi, F., Kouhsari, F., Akbari, M., Kieliszek, M., & Vakilinezam, A. (2021). The effects of hydrocolloids-protein mixture as a fat replacer on physicochemical characteristics of sugar-free muffin cake: Modeling and optimization. Foods, 10(7), 1549.
Banu, I., Patrașcu, L., Vasilean, I., Dumitrașcu, L., & Aprodu, I. (2023). Influence of the protein-based emulsions on the rheological, thermo-mechanical and baking performance of muffin formulations. Applied Sciences, 13(5), 3316.
Buldo, P., Benfeldt, C., Carey, J. P., Folkenberg, D. M., Jensen, H. B., Sieuwerts, S., Vlachvei, K., & Ipsen, R. (2016). Interactions of milk proteins with low and high acyl gellan: Effect on microstructure and textural properties of acidified milk. Food Hydrocolloids, 60, 225–231.
Chen, X.-W., Fu, S.-Y., Hou, J.-J., Guo, J., Wang, J.-M., & Yang, X.-Q. (2016). Zein based oil-in-glycerol emulgels enriched with β-carotene as margarine alternatives. Food Chemistry, 211, 836–844.
Codex Alimentarius Commission. (2021). Standard for named vegetable oils (CXS 210-1999). FAO/WHO.
Contreras-Ramírez, J. I., Gallegos-Infante, J. A., Rosas-Flores, W., González-Laredo, R. F., Toro-Vázquez, J. F., & Pérez-Martínez, J. D. (2021). Relationship of rheological and thermal properties in organogel emulsions (W/O): Influence of temperature, time, and surfactant concentration on thermomechanical behavior. Journal of Molecular Liquids, 337, 116403.
Czapalay, E., & Marangoni, A. (2024). Functional properties of oleogels and emulsion gels as adipose tissue mimetics. Trends in Food Science & Technology, 104753.
Del Mercado, P. P.-V., Mojica, L., González-Ávila, M., Espinosa-Andrews, H., Alcázar-Valle, M., & Morales-Hernández, N. (2025). Pea protein–gum Arabic gel addition as ingredient to increase protein, fiber and decrease lipid content in muffins without impair the texture and intestinal microbiota. Food Chemistry, 463, 141305.
Dhal, S., Sahu, D., Behera, H., Kim, D., Jarzebski, M., & Pal, K. (2024). Effects of replacing butter with SPAN80-tailored soywax/rice bran oil oleogel in food product: a study on whole wheat cookies. ACS Food Science & Technology, 4(4), 842–859.
Dimakopoulou-Papazoglou, D., Giannakaki, F., & Katsanidis, E. (2023). Structural and physical characteristics of mixed-component oleogels: Natural wax and monoglyceride interactions in different edible oils. Gels, 9(8), 627.
Du, L., Guo, Y., & Meng, Z. (2025). Organogels, O/W and W/O emulsion gels structured by monoglycerides: the study on the gelation behavior and crystal network. European Food Research and Technology, 251(2), 165–177.
Gao, Y., & Wu, S. (2020). Development and evaluation of a novel oleogel system based on starch–water–wax–oil. Food & function, 11(9), 7727–7735.
Giacomozzi, A. S., Carrín, M. E., & Palla, C. A. (2023). Muffins made with monoglyceride oleogels: Impact of fat replacement on sensory properties and fatty acid profile. Journal of the American Oil Chemists' Society, 100(4), 343–349.
Gu, X., Cui, L., & Meng, Z. (2023a). Differences of wax-based emulsion gel in 3D printing performance: Crystal distribution and droplet stability. Food Chemistry, 428, 136760.
Gu, X., Du, L., & Meng, Z. (2023b). Comparative study of natural wax-based W/O emulsion gels: Microstructure and macroscopic properties. Food Research International, 165, 112509.
Guo, Q., Wijarnprecha, K., Sonwai, S., & Rousseau, D. (2019). Oleogelation of emulsified oil delays in vitro intestinal lipid digestion. Food Research International, 119, 805–812.
Gutiérrez-Luna, K., Astiasarán, I., & Ansorena, D. (2022). Gels as fat replacers in bakery products: A review. Critical Reviews in Food Science and Nutrition, 62(14), 3768–3781.
Gutiérrez‐Luna, K., Ansorena, D., & Astiasarán, I. (2020). Flax and hempseed oil functional ingredient stabilized by inulin and chia mucilage as a butter replacer in muffin formulations. Journal of Food Science, 85(10), 3072–3080.
Jeong, H., Huh, C.-K., Ha, H.-K., Kim, J., & Oh, I. (2023). Development of an emulsion gel containing peanut sprout oil as a fat replacer in muffins: Physicochemical, tomographic, and texture properties. Gels, 9(10), 783.
Jeong, S., Lee, S., & Oh, I. (2021). Development of antioxidant-fortified oleogel and its application as a solid fat replacer to muffin. Foods, 10(12), 3059.
Lee, S. (2018). Utilization of foam structured hydroxypropyl methylcellulose for oleogels and their application as a solid fat replacer in muffins. Food Hydrocolloids, 77, 796–802.
Mao, L., Lu, Y., Cui, M., Miao, S., & Gao, Y. (2020). Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Critical Reviews in Food Science and Nutrition, 60(10), 1651–1666.
Martínez-Cervera, S., Salvador, A., & Sanz, T. (2015). Cellulose ether emulsions as fat replacers in muffins: Rheological, thermal and textural properties. LWT-Food Science and Technology, 63(2), 1083–1090.
Martins, A. J., Guimarães, A., Fuciños, P., Sousa, P., Venâncio, A., Pastrana, L. M., & Cerqueira, M. A. (2023). Food-grade bigels: Evaluation of hydrogel: Oleogel ratio and gelator concentration on their physicochemical properties. Food Hydrocolloids, 143, 108893.
Martins, A. J., Vicente, A. A., Cunha, R. L., & Cerqueira, M. A. (2018). Edible oleogels: An opportunity for fat replacement in foods. Food & function, 9(2), 758–773.
Masotta, N. E., Martinefski, M. R., Lucangioli, S., Rojas, A. M., & Tripodi, V. P. (2019). High-dose coenzyme Q10-loaded oleogels for oral therapeutic supplementation. International Journal of Pharmaceutics, 556, 9–20.
Ng, F. S. K., Chiang, J. H., Ng, G. C. F., Lee, C. S. H., & Henry, C. J. (2021). Influence of inulin–konjac suspension as a fat replacer in baked muffins and its impact on textural and oxidative stability upon storage. Journal of Food Processing and Preservation, 45(10), e15769.
Orhan, N. O., & Eroglu, Z. (2022). Structural characterization and oxidative stability of black cumin oil oleogels prepared with natural waxes. Journal of Food Processing and Preservation, 46(12), e17211.
Othman, N. A., Abdul Manaf, M., Harith, S., & Wan Ishak, W. R. (2018). Influence of avocado puree as a fat replacer on nutritional, fatty acid, and organoleptic properties of low-fat muffins. Journal of the American College of Nutrition, 37(7), 583–588.
Pandolsook, S., & Kupongsak, S. (2017). Influence of bleached rice bran wax on the physicochemical properties of organogels and water-in-oil emulsions. Journal of Food Engineering, 214, 182–192.
Pandolsook, S., & Kupongsak, S. (2019). Storage stability of bleached rice bran wax organogels and water-in-oil emulsions. Journal of Food Measurement and Characterization, 13, 431–443.
Penagos, I. A., Murillo Moreno, J. S., Dewettinck, K., & Van Bockstaele, F. (2023). Carnauba wax and beeswax as structuring agents for water-in-oleogel emulsions without added emulsifiers. Foods, 12(9), 1850.
Pinto, T., Martins, A., Pastrana, L., Pereira, M., & Cerqueira, M. Oleogel-based systems for the delivery of bioactive compounds in foods. Gels. 2021; 7 (3): 86. In.
Silva, T. J., Barrera‐Arellano, D., & Ribeiro, A. P. B. (2021). Oleogel‐based emulsions: Concepts, structuring agents, and applications in food. Journal of Food Science, 86(7), 2785–2801.
Su, C.-y., Li, D., Wang, L.-j., & Wang, Y. (2024). Development of corn starch-sodium alginate emulsion gels as animal fat substitute: Effect of oil concentration. Food Hydrocolloids, 157, 110439.
Su, S., Qin, S., Xia, H., Li, P., Li, H., Li, C., Guo, S., & Zeng, C. (2024). The Impact of Oil Type on the Performance of β-Amyrin-Based Oleogels: Formation, Physicochemical Properties, and Potential Correlation Analysis. Foods, 13(6), 876.
Toro-Vazquez, J. F., Mauricio-Pérez, R., González-Chávez, M. M., Sánchez-Becerril, M., de Jesús Ornelas-Paz, J., & Pérez-Martínez, J. D. (2013). Physical properties of organogels and water in oil emulsions structured by mixtures of candelilla wax and monoglycerides. Food Research International, 54(2), 1360–1368.
Totosaus, A., Santos-Atenco, E., Meza-Márquez, O. G., Rodríguez-Huezo, M. E., & Güemes-Vera, N. (2024). Emulsion filled gel with oleogels as oil fraction to enhance nutritional properties of baked products (muffins). Food Science and Technology International, 30(5), 428–438.
Wagner, K., & Davidovich-Pinhas, M. (2024). Dual functionality of diacylglycerols in water-in-oil emulsion gel systems. Colloids and Surfaces B: Biointerfaces, 236, 113810.
Wang, G., Li, J., Yan, X., Meng, Y., Zhang, Y., Chang, X., Cai, J., Liu, S., & Ding, W. (2024). Stability and Bioaccessibility of Quercetin-Enriched Pickering Emulsion Gels Stabilized by Cellulose Nanocrystals Extracted from Rice Bran. Polymers, 16(7), 868.
Wang, L., Wen, Y., Su, C., Gao, Y., Li, Q., Du, S., & Yu, X. (2022). Effect of water content on the physical properties and structure of walnut oleogels. RSC advances, 12(15), 8987–8995.
Wang, Q., Bobadilla, S., Espert, M., Sanz, T., & Salvador, A. (2024). Shortening replacement by hydroxypropyl methylcellulose-based oleogels obtained by different indirect approaches. Texture and sensory properties of baked puff pastry. Food Hydrocolloids, 153, 109936.
Wei, W., Cui, L., & Meng, Z. (2025). The potential of protein-polysaccharide-based O/W and W/O emulsion gels strengthened by solid fat crystallization as realistic fat analogs. Food Chemistry, 464, 141889.
Wijarnprecha, K., de Vries, A., Santiwattana, P., Sonwai, S., & Rousseau, D. (2019a). Microstructure and rheology of oleogel-stabilized water-in-oil emulsions containing crystal-stabilized droplets as active fillers. LWT-Food Science and Technology, 115, 108058.
Wijarnprecha, K., de Vries, A., Santiwattana, P., Sonwai, S., & Rousseau, D. (2019b). Rheology and structure of oleogelled water-in-oil emulsions containing dispersed aqueous droplets as inactive fillers. LWT-Food Science and Technology, 115, 108067.
Wijarnprecha, K., de Vries, A., Sonwai, S., & Rousseau, D. (2021). Water-in-oleogel emulsions—From structure design to functionality. Frontiers in Sustainable Food Systems, 4, 566445.
Zhang, H., Jiang, Q., Li, J., Sun, Y., Zhang, R., Zhang, L., & Zhang, H. (2024). Oil-droplet anchors accelerate the gelation of regenerated silk fibroin-based emulsion gels. International Journal of Biological Macromolecules, 278, 134579.
Zhang, R., Liu, J., Yan, Z., Jiang, H., Wu, J., Zhang, T., Wang, E., & Liu, X. (2023). Tailoring a novel ovalbumin emulsion gel for stability improvement and functional properties enhancement: Effect of oil phase structure changes by beeswax. Food Chemistry, 426, 136575.
Zhang, R., Zhang, Y., Yu, J., Gao, Y., & Mao, L. (2022). Rheology and tribology of ethylcellulose-based oleogels and W/O emulsions as fat substitutes: Role of glycerol monostearate. Foods, 11(15), 2364.
Zhu, T., Wang, S., Yan, D., Zhang, L., Guo, X., & Chen, F. (2025). Preparation, interaction, and digestion of peanut oil body-based emulsion gels with xanthan gum and gallic acid. Food Hydrocolloids, 163, 111063. | ||
آمار تعداد مشاهده مقاله: 28 تعداد دریافت فایل اصل مقاله: 16 |