
تعداد نشریات | 45 |
تعداد شمارهها | 1,400 |
تعداد مقالات | 17,071 |
تعداد مشاهده مقاله | 55,098,339 |
تعداد دریافت فایل اصل مقاله | 17,520,081 |
The effect of aqueous extracts of Nostoc commune and Ulva lactuca algae on quinoa seedlings | ||
Journal of Plant Physiology and Breeding | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 09 تیر 1404 اصل مقاله (803.14 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/jppb.2025.64928.1353 | ||
نویسندگان | ||
Aref Sheikh Amiri؛ Ehsan Nazifi* ؛ Zahra Valizadeh | ||
Department of Plant Sciences, Faculty of Science, University of Mazandaran, Babolsar, Iran. | ||
چکیده | ||
Objective: Biofertilizers and biostimulants improve germination, absorption of nutrients, resistance to stress, growth, performance, and health of plants. Considering the importance of the germination stage, the effect of Nostoc commune and Ulva lactuca extracts on quinoa was investigated. Methods: In this research, quinoa seeds were treated with different concentrations of green algae Ulva lactuca (U) and cyanobacterium Nostoc commune (N) extracts, separately and in combination. Then, the growth traits, photosynthetic pigments, and anthocyanins of seedlings were evaluated. Results: The results showed that the length of the hypocotyl and the contents of chlorophyll a, chlorophyll b, carotenoids, and anthocyanins in the treatments containing U. lactuca extract, N. commune extract, and combined extract increased significantly, compared to the control. The weight of seedlings increased significantly in the treatments with U. lactuca extract and the combined extract, while the length of the radicle increased only in the treatment with the combined extract, compared to the control. The highest hypocotyl length was observed in the treatment with 40% concentration of U. lactuca extract, which was 46.70% higher than the control. The highest levels of chlorophyll a and chlorophyll b were in the treatment with 80% concentration of U. lactuca extract, so that the levels of chlorophyll a and chlorophyll b increased by 87.22% and 52.43%, respectively, compared to the control. The highest radicle length was obtained in the treatment with 50% concentration of the combined extract (4U:1N), with a 20.43% increase over the control. The highest seedling weight was observed in the treatment with 100% concentration of the combined extract (4U:1N), with a 20.90% increase compared to the control. The highest amount of carotenoids occurred in the treatment with 50% concentration of the combined extract (3U:2N), with a 57.74% increase over the control. The highest level of anthocyanins was detected in the treatment with 25% concentration of the combined extract (3U:2N), with a 32.81% increase over the control. Conclusion: These findings indicated that the extracts, especially the U. lactuca extract and the combined extract of U. lactuca with N. commune, can act as biological stimulants for quinoa. | ||
کلیدواژهها | ||
Biostimulant؛ Cyanobacteria؛ Green algae؛ Growth traits؛ Quinoa | ||
مراجع | ||
Abedi Firoozjaei MH, Hassani SB, Nazifi E, Keypour S. 2021. Study the effect of the terrestrial cyanobacterium Nostoc commune aqueous extract on seed germination and seedling growth of rice. Plant Algae Environ. 5(1): 642-653. https://doi.org/10.48308/jpr.2021.223334.1008
Abkhoo J, Sabbagh S. 2016. Control of Phytophthora melonis damping-off, induction of defense responses, and gene expression of cucumber treated with commercial extract from Ascophyllum nodosum. J Appl Phycol. 28: 1333-1342. https://doi.org/10.1007/s10811-015-0693-3
Aly MHA, Abd El-All AAM, Mostafa SSM. 2008. Enhancement of sugar beet seed germination, plant growth, performance and biochemical components as contributed by algal extracellular products. J Agric Chem Biotechnol. 33(12): 8223-8242. https://dx.doi.org/10.21608/jacb.2008.200754
Amiri H, Ismaili A, Armand N. 2015. Effect of methanol on germination characteristics of bean (Phaseolus vulgaris L. cv. Sadry) under drought stress condition. Iran J Pulses Res. 6(1): 42-53 (In Persian with English abstract). https://doi.org/10.22067/ijpr.v1394i1.43942
Amiryousefi M, Tadayon M, Ebrahimi R. 2020. Effect of chemical and biological fertilizers on some physiological traits, yield components and yield of quinoa plant. J Crop Prod Process. 10(2): 1-17 (In Persian with English abstract). http://dx.doi.org/10.47176/jcpp.10.2.209112
André CM, Schafleitner R, Legay S, Lefèvre I, Aliaga CAA, Nomberto G, Hoffmann L, Hausman J-F, Larondelle Y, Evers D. 2009. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochemistry. 70(9): 1107-1116. https://doi.org/10.1016/j.phytochem.2009.07.008
Angeli V, Miguel Silva P, Crispim Massuela D, Khan MW, Hamar A, Khajehei F, Graeff-Hönninger S, Piatti C. 2020. Quinoa (Chenopodium quinoa Willd.): an overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods. 9(2): 216. https://doi.org/10.3390/foods9020216
Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1): 1-15. https://doi.org/10.1104/pp.24.1.1
Bai NR, Christi RM, Kala TC. 2011. Effect of seaweed concentrate of Padina pavonia on the growth and yield of a pulse crop. Plant Arch. 11(1): 117-120.
Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A. 2015. Biostimulants and crop responses: a review. Biol Agric Hortic. 31(1): 1-17. https://doi.org/10.1080/01448765.2014.964649
Castellanos-Barriga LG, Santacruz-Ruvalcaba F, Hernández-Carmona G, Ramírez-Briones E, Hernández-Herrera RM. 2017. Effect of seaweed liquid extracts from Ulva lactuca on seedling growth of mung bean (Vigna radiata). J Appl Phycol. 29: 2479-2488. https://doi.org/10.1007/s10811-017-1082-x
Chernyad’ev I. 2009. The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress. Appl Biochem Microbiol. 45: 351-362. https://doi.org/10.1134/S0003683809040012
Chittapun S, Limbipichai S, Amnuaysin N, Boonkerd R, Charoensook M. 2018. Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: a pot experiment. J Appl Phycol. 30: 79-85. https://doi.org/10.1007/s10811-017-1138-y
Cortleven A, Schmülling T. 2015. Regulation of chloroplast development and function by cytokinin. J Exp Bot. 66(16): 4999-5013. https://doi.org/10.1093/jxb/erv132
Devi NL, Mani S. 2015. Effect of seaweed saps Kappaphycus alvarezii and Gracilaria on growth, yield and quality of rice. Indian J Sci Technol. 8(19): 1-6. https://doi.org/10.17485/ijst/2015/v8i19/47610
Dewick PM. 2002. Medicinal natural products: a biosynthetic approach. Second edition. West Sussex, England: John Wiley & Sons LTD.
Di Filippo-Herrera DA, Muñoz-Ochoa M, Hernández-Herrera RM, Hernández-Carmona G. 2019. Biostimulant activity of individual and blended seaweed extracts on the germination and growth of the mung bean. J Appl Phycol. 31: 2025-2037. https://doi.org/10.1007/s10811-018-1680-2
Dilavarnaik S, Basavaraja P, Yogendra N, Ghosh A. 2017. Influence of seaweed saps on germination, growth and yield of hybrid maize under Cauvery Command of Karnataka, India. Int J Curr Microbiol Appl Sci. 6(9): 1047-1056. https://doi.org/10.20546/ijcmas.2017.609.126
Dodds WK, Gudder DA, Mollenhauer D. 1995. The ecology of Nostoc. J Phycol. 31(1): 2-18. https://doi.org/10.1111/j.0022-3646.1995.00002.x
Du Jardin P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic. 196: 3-14. https://doi.org/10.1016/j.scienta.2015.09.021
El-Sayed SAA, Hellal FA, Nofal OA, El-Karamany MF, Bakry BA. 2015. Influence of algal extracts on yield and chemical composition of moringa and alfalfa grown under drought condition. Int J Environ. 4(2): 151-157.
Farzanah R, Clausen MP, Arnspang EC, Schmidt JE, Bastidas-Oyanedel JR. 2022. Feasibility of United Arab Emirates native seaweed Ulva intestinalis as a food source: study of nutritional and mineral compositions. Phycology. 2(1): 120-131. https://doi.org/10.3390/phycology2010008
Filho AMM, Pirozi MR, Borges JTDS, Pinheiro Sant'Ana HM, Chaves JBP, Coimbra JSDR. 2017. Quinoa: nutritional, functional, and antinutritional aspects. Crit Rev Food Sci Nutr. 57(8): 1618-1630. https://doi.org/10.1080/10408398.2014.1001811
Fleurence J, Morançais M, Dumay J. 2018. Seaweed proteins: biochemical, nutritional aspects and potential uses. In: Yada RY (ed.). Proteins in food processing. Second edition. Elsevier: Woodhead Publishing, pp. 245-262. https://doi.org/10.1016/B978-0-08-100722-8.00010-3
Gavazzi G, Cocucci M, Consonni G, Lucchin M, Masin R, Negrini N, Zanin G. 2008. Germination: a crucial step in plant growth. In: Hemantaranjan A (ed.). Advances in Plant Physiology (Vol. 10). India: Scientific Publishers. pp. 245-272.
Ghasembaghlou M, Sedghi M, Seid Sharifi R, Farzaneh S. 2022. Effect of nitrogen-fixing bacteria and mycorrhiza on biochemical properties and absorption of essential elements in green pea (Pisum sativum L.) under water deficit stress. J Plant Physiol Breed. 12(2): 59-70. https://doi.org/10.22034/jppb.2022.16324
Giordano M, El-Nakhel C, Carillo P, Colla G, Graziani G, Di Mola I, Mori M, Kyriacou MC, Rouphael Y, Soteriou GA, et al. 2022. Plant-derived biostimulants differentially modulate primary and secondary metabolites and improve the yield potential of red and green lettuce cultivars. Agronomy. 12(6): 1361. https://doi.org/10.3390/agronomy12061361
Gireesh R, Haridevi CK, Joseph S. 2011. Effect of Ulva lactuca extract on growth and proximate composition of Vigna unguiculata L. Walp. J Res Biol. 1(8): 624-630.
Graf BL, Rojas‐Silva P, Rojo LE, Delatorre‐Herrera J, Baldeón ME, Raskin I. 2015. Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.). Compr Rev Food Sci Food Saf. 14(4): 431-445. https://doi.org/10.1111/1541-4337.12135
Hara M, Oki K, Hoshino K, Kuboi T. 2003. Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyl. Plant Sci. 164(2): 259-265. https://doi.org/10.1016/S0168-9452(02)00408-9
Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. 2018. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int J Mol Sci. 19(12): 4045. https://doi.org/10.3390/ijms19124045
Jancurová M, Minarovičová L, Dandár A. 2009. Quinoa– a review. Czech J Food Sci. 27(2): 71-79. J JPN Soc Nutr Food Sci. 55: 299-302.
Konishi Y. 2002. Nutritional characteristics of pseudocereal amaranth and quinoa: alternative foodstuff for patients with food allergy. J JPN Soc Nutr Food Sci. 55: 299-302.
Kumari R, Kaur I, Bhatnagar A. 2011. Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J Appl Phycol. 23: 623-633. https://doi.org/10.1007/s10811-011-9651-x
Liu G, Wang Q, Liu X. 2011. Promotive effect of Nostoc commune Vauch. water extract on seed germination of Gentiana dahurica Fischer. Grassl Sci. 57(2): 116-118. https://doi.org/10.1111/j.1744-697X.2011.00217.x
Mahmoud SH, Salama DM, El-Tanahy AMM, Abd El-Samad EH. 2019. Utilization of seaweed (Sargassum vulgare) extract to enhance growth, yield and nutritional quality of red radish plants. Ann Agric Sci. 64(2): 167-175. https://doi.org/10.1016/j.aoas.2019.11.002
Mai VC, Nguyen BH, Nguyen DD, Nguyen LA. 2017. Nostoc calcicola extract improved the antioxidative response of soybean to cowpea aphid. Bot Stud. 58(1): 55. https://doi.org/10.1186/s40529-017-0211-9
Makhaye G, Aremu AO, Gerrano AS, Tesfay S, Du Plooy CP, Amoo SO. 2021. Biopriming with seaweed extract and microbial-based commercial biostimulants influences seed germination of five Abelmoschus esculentus genotypes. Plants. 10(7): 1327. https://doi.org/10.3390/plants10071327
Mannino G, Gentile C, Ertani A, Serio G, Bertea CM. 2021. Anthocyanins: biosynthesis, distribution, ecological role, and use of biostimulants to increase their content in plant foods—A review. Agriculture. 11(3): 212. https://doi.org/10.3390/agriculture11030212
Matthews S, Ali A, Siddiqui Y, Supramaniam CV. 2022. Plant bio-stimulant: prospective, safe and natural resources. J Soil Sci Plant Nutr. 22(2): 2570-2586. https://doi.org/10.1007/s42729-022-00828-6
Mógor ÁF, de Oliveira Amatussi J, Mógor G, de Lara GB. 2018. Bioactivity of cyanobacterial biomass related to amino acids induces growth and metabolic changes on seedlings and yield gains of organic red beet. Am J Plant Sci. 9(5): 966-978. https://doi.org/10.4236/ajps.2018.95074
Murungu FS, Nyamugafata P, Chiduza C, Clark LJ, Whalley WR. 2003. Effects of seed priming, aggregate size and soil matric potential on emergence of cotton (Gossypium hirsutum L.) and maize (Zea mays L.). Soil Tillage Res. 74(2): 161-168. https://doi.org/10.1016/j.still.2003.06.003
Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GED, Poole PS, et al. 2016. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol. 82(13): 3698-3710. https://doi.org/10.1128/AEM.01055-16
Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B. 2012. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics. 13: 643. https://doi.org/10.1186/1471-2164-13-643
Nazifi E, Wada N, Asano T, Nishiuchi T, Iwamuro Y, Chinaka S, Matsugo S, Sakamoto T. 2015. Characterization of the chemical diversity of glycosylated mycosporine-like amino acids in the terrestrial cyanobacterium Nostoc commune. J Photochem Photobiol B. 142: 154-168. https://doi.org/10.1016/j.jphotobiol.2014.12.008
Ng CY, Wang M. 2021. The functional ingredients of quinoa (Chenopodium quinoa) and physiological effects of consuming quinoa: A review. Food Front. 2(3): 329-356. https://doi.org/10.1002/fft2.109
Nowruzi B, Bouaïcha N, Metcalf JS, Porzani SJ, Konur O. 2021. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health. Phytochemistry. 192: 112959. https://doi.org/10.1016/j.phytochem.2021.112959
Obana S, Miyamoto K, Morita S, Ohmori M, Inubushi K. 2007. Effect of Nostoc sp. on soil characteristics, plant growth and nutrient uptake. J Appl Phycol. 19: 641-646. https://doi.org/10.1007/s10811-007-9193-4
Ördög V, Stirk WA, Takács G, Pőthe P, Illés Á, Bojtor C, Széles A, Tóth B, Van Staden J, Nagy J. 2021. Plant biostimulating effects of the cyanobacterium Nostoc piscinale on maize (Zea mays L.) in field experiments. S Afr J Bot. 140: 153-160. https://doi.org/10.1016/j.sajb.2021.03.026
Panda SK, Baluška F, Matsumoto H. 2009. Aluminum stress signaling in plants. Plant Signal Behav. 4(7): 592-597. https://doi.org/10.4161/psb.4.7.8903
Park YJ, Park J-E, Truong TQ, Koo SY, Choi J-H, Kim SM. 2022. Effect of Chlorella vulgaris on the growth and phytochemical contents of “Red Russian” kale (Brassica napus var. Pabularia). Agronomy. 12(9): 2138. https://doi.org/10.3390/agronomy12092138
Pourbeyrami Hir Y, Khalafi M, Chamani E, Maleki Lajayer H. 2021. Effect of chitosan on regeneration and secondary metabolite production of Lilium regale. J Plant Physiol Breed. 11(2): 147-160. https://doi.org/10.22034/jppb.2021.14581
Punitha P, Priyadharshini P, Nanthini Devi K, Dinesh Kumar S, Roopavathy J, Begum A, Santhanam P, Perumal P. 2024. Effect of seaweed liquid extract as an organic biostimulant on the growth, fatty acids and high-value pigment production of Vigna radiata. Biomass Convers Biorefin. 14(6): 7345-7357. https://doi.org/10.1007/s13399-022-03048-1
Rachidi F, Benhima R, Sbabou L, El Arroussi H. 2020. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnol Rep. 25: e00426. https://doi.org/10.1016/j.btre.2020.e00426
Rachidi F, Benhima R, Kasmi Y, Sbabou L, Arroussi HE. 2021. Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches. Sci Rep. 11(1): 930. https://doi.org/10.1038/s41598-020-78820-2.
Rao SR, Sarada R, Ravishankar G. 1996. Phycocyanin, a new elicitor for capsaicin and anthocyanin accumulation in plant cell cultures. Appl Microbiol Biotechnol. 46: 619-621. https://doi.org/10.1007/s002530050871
Rasuli N, Riahi H, Shariatmadari Z, Ghorbani Nohooji M, MehrabanJoubani P, Dehestani A. 2025. Enhancing thymol and carvacrol biosynthesis in Thymus vulgaris L. using Laurencia caspica seaweed extract: Biostimulant potential and gene expression insights. J Appl Phycol. 37(1): 645-657. https://doi.org/10.1007/s10811-024-03386-9
Ren SC, Sun JT. 2014. Changes in phenolic content, phenylalanine ammonia-lyase (PAL) activity, and antioxidant capacity of two buckwheat sprouts in relation to germination. J Funct Foods. 7: 298-304. https://doi.org/10.1016/j.jff.2014.01.031
Repo-Carrasco R, Espinoza C, Jacobsen SE. 2003. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev Int. 19(1-2): 179-189. https://doi.org/10.1081/FRI-120018884
Roca M, Chen K, Pérez-Gálvez A. 2024. Chlorophylls. In: Schweiggert R (ed.). Handbook on natural pigments in food and beverages. Second edition. UK: Woodhead Publishing, pp. 193-226. https://doi.org/10.1016/B978-0-323-99608-2.00017-3
Ruban P, Govindasamy C. 2018. Seaweed fertilizers in modern agriculture. Int J Res Publ. 14(1): 1-5.
Ruiz JM, Baghour M, Romero L. 2000. Efficiency of the different genotypes of tomato in relation to foliar content of Fe and the response of some bioindicators. J Plant Nutr. 23(11-12): 1777-1786. https://doi.org/10.1080/01904160009382141
Santini G, Biondi N, Rodolfi L, Tredici MR. 2021. Plant biostimulants from cyanobacteria: An emerging strategy to improve yields and sustainability in agriculture. Plants. 10(4): 643. https://doi.org/10.3390/plants10040643
Sari-Chmayssem N, Taha S, Mawlawi H, Guégan J-P, Jeftić J, Benvegnu T. 2019. Extracted ulvans from green algae Ulva linza of Lebanese origin and amphiphilic derivatives: Evaluation of their physico-chemical and rheological properties. J Appl Phycol. 31: 1931-1946. . https://doi.org/10.1007/s10811-018-1668-y
Sarsekeyeva FK, Sadvakasova AK, Sandybayeva SK, Kossalbayev BD, Huang Z, Zayadan BK, Akmukhanova NR, Leong YK, Chang JS, Allakhverdiev SI. 2024. Microalgae-and cyanobacteria-derived phytostimulants for mitigation of salt stress and improved agriculture. Algal Res. 82: 103686. https://doi.org/10.1016/j.algal.2024.103686.
Sathe SK, Deshpande SS, Reddy NR, Goll DE, Salunkhe DK. 1983. Effects of germination on proteins, raffinose oligosaccharides, and antinutritional factors in the Great Northern beans (Phaseolus vulgaris L.). J Food Sci. 48(6): 1796-1800. https://doi.org/10.1111/j.1365-2621.1983.tb05087.x
Sekar N, Ramasamy RP. 2015. Recent advances in photosynthetic energy conversion. J Photochem Photobiol C: Photochem Rev. 22: 19-33. https://doi.org/10.1016/j.jphotochemrev.2014.09.004
Shaaban AESM, Badawy RK, Mansour HA, Abdel-Rahman ME, Aboulsoud YIE. 2017. Competitive algal biosorption of Al3+, Fe3+, and Zn2+ and treatment application of some industrial effluents from Borg El-Arab region, Egypt. J Appl Phycol. 29: 3221-3234. https://doi.org/10.1007/s10811-017-1185-4
Shanmugam M, Seth A. 2018. Recovery ratio and quality of an agricultural bio-stimulant and semi-refined carrageenan co-produced from the fresh biomass of Kappaphycus alvarezii with respect to seasonality. Algal Res. 32: 362-371. https://doi.org/10.1016/j.algal.2018.04.014
Shariatmadari Z, Riahi H, Shokravi S. 2011. Study of soil blue-green algae and their effect on seed germination and plant growth of vegetable crops. Rostaniha. 12(2): 101-110. https://doi.org/10.22092/botany.2012.101404
Shukla PS, Borza T, Critchley AT, Prithiviraj B. 2021. Seaweed-based compounds and products for sustainable protection against plant pathogens. Mar Drugs. 19(2): 59. https://doi.org/10.3390/md19020059
Singh S. 2014. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol. 117(5): 1221-1244. https://doi.org/10.1111/jam.12612
Singh DP, Prabha R, Yandigeri MS, Arora DK. 2011. Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance. Antonie van Leeuwenhoek. 100: 557-568. https://doi.org/10.1007/s10482-011-9611-0
Sneha G, Govindasamy V, Singh PK, Kumar S, Abraham G. 2024. Priming of seeds with cyanobacteria improved tolerance in wheat (Triticum aestivum L.) during post-germinative drought stress. J Appl Phycol. 36: 1233-1246. https://doi.org/10.1007/s10811-023-03170-1
Sridhar S, Rengasamy R. 2011. Effect of seaweed liquid fertilizer on growth, pigment concentration and yield of Amaranthus rosburghinus and Amaranthus tricolor under field trial. Int J Curr Res. 3(7): 131-134.
Takács G, Stirk WA, Gergely I, Molnár Z, van Staden J, Ördög V. 2019. Biostimulating effects of the cyanobacterium Nostoc piscinale on winter wheat in field experiments. S Afr J Bot. 126: 99-106. https://doi.org/10.1016/j.sajb.2019.06.033
VaziriMehr MR, Sirousmehr A, Ghanbari A, Fanaei HR. 2024. Effects of drought stress on yield and morphophysiological traits of quinoa (Chenopodium quinoa Willd) at different levels of nitrogen. J Plant Physiol Breed. 14(1): 107-122. https://doi.org/10.22034/jppb.2024.60013.1327
Vera J, Castro J, Gonzalez A, Moenne A. 2011. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar Drugs. 9(12): 2514-2525. https://doi.org/10.3390/md9122514
Vijayanand N, Ramya SS, Rathinavel S. 2014. Potential of liquid extracts of Sargassum wightii on growth, biochemical and yield parameters of cluster bean plant. Asian Pac J Reprod. 3(2): 150-155. https://doi.org/10.1016/S2305-0500(14)60019-1
Win TT, Barone GD, Secundo F, Fu P. 2018. Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind Biotechnol. 14(4): 203-211. https://doi.org/10.1089/ind.2018.0010
Zhang X, Ervin E. 2004. Cytokinin‐containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci. 44(5): 1737-1745. https://doi.org/10.2135/cropsci2004.1737
Zhang X, Ervin E. 2008. Impact of seaweed extract‐based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Sci. 48(1): 364-370. https://doi.org/10.2135/cropsci2007.05.0262
Zhang M, Li Y, Wang J, Shang S, Wang H, Yang X, Lu C, Wang M, Sun X, Liu X, et al. 2024. Integrated transcriptomic and metabolomic analyses reveals anthocyanin biosynthesis in leaf coloration of quinoa (Chenopodium quinoa Willd.). BMC Plant Biol. 24(1): 203. https://doi.org/10.1186/s12870-024-04821-2
| ||
آمار تعداد مشاهده مقاله: 13 تعداد دریافت فایل اصل مقاله: 11 |