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Abstract ’ 3

This study introduces an approach for finding an approximate solution to the time fractional generalized Burgers-
Fisher equation. The core idea of the method is to transform the nonlinear partial differential equation into a
linear one through the application of the Picard iteration technique. Subsequently, the Taylor wavelet collocation
method is employed to address the linear equation derived in the prior step. The proposed approach effectively
resolves the time fractional generalized Burgers-Fisher equation. The numerical results are evaluated against the
exact solutions obtained from the Haar wavelet Picard and homotopy perturbation methods.
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1. INTRODUCTION

Many physical phenomena in engineering and applied sciences are modeled using nonlinear equations. These
equations play a crucial role in describing complex systems such as fluid dynamics, heat transfer, wave propagation,
and other dynamic processes. Fractional partial differential equations (FPDEs) have gained increasing attention in
the modeling of such phenomena, as they provide more accurate descriptions of systems with memory and hereditary
properties. In particular, FPDEs are widely applied in various fields including signal processing [34], economics [6],
control theory [9], and solid mechanics [38]. However, solving these equations often presents significant challenges due
to their inherent nonlinearity and fractional order, which makes traditional methods less effective.

Several methods have been proposed to solve these equations, including the variational iteration method (VIM)
[11, 42], Adomian decomposition method (ADM) [12]-[18], homotopy analysis method [15], power series method
[32], shifted Jacobi collocation method [8], and Laplace transform method [36]. These methods, however, can be
computationally expensive and time-consuming. To overcome these limitations, more efficient and reliable methods
are being sought.

The generalized Burgers-Fisher equation is one of the most important nonlinear partial differential equations used
in various applications, including heat conduction, fluid dynamics, shock wave formation, turbulence, and traffic flow
[19-21, 25, 28, 33, 45]. The generalized time-fractional Burgers-Fisher equation with the Caputo fractional derivative
is expressed as:

o]

a?—l—au‘suw—um =bu(l—u’), z€l0,1], t>0, (1.1)

where a, b, and § are constants, and 0 < a < 1 represents the order of the fractional derivative. For a = 1, the
equation reduces to the classical Burgers equation, and its exact solution is well known [18, 37].
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Numerous researchers have explored both analytical and numerical techniques for solving the generalized Burgers-
Fisher equation. Kumar et al. [23] used the discontinuous Legendre wavelet Galerkin method, Singh et al. [41] applied
the B-spline collocation method, and Saeed et al. [39] utilized the CAS wavelet quasilinearization technique. Other
approaches include the Adomian decomposition method [18], homotopy perturbation method (HPM) [37], and Haar
wavelet Picard method (HWPM) [40]. These methods, although effective, often face difficulties in handling fractional
derivatives, especially for nonlinear cases.

Wavelets, particularly orthogonal wavelets, have been widely used to solve both ordinary and partial differential
equations due to their ability to efficiently represent functions in terms of compactly supported bases. In the context
of fractional partial differential equations, wavelets have been shown to provide highly accurate and computationally
efficient solutions [1-4, 7, 13, 17, 24, 26, 27, 30, 31, 44]. Among the various types of wavelets, the Taylor wavelet
has gained considerable attention due to its beneficial properties, including fast convergence and better handling of
singularities compared to other methods [22, 29, 43].

In this paper, we propose a combined approach using the Taylor wavelet collocation method along with the Picard
iteration technique to solve the generalized Burgers-Fisher equation with a time-fractional derivative. We derive
an operational matrix for the fractional integral of Taylor wavelet in the Riemann-Liouville sense. The numerical
results demonstrate that the proposed method is highly efficient and provides accurate solutions to the generalized
Burgers-Fisher equation.

The structure of the paper is as follows. In section 2, we review some basic preliminaries about fractional derivatives
and integrals, which are fundamental to understanding the generalized Burgers-Fisher equation with a fractional time
derivative. In section 3, we provide a brief introduction to wavelet theory, followed by a detailed explanation of the
Taylor wavelet and its properties in section 4. Section 5 is dedicated to presenting the proposed method, combining
the Taylor wavelet collocation technique with the Picard iteration method for solving the fractional Burgers-Fisher
equation. Finally, in section 6, we present several numerical examples to demonstrate the effectiveness and accuracy
of our method. The results show that the proposed approach is both reliable and efficient for solving fractional partial
differential equations.

2. PRELIMINARIES ON FRACTIONAL CALCULUS, WAVELETS, TAYLOR WAVELETS

2.1. Fractional derivative and integral. The Caputo fractional derivative of order a(a > 0) is defined as

v )y
D f(z) = ! )/0 ( ST dr, x>0, n=][a,

I'(n—« x —T1)etl-n

where [«] denotes the smallest integer greater than or equal to «.

The Riemann-Liouville fractional integral of order a(« > 0) is defined as

1 T
I%f(x) = —/ (x — 1) f(r)dr, a>0. (2.1)
I'(a) Jo
For n — 1 < a < n, where n is a natural number, there are several beneficial properties associated with the Caputo
operator and the Riemann—Liouville operator as follows:

DI f(x)) = f(=), (2.2)

=0
(D f(a)) = f(o) — 5 @ 23)

k!
k=0
1*(IPf(x)) = 1°"P f(z), a,5>0, (2.4)
19(1° f(x)) = 11 f (x), (2.5)
apy - _LO+D  auy
Iz = Tat il *, (2.6)

For more details on the fractional derivative and integral see [35].
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2.2. Wavelets. A wavelet is a function 1) € L?(R) that meets the requirement
oo |7 2

——_—

where 9)(w) denotes the Fourier transform of v(t).

Condition (2.7) is called the admissibility condition (and Cy is called the admissibility constant) which ensures that
the inversion formula for the continuous wavelet transform is valid. The condition concludes that @[AJ(w) — 0 as w goes
to 0. In fact, if zZJ(w) is continuous, then 1/3(0) =0,ie.,

/_ O; b(w)dt = 0.

This means that ¢(w) must be an oscillatory function with zero mean.

Other characteristics, besides the admissibility requirement, might be helpful in specific situations. To demonstrate
the regularity of the wavelet functions and the ability of a wavelet transform to extract localized information, for
example, limitations on the support of 1 and of 1/} or ¢ may be necessary in order to have a specific number of
vanishing moments. A wavelet 1(¢) has n-vanishing moments if the following condition is satisfied:

o0
my = / thp(t)dt =0, k=0,1,...,n. (2.8)
— 00

The regularity of the wavelet has a direct correlation with the number of vanishing moments. As a result, a
wavelet with more regularity has more vanishing moments. The so-called localization property of wavelets is another
advantageous characteristic that aids in capturing the localized effects of a signal in both the frequency and time
domains. Regularity (vanishing moments) and localization have an inverse relationship. As a result, when the
frequency w is low, wavelets that possess a greater number of vanishing moments tend to be flatter.

Wavelets are a family of functions constructed from translation and dilation of a single function v, called the mother
wavelet, we define wavelets by

Yap(t) = ;w <t_b) , a,beR, a0, (2.9)
’ Via "\ a
where a is called a scaling parameter which measures the degree of compression or scale and b is a translation parameter
which determines the time location of the wavelet.

If we restrict the parameter a discrete value as a = afj*, where m € Z and the dilation step ag # 1 is fixed. Then,
for m = 0, it becomes natural as well to discretize b by taking only the integer multiples of one fixed by, where by is
approximately chosen so that the ¥(t —nby) cover the whole line. For different values of m, the width a, m/ Qw(ag mt)
is a{" times the width of (t), so that the choice b = nbgaf’, m,n € Z will ensure that the discretized wavelets at
level m cover the whole line in the same way as the (¢ — nbg) do. Thus, we choose a = af)’,b = nbpaf)’, where the
two positive constants ag and by are fixed. With these choices of a and b, the continuous family of wavelets 1), as
defined in (2.9) becomes

—m t — nbpal “m —m
wm,n(‘r) = Qg /21/} <00> =4 /Qw(ao x —nbo), (2~10)

ag’
where both m and n € Z. Then, for f € L?(R), we calculate the discrete wavelet coefficients {f, ., n).

2.3. Taylor wavelets. Taylor wavelets 1, ,,(z) = ¥(k, 71, m, r) have four arguments: # =n—1,n=1,2,...,28 1 k
can assume any positive integer, m is the order for Taylor polynomials, and z is the normalized time. We define them
on the interval [0, 1) as follows:

k=1 ~

277 T,,(28 e —n), o <z < BH,

0, Otherwise,

(2.11)

(&)
ENE

wmm(m) = {
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with
Tp(z) = V2m + 1T, (),
where m =0,1,2,...,M—1andn =1,2,...,2"= 1. The coefficient /2m + 1 is for normality, the dilation parameter
is a = 2=(*=D_ and the translation parameter is b = n2~ (=1 T, (x) are the Taylor polynomials of order m, which
can be defined by Ty, () = 2™. [29]
The six Taylor wavelets corresponding to k = 2 with the order m < 3 are the following:

0, ifi<az<l,

V2, ifo<z< i
¢1,0($)={ 2
1f0<33<7
1f1<x<1

V6, 1f0<m<f
1f1<x<1

0, if0<az <3,
V6(2z — 1), if § <z <1

44/1022 1f0<x<f
1f1<x<1

Y2,0(z
Y1a(z
Y2,1(z
Y1 2(z

Nt
Mt
-
it

baa(z) = 0, ifo<az< g,
22 VI0(22 —1)2, ifl<z<1.

2.4. Function approximation. It is possible to expand a square-integrable function f(x) defined over [0, 1], by the
Taylor wavelets as

F@)=>>" cnmtbnm(z), (2.12)

where
Cnom = <f(l‘),’l/)n,m($)>
If we truncate the series (2.12), we obtain:

2k=1 pmr—1

~ DD cnmtbnm(x) = CTY(x), (2.13)

n=1 m=0

here, the coefficient vector C' and the Taylor wavelet function vector W(z) are m’ = 2¥1M column vectors given by

T
C = [€10,C115 -+ CLM—1,€205 -+ -y COM 15 -+ » Cokm1y - -+, Cobm1 A—1] (2.14)

U(z) = [Y10(@), Y11(2), ..., Y1ar-1(2), P20(2), . . ., Yani—1(2), . . ., hor—1g(2), . .. ,¢2k71,M71(1‘)]T- (2.15)
For clarity, Eq. (2.13) may be rewrite as

/
m

f(z) = Zci¢i =CT (), (2.16)
an
BE
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where ¢; = ¢ m, ¥i(2) = ¥p,m(z). The index ¢ can be derived by ¢ = M(n — 1) +m + 1, thus

C= [01,02,037~-,0m’]Ta (2.17)
\I’(.CL') = [¢1a¢2,¢37~-~,¢m’]T- (218)
By applying the collocation points z; = 3}5\41, i = 1,2,3,...,2k" 1M, we consider the Taylor wavelet matrix
D(X) /sy 88
1 3 2m’ — 1
Bt = ¥ (g,5) W () W (50

where m/ = 2F=1M. For example, for M = 2 and k = 2, the Taylor wavelet matrix is specified as

V2 V2 0 0

o — 22 2 0 0
4x4 — 0 0 \/5 \/i
3 3./3
R

Furthermore, a function u(z,t) € La([0, 1] x [0, 1]) may be also approximated as
u(z,t) = T (2)UP(1), (2.19)

which U is m’ x m/ matrix with u;; = (¢;(z), (u(z,t),;(t))). To evaluate the coefficients u; ;, we use the wavelet
collocation method.

2.5. The fractional integral of Taylor wavelet. The formula for the fractional integral of the Taylor wavelet is
obtained in the Riemann-Liouville sense by employing the Taylor polynomials T5,.

Theorem 2.1. On the interval [0,1], the fractional integral of Taylor wavelets which have the compact support

[;;%11, Frer]), s given by:

0, t< 22
k-1 _1ym DR+
P () = { T ST BB (200)
v T (B g e eyt
Proof. For Taylor polynomials
T (t) = t™, (2.21)
we obtain the operator I for W(t)
I°U(t) = P

To derive %4y, ,(t), we use the so-called Laplace transform. We derive the relation for the Taylor wavelets in the
following manner:

ok

Ynm(t) =27 V2m + 1<V2n;2 ()T (2571 — (n— 1)) — vew ()T (287 — (n — 1))), (2.22)

where v,(t) is the Heaviside function:
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Using the Laplace transform from Eq. (2.22), we obtain

2n — 2
2k

L{bnm()} =27 V2m + 1"3{”2’;,3 ()T (281 (t — o

)) —vap ()T (281 (t — 2—n) + 1)} (2.23)

2n—2

= 2" \om + 1e Sﬁ{Tm(2’“‘1t)} 2 m T 1e*%SL{Tm(2k—1t + 1)}.
From Eq. (2.21), we have

L{nm(t)} =27 V2 1| 5 L@y — e H L 4 1)

2n

=27 \om + 1[6* 52255{(2’“_%)’”} - e*%sﬁ{ i R m! '(2’“_1)’"_%7”_’"}}

= m—r)!
Bo1 _zme ! (28D e IS ml v
R T e D D= Ca
r=0
2n
k=1 —2ng 627ksm!(2k71)m - m! k—1\ym—r
=272 V2m+le 2k [ g 7Zr!sm—r+1(2 ) }
r=0
By using the Riemann-Liouville fractional integral operator of order a: I%f(¢t) = ﬁt“’l * f(t), where * denotes
the convolution product, we get
tafl
LA m ()} = £{ s oAUt 2.24
{1 nm ()} (o) {thn.m ()} (2.24)

Sm—i—l—i—a T!sm—r+1+a
r=0

2n
_ ” SE S 1 (9k—1ym m |
— 2% 2m+le_§ks{6 ml(2"7) ~Z m (2k1)mr}.

Applying the inverse Laplace transform of Eq. (2.24) yields

2n—2 m

2n
k-1 e eE e 28 °m) e
[%pm(t) = 25 V2m + 1L 1{W—Z(2k Lym 7"} (2.25)

T!Sm7r+1+o¢

r=0
- VM (2k71)m(t _ 275;2 )m+o¢ m m!(2k71)mfry277? (t _ %)mfr%»a
=27 Vo 1(— - o )
Lim+1+a) — rlT(m—r+1+a)
By using Eq. (2.25), we have
0’ t < 27;;2
E—1
277 VZmiiml(2871)" (¢ 2np2) et e n
Ial)bn,m(t) = F((a+m-)|—1)( = ) ’ 22’“ : <t< 37 (226)

ko1 m!(Qk,l)m(t_ 2"7,2)a+m m ml(zk,l)m—r(t_@)aﬁ»m—r )
2 2m +1 < F(a+m+i§ - ZO r!F(oH»mf'rzil) ’ 272 <t
r=

and this complete the proof. O

Using the collocation points in Eq. (2.20), we obtain the fractional order integration matrix P2, .., = I%, m(2),
then

I%91,0(2(1)) I o(x(2)) ... T%yo(x(251M))
o Pna(e(1)) (@) I (2NTM)
Bt = : : :
o pp(z(1))  T%Pgr—1 pr(@(2)) ... TP pr(@(2871M))
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For instance, we fix k =2, M = 2 and a = 0.8, then

0.287683  0.692806 0.754851  0.671755

po 0.0692058 0.499989 0.686486 0.597872
Ax4 0 0 0.287683  0.692806
0 0 0.0692058 0.499989

Another fractional integration operational matrix can be obtain to solve the fractional boundary value problems.
Assume 7 > 0 and g : [0,77] — R be a continuous function, put

g(gj)lad}n,m(n) =o® (227)

We introduce a matrix V by using the collocation points x; = 35} vi=1,2,...,25" 1M in Eq. (2.27), we have
g(z1)I%P1,0(n) g(z2)I%9P1,0(n) o g(@or—1)I%9P1,0(n)
Jama(@) B g(x1)I%¢11(n) g(x2)I%¢1,1(n) g(@ar—1ar)IP1,1(n)
2k—1Mx2k—1M : : :
9(951)1041/’2#1,1%—1(77) 9(932)Ia1/f2k71,M—1(77) g(z2k*1M)Ia7/}2k*1,M—1(77)
For instance, for n =1,¢g(z) =2z, =09,k =2 and M =3
a,n,9(x) _
Vo ok—ipy =0 0 0 0 0 0].

2.6. Convergence. The goal of this section is to discuss the error analysis of the present method. Therefore, we
present the following theorems.

Theorem 2.2. [5] Suppose a continuous function f(z,t) € L*(R?) defined on [0,1) x [0,1) be bounded by K, then the
approximation of f(x,t) by the Taylor wavelets converges uniformly.

Theorem 2.3. [5] If a continuous function f(x,t) € L?(R?) defined on [0,1)? be bounded, i.e. ||f(x,t)|| < K, then

||Eu,kM,k’M’||L2([0,1]><[0,1])S[ Z Z Z Z(Aﬁ;ﬁ',n/m/ff)? ,

n=2k-141m=M p/=ok' -1 41 m'=M

N

where A\F:F _ V@m+1)(@m/+1) (17(71)m+1> (1—(*1)m’+1 )

nm,n’'m’ — 2k+k2/72 m+1 m’+1

3. DESCRIPTION OF THE PROPOSED METHOD

Now, we propose the procedure of constructing a method for the generalized Burgers-Fisher equation with time-

fractional derivative.
The generalized Burgers-Fisher equation with time-fractional derivative is the following equation:

U — Upy = bu(l — ) —aulu,, €01, t>0, 0<a<l1 (3.1)
with the conditions

u(z,0) = g(z), (3.2)

u(0,t) = fo(t), u(1,t) = f1(t), 0<a,t<1,
where a, b, are constants. Applying the proposed method to Eq. (3.1), we suppose

02 (z,t)

Ox?ote

where U = (u;;)ar—1p7x26-1 7 18 an undetermined matrix, and ¥(-) is the Taylor wavelet matrix. By using the fractional
operator I on Eq. (3.3), we have:

QPu(x,t) (62U(Z‘,t)
oz Ox?

~ U () UT(2), (3.3)

)t:O + T (2)UP?, (3.4)

(&)
ENE
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using initial condition, we have

82u(x, t) " T
s ~g (z)+ U (2)UPS, (3.5)
by integrating of Eq. (3.5), two times with respect to x, we have
ou(x,t
u(z,t) =~ u(0,t) + x(%) » +g(x) — g(0) — zg/( / / U7 (s1)ds,ds.UP?, (3.6)

we put £ =1 in Eq. (3.6) and apply boundary condition, then

w(1,t) ~ u(0,1) + (%)FO +g(1) - / / (51)ds1ds.U P2, (3.7)
(2480) <50~ )+ 90+ /0 - o) - [ [ W enisasurr, )
for simplicity,
H(t) = f1(t) — fo(t) + g(0) + ¢’ (0 / / (s1)ds dsUPY. (3.9)
For u(, t) we get
w(@, t) ~ folt) + zH() + g(x) — g(0) — 2g/( / / (51)ds1dsU P2, (3.10)

by differentiating with respect to « in Eq. (3.10), we have

t T
W)~ 1)+ o' (0) - g O+ [ V(s (3.11)
0
by taking fractional differentiation of order a in Eq. (3.10) with respect to ¢:
(03 x S
% ~ D fo(t) + D H(t) +/ / U1 (s1)ds1ds UW(t), (3.12)
0

where D*H (t) = D*f,(t) — D*fo(t) fo fo U7 (s1)ds1ds UV(t).
For simplicity, we put the right-hand-side of (3.1) equal to S(z,t):

/ ’

S(xz,t) = bu,.(1 — uf) - auf(u,)x = my ()Y, (t) = UT () ME(t), (3.13)

1 1

3
3

B

<.
Il

where m; ; = (¥;(x), (S(x,t),v;(t))). Substituting Egs. (3.10)-(3.13) and Eq. (3.5) into Eq. (3.1), changing ~ by =
and applying the collocation points x; = gi]\/} b= zjle, i,5=1,2,3,...,2"" 1M | we get a linear system of algebraic
equations as follows:

D fo(t;) + & DH(t;) + (P7)"UW(t;) = g (2:) + U () UL + 97 () MU(t;), (3.14)

where fol fos U7 (s1)ds1ds is a 2871 M x 2¥=1 M matrix of fractional order integration for boundary value problems by
the Taylor wavelet (2.27), (P2)T is [ [, YT (s1)dsids, and (P;,)" is [ U7 (s1)ds:.

Upon solving the system and determining U, we can derive an approximate solution by plugging U into Eq. (3.10).
an
BE
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3.1. Numerical Examples. To demonstrate the efficiency of the Taylor wavelet collocation method (TWCM) for
the generalized Burger and Burgers-Fisher equations, we solve some numerical examples for different values of a, b, d,
and a. The proposed method is compared with the Haar wavelet Picard method (HWPM) [40] to demonstrate its
capability.

Example 3.1. We consider Eq. (3.1) with the following initial and boundary conditions:

0= (5= 51 (5% z)) | 1
Hon= (; - gtaah <2<1aj 5 L (a2 Z(b1(1++5)5)2)> tD) ’

v (3 (g - (“20597) )

which the exact solution for a = 1 is ([18, 37])

) = (5 g (g |- ( Zg%(s)g) tD)é |

We suppose ug(z,t) as an initial approximation and apply the TWCM for different values of a,b,«, and § = 1.
Table 1 shows the absolute error for the approximate solutions obtained with different values of a, a, and b which the
solutions at the different values of o converge to the exact solution at @ = 1 when « approaches 1. The results which
are obtained by using the present method were compared with the Haar wavelet Picard method (HWPM) [37], and
are shown in Table 2.

TABLE 1. Absolute error of approximate solutions obtained by using TWCM with § =1,M =8, K =
2 for different values a for Example 3.1

6=1 J=4 a=0.01, b=0.01 6=1 J=4 a=0.5, b=05
a=0.6 a=0.9 a=1 a=0.6 a=09 a=1
4.5205e-08 3.3245e-08  1.0019e-08 2.7754e-08 1.0041e-08 2.1744e-10
3.6311e-07 2.9908e-07 1.1157e-07 2.4961e-07 1.0982e-07 2.5308e-09
1.2902e-06 9.7632e-07 2.7286e-07 1.9755e-06 1.0041e-06 1.4702e-08
9.2368e-06 4.3876e-06 9.8771e-07 7.7541e-06 1.0011e-06 8.0278e-08
4.6208e-06 1.2366e-06 5.4407e-07 6.2517e-06 2.2346e-06 1.9275e-08
4.7193e-07  1.0199e-07 7.5547e-08 1.2533e-07 1.0045e-07 8.8047¢-09

&
~+

AAAAAAA
o353 3 s 3
3l sl s~ H

N e N e N

o
Do

TABLE 2. Comparison of approximate solutions by obtained using TWCM with Haar wavelet Picard
method (HWPM) for M = 8, K = 2 in Example 3.1

5=1 J=4 a=0b=05, a=1]6=1 J=4 a=b=001, a=1
(x,t) TWCM HWP[10] TWCM HWPM[40]
(é, é) 2.1744e-10 1.035e-07 1.2973¢-16 7.1366-13
(2,2 | 2.5308¢-09 3.454e-07 1.9987e-15 1.800e-12
(B 13) | 1 4702008 8.077e-07 3.2177e-15 4.531e-12
(g—g, g) 8.0278¢-08 8.634e-07 3.7963e-15 4.908¢-12
(25,25 | 1.9275¢-08 6.102¢-07 5.7517e-15 3.553¢-12
(%, %) 8.8047¢-09 1.356e-07 9.1127e-16 8.322¢-13




10 Z. H. M. ALKHAFAJI, A. KHANI, AND N. AGHAZADEH

Example 3.2. For b = 0, Eq. (3.1) is reduced to the generalized Burger equation. We have taken different values
of a,d. Table 3 shows the absolute error for the approximate solutions obtained with different values of «, where the
solutions at different values of o converge to the exact solution at @ = 1, as « approaches 1.

The results of the present method were compared with the Haar wavelet Picard method (HWPM) [40] in Table 4.

TABLE 3. Absolute error of approximate solutions obtained by using TWCM with b =0, M =8, K =
2 for different value v and ¢ in Example 3.2

6=1 J=4 a=05 b=0 60=2 J=4 a=01, b=0
a=0.6 a=109 a=1 a=0.6 a=09 a=1
8.1755e-16 3.3245e-16 1.8641e-16 7.4865e-16 5.789%e-16 1.4365e-16
8.5569e-15 4.4676e-15 2.6851e-15 6.8451e-16 2.2063e-16 2.0481e-16
9.5319e-14 6.9781e-15 3.6453e-15 7.5579%-16 2.0017e-16 1.8351e-16
7.4628e-14 5.9784e-15 2.9746e-15 6.4394e-16 2.0193e-16 1.8794e-16
3.1596e-15 2.5464e-15 1.9064e-15 3.2279%-16 2.0008e-16  1.0114e-16
6.9173e-16 4.7654e-16 1.8884e-16 8.4379%-17 6.7984e-17 2.2379e-17
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TABLE 4. Comparison of the approximate solution obtained by using the TWCM with the Haar
wavelet Picard method (HWPM) for M = 8, K = 2 in Example 3.2

§=1 J=4 a=01, b=0, a=1[6=05 J=4 a=02 b=0, a=1
(x,t) TWCM HWPM[40] TWCM HWPM[40]
(é, é) 1.4365e-16 5.768¢-14 7.0654e-14 4.153e-07
(5, =5) | 2.0481e-16 8.424e-12 6.831e-13 6.253e-05
(ﬁ, ﬁ) 1.8351e-16 1.407e-11 3.6372e-13 9.722e-05
(ﬁ, ﬁ) 1.8794e-16 1.440e-11 1.8324e-13 9.881e-05
(%, ﬁ) 1.0114e-16 1.022e-11 1.0011e-13 7.278¢-05
(%, %) 2.2379e-17 1.937e-12 9.8046e-14 1.248e-05

4. CONCLUSION

In this study, we have successfully applied a combination of the operational matrix of the Taylor wavelet based on
the collocation method to solve the time-fractional Burgers-Fisher equation.
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