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Abstract

A theoretical investigation is conducted to explore the three-dimensional Casson nanofluid flow affected by the

double diffusion effects in Casson nanofluid over a stretching sheet, considering viscous dissipation, thermal ra-

diation, inclined magnetic field, porous medium, chemical reaction, and heat generation/absorption. The study
addresses a research gap by incorporating the Cattaneo-Christov double diffusion model into the rotating Cas-

son nanofluid framework, which has not been previously considered in such the three-dimensional flow. The
inclusion of radiative heat and inclined magnetic field effects further enhances the novelty of the current work.

Governing nonlinear partial differential equations are transformed into the ordinary differential equations using

the similarity transformations and solved numerically via the shooting method. Key transport mechanisms such
as thermophoresis, Brownian motion, and thermal and mass relaxation effects are analyzed. The results indicate

that a 40% increase in the Casson parameter leads to a reduction in the heat transfer rate by up to 23%. An

increased rotation and magnetic field strength also contribute to the reduced velocity and thermal profiles. This
research provides a deeper understanding of non-Fourier heat and mass transport in non-Newtonian fluids. The

findings are applicable to cooling technologies, polymer processing, and enhanced heat transfer systems involving

electrically conducting fluids.

Keywords. Cattaneo-Christov double diffusion, Inclined MHD, Heat generation/absorption, Porous medium, Chemical reaction rate.
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1. Introduction

The specific branch of fluid mechanics that focuses on describing the motion of fluids (gases/ liquids), is known as
fluid dynamics. Aerodynamics and hydrodynamics are notable branches of fluid dynamics. Fluid dynamics encom-
passes a diverse range of practical applications, including the computation of forces and moments, estimation of oil
mass flow rates in pipelines, prediction of weather patterns, exploration of interstellar nebulae, and flow modeling.
Neményi [22] provides a historical perspective, tracing the evolution of fundamental concepts and ideas in fluid dynam-
ics, emphasizing the development of theoretical understanding over time. Building upon this theoretical foundation,
Birkhoff [6] surveys the significant advancements and future potential of numerical fluid dynamics, underscoring the
increasing reliance on computational methods to solve complex flow problems that defy analytical solutions. A practi-
cal application of these numerical techniques is demonstrated by Hofer et al. [13], who utilized the computational fluid
dynamics and finite element analysis to study wall mechanics and fluid dynamics in end-to-side vascular anastomoses,
establishing correlations between complex flow patterns and the development of intimal hyperplasia, a critical issue
in biomedical engineering. Further showcasing the versatility of computational approaches, Liu et al. [18] employed
computational fluid dynamics to investigate the unsteady aerodynamics of biological flight, specifically analyzing the
flow around a hawkmoth’s flapping wing during hovering to understand the vortex dynamics and force generation
mechanisms in nature.
Building upon the foundational principles of fluid mechanics discussed earlier, a particular class of non-Newtonian
fluids known as Casson fluids has garnered attention due to their unique rheological behavior. A fluid that exhibits
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Table 1. Nemoclature.

a positive constant Γc relaxation time for mass flux
B0 magnetic field strength Γe relaxation time for heat flux
Cfx skin friction coefficient in x-direction αf thermal diffusivity of fluid
Cw concentration of nanoparticles at wall ρ density
Shx local Sherwood number (cp)p specific heat coefficient of nanoparticle
Nux local Nusselt number λE relaxation time parameter of temperature
C concentration of nanoparticles µ dynamic viscosity
(cp)f specific heat coefficient of fluid ϵ heat generation/absorption coefficient
DB Brownian diffusion coefficient Γ Inclined angle of magnetic field
f, g velocity components in dimensionless form γ1 rotation parameter
qr radiative heat flux σ electrical conductivity of fluid
DT thermophoretic diffusion coefficient ϕ dimensionless concentration
Cfy skin friction coefficient in y-direction η similarity variable
k thermal conductivity θ dimensionless temperature
k∗ mean absorption coefficient µB plastic dynamic viscosity
K∗

c constant rate of chemical reaction νf kinematic viscosity of the nanofluid
u, v, w velocity components σ∗ Stefan-Boltzmann constant
C∞ ambient concentration away from wall β Casson parameter
Kc chemical reaction parameter ρp nanoparticle’s density
T∞ ambient fluid temperature (ρcp)f fluid’s heat capacity
qw wall heat flux (ρcp)p nanoparticle’s heat capacity
T fluid temperature τ shear stress
Tw surface temperature

shear-thinning behavior, with theoretical infinite viscosity at zero shear rate and zero viscosity at infinite shear rate
is referred to as a Casson fluid. In comparison to Newtonian-based nanofluid flow, Casson nanofluids offer greater
advantages as cooling and friction-reducing agents. Casson fluids include various examples such as honey, jelly, sauce,
and soup. Applications of Casson fluids span various sectors, including heat transfer and cooling systems, biomedical
and pharmaceutical fields, the food industry, cosmetics and personal care, oil and gas processing, and automotive
systems. The earliest work on Casson fluids was conducted by Casson et al. [8], who aimed to forecast the behavior of
fluids resembling printing ink. A series-based solution to tackle heat and mass transfer phenomena in a non-Newtonian
fluid was examined by Nadeem et al. [21] using the homotopy analysis method. According to their findings, variations
in the Casson parameter, whether positive or negative, give rise to shifts in the stagnation point from its initial
position. The study by Butt et al. [7] focused on elucidating the heat transfer properties in the context of boundary
layer flow of a rotating Casson fluid over an extending surface using the shooting method combined with the fifth-order
Runge–Kutta–Fehlberg method. Further, the analysis of non-Newtonian Casson fluid under the influence of MHD
and a porous medium within a non-Fourier heat flux model was investigated by Vishalakshi et al. [32], who concluded
that transverse and tangential velocities decrease under the influence of the Lorentz force.
Rotating fluid flows are of considerable interest due to their role in simulating engineering systems and natural processes
influenced by rotational effects. The examination of fluid motion with rotation that gives rise to the Coriolis force
finds noteworthy applications in a range of disciplines, including astrophysics, oceanography, and various geophysical
situations. Moreover, this specific flow pattern over a stretching surface is employed across various domains. Wang
[33] considered a two-dimensional stretchable surface to investigate the issue of rotating fluid flow. Moreover, when
the rotational parameter outran unity, he gained a precise solution through analytical means, afterward contrasting it
with the numerical technique. Zaimi et al. [34] employed the Keller-box method to analyze the rotating flow due to a
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stretching surface by considering a non-Newtonian viscoelastic fluid. Rashidi et al. [24] employed the law of increased
Entropy to present an analysis of Entropy generation in the context of rotating nanofluid flow. Mabood et al. [19]
conducted an investigation into the impact of Brownian motion and thermophoresis on the flow of rotating nanofluid.
This analysis was carried out considering the presence of magnetic fields, radiation, viscous dissipation effects, heat
source etc. The research executed by Das et al. [11] centered on investigating how transient hydromagnetic Couette
flow of a viscous fluid is influenced by both magnetic field and rotation. The study revealed a substantial alteration in
fluid velocity resulting from the combined effects. Ali et al. [2] investigated various types of nanoparticles to analyze
how magnetic field within a rotational setup modifies Couette flow. The influence of thermophoresis and Brownian
motion on mixed convective flow in magnetohydrodynamics over an inclined stretching surface, taking into account
radiation and chemical reaction is analyzed by Sharma et al. [29]. The magnetohydrodynamics rotating flow over a
stretching surface with a focus on fluctuating viscosity and nanoparticle aggregation is studied by Alqahtani et al. [3].
Heat conduction plays a critical role in many engineering and scientific applications, with Fourier’s law traditionally
serving as the foundational model that defines heat transfer through a linear relationship between heat flux and the
temperature gradient [12]. However, a significant limitation of Fourier’s law lies in its prediction of an infinite speed
of thermal signal propagation, which contradicts the principle of causality, namely, that an effect cannot precede its
cause. This theoretical drawback leads to non-physical results, such as instantaneous temperature changes across a
medium. To overcome this issue, Cattaneo [9] introduced a modification that incorporates a finite thermal relaxation
time, enabling heat signals to propagate at a finite speed. Subsequently, Christov [10] refined the model by employing
objective time derivatives, yielding the Cattaneo–Christov heat flux model. This refined model aligns heat conduction
theory with physical causality, allowing for realistic, time-dependent heat propagation. Utilizing this framework, Salmi
et al. [25] employed the finite element method and observed that solute relaxation time exhibited a decreasing effect
on the concentration field, which could be regulated by adjusting the solute relaxation parameter. Further exploration
by Sohail et al. [31] demonstrated that an increase in the suction parameter leads to a decrease in both temperature
and velocity profiles of a water-based ternary hybrid nanofluid under a three-dimensional non-Fourier heat conduction
model. Akinbo and Olajuwon [1] examined the behavior of Walters’ B fluid over an exponentially stretching sheet
in a porous medium and reported that the temperature decreases with the inclusion of thermal relaxation time, as
analyzed using the homotopy analysis method.

Radiation heat transfer is a crucial factor in many engineering applications, especially those involving high tempera-
tures, where it significantly influences the overall heat transfer process. Its effects cannot be neglected when analyzing
thermal systems such as combustion chambers, furnaces, and high-temperature manufacturing processes. Extensive
research has been conducted to understand the impact of radiative heat transfer on fluid flow and thermal behavior.
Hayat et al. [14] introduced a novel boundary condition, termed zero nanoparticle mass flux, to investigate its effect
on three-dimensional flow of a viscoelastic fluid under nonlinear thermal radiation. Their results showed that the ther-
mal boundary layer thickness increases with enhanced radiative heat intensity. Prasannakumara et al. [23] used the
shooting method to study stagnation-point flow of a dusty fluid over a stretching sheet subjected to radiative heating
and found that fluid temperature increases with an advancement of the melting process on the surface. Makinde and
Eegunjobi [20], utilizing the Runge–Kutta–Fehlberg method, demonstrated that wall thermal slip conditions lead to
a slight temperature reduction at the surface due to heat loss. Sheikholeslami and Shehzad [30] studied the effect of
radiative heat transfer on ferrofluids via the Gauss–Seidel method and observed an increase in the Nusselt number
with intensified thermal radiation. Islam et al. [15] investigated convective flow and thermal transport of nanofluids in
a wavy triangular cavity, considering heat generation or absorption, reporting a 20.43% increase in heat transfer rate
due to Brownian motion with 1% nanoparticle volume under radiative effects. Kumar et al. [17] optimized the heat
transfer performance of aqueous nanofluids over a rotating disk by combining magnetic and radiation effects using
numerical simulations and response surface optimization via the bvp5c function.

From the research mentioned earlier, many scientists have looked into how heat and mass transfer phenomena
are exhibited in the case of Casson nanofluid flow on a stretching sheet. After thoroughly reviewing the existing
literature, it is observed that no previous study incorporates the three-dimensional Cattaneo-Christov double diffusion
flow within the Casson fluid model, particularly considering the porous medium. This research aims to cover this
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Figure 1. Geometry of physical model.

gap and comprehensively analyze the effects of viscous dissipation, thermal radiation, inclined magnetic field, heat
source/sink, and chemical reaction within a non-Fourier framework.

2. Mathematical Modeling

Consider a three-dimensional time independent, incompressible laminar flow of an Casson nanofluid along a stretch-
ing smooth surface (See Fig. 1). In this study, the fluid has been considered to rotate around the z-axis with an angular
velocity Ω within a flow region where z is restricted to values z ≥ 0. Assume that the velocity of extending sheet
is represented by Uw(x) = ax. An inclined magnetic field of magnitude B0 is applied in z- axis direction. Since
the classical Fourier law assumes infinite thermal propagation speed, the Cattaneo-Christov double diffusion model
is utilized to incorporate finite thermal and solutal relaxation times, λE and λC , respectively. This provides a more
physically realistic description of heat and mass transfer. The energy transport equation includes effects of thermal
radiation, heat generation, and the Cattaneo-Christov double diffusion model. Similarly, the mass transport accounts
for delayed solutal diffusion through the relaxation parameter Γc. The governing equations under the assumptions
stated above for mass, momentum, energy and concentration are as follows [4, 16, 26, 28]:

ux + vy + wz = 0, (2.1)

uux + vuy + wuz − 2Ωv = ν

(
1 +

1

β

)
uzz −

µ

ρf

u

k
− σB2

0

ρf
usin2(Γ), (2.2)

uvx + vvy + wvz + 2Ωu = ν

(
1 +

1

β

)
vzz −

µ

ρf

v

k
− σB2

0

ρf
vsin2(Γ), (2.3)

uTx + vTy + wTz + Γe

[
u2Txxv

2Tyyw
2Tzz + 2uvTxy + 2uwTxz + 2vwTyz

+ (uwx + vwy + wwz)Tz + (uvx + vvy + wvz)Ty + (uux + vuy + wuz)Tx

]
=

[(
α+

16σ∗T 3

3K∗ (ρcp)f

)
Tz

]
z

+ τ

[
DBTzCz +

DT

T∞
(Tz)

2

]
+

Q

(ρcp)f
(T − T∞)

+
µ

(ρcp)f

(
1 +

1

β

)(
(uz)

2
+ (vz)

2

)
+

σB2
0

(ρcp)f

(
u2 + v2

)
sin2(Γ), (2.4)

uCx + vCywCz + Γc

[
u2Cxx + v2Cyy + w2Czz + 2uvCxy + 2vwCyz + 2uwCxz
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+ (uux + vuy + wuz)Cx + (uvx + vvy + wvz)Cy + (uwx + vwy + wwz)Cz

]
= DBCzz +

DT

T∞
Tzz −K∗

c (C − C∞) . (2.5)

In the above equation, v and u denote the velocity components along the y and x directions, respectively, ν represents
the kinematic viscosity, K =

νf

ak is the porous medium parameter and Q is the heat generation/absorption coefficient,

β = µB

√
2πc/

∂p
∂y is the Casson fluid parameter.

The associated boundary conditions are:{
v = 0, u = Uw(x), w = 0, C = Cw, T = Tw, at z = 0,

u → 0, v → 0, C → C∞, T → T∞as z → ∞.
(2.6)

The boundary conditions in Equation (2.6) define the physical constraints at the plate surface and in the far-field
region. At the surface, the no-slip condition is imposed with a specified stretching velocity u = Uw(x), while the
normal velocity v and cross-flow component w are both zero. Additionally, the fluid temperature and concentration
are maintained at the surface values Tw and Cw, respectively. Far from the surface, the velocity components diminish
to zero, while the temperature and concentration gradually approach their ambient levels T∞ and C∞, respectively,
ensuring a physically realistic flow and thermal field.

Following similarity transformations have been considered [5]:η =

√
a

ν
z, ϕ(η) =

C − C∞

Cw − C∞
, T = T∞ (1 + (θw − 1) θ(η)) ,

w = −
√
aν (η) , v = axg(η), u = axf ′(η),

(2.7)

where θw=
Tw

T∞
> 1 denotes the temperature ratio parameter.

The radiative heat flux is

qr = −4σ∗

3k∗

(
∂T 4

∂z

)
. (2.8)

By employing Taylor series expansion and neglecting higher-order terms, T 4 is approximated as T 4 = 4T 3
∞T − 3T 4

∞.
Simplifying Eq. (2.8) under this approximation gives:

∂qr
∂z

= −16σ∗T 3

3k∗
Tzz. (2.9)

By using the transformation (2.7), the resulting non-dimensional form of the governing equations is given below:(
1 +

1

β

)
∂3f

∂η3
−
(
∂f

∂η

)2

+ f
∂2f

∂η2
+ 2γ1g −K

∂f

∂η
−M

∂f

∂η
sin2(Γ) = 0, (2.10)(

1 +
1

β

)
∂2g

∂η2
+ f

∂g

∂η
− ∂f

∂η
g − 2γ1

∂f

∂η
−Kg −Mgsin2(Γ) = 0, (2.11)

∂

∂η

(
1 +Rd

(
1− (1− θw)θ

)3)
∂θ

∂η
+ Pr

[
f
∂θ

∂η
+Nb

∂θ

∂η

∂ϕ

∂η
+Nt

(
∂θ

∂η

)2

+ Ec

((
1 +

1

β

)((
∂2f

∂η2

)
+

(
∂g

∂η

)2)

+M

((
∂f

∂η

)2

+ g2
))

− λE

[
f2 ∂

2θ

∂η2
+ f

∂f

∂η

∂θ

∂η

]
+ ϵθ

]
= 0, (2.12)

∂2ϕ

∂η2
+ Sc

[
f
∂ϕ

∂η
− λC

(
f2 ∂

2ϕ

∂η2
+ f

∂f

∂η

∂ϕ

∂η

)
−Kcϕ

]
+

Nt

Nb

∂2θ

∂η2
= 0. (2.13)
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Similarly, the boundary conditions after treatment by (2.7), get the following form:
f(0) = 0, g(0) = 0,

∂f

∂η
= 1, ϕ(0) = 0, θ(0) = 0, as η → 0.

∂f

∂η
→ 0, g → 0, θ → 0, ϕ → 0, as η → ∞,

(2.14)

where Sc is the Schmidt number, Rd is the radiation parameter, Nb is the Brownian motion parameter, Pr is the
Prandtl number, Nt is the thermophoresis parameter, Ec is the Eckert number and M is the magnetic parameter.
The dimensionless parameters arising in (2.10)-(2.13) are given as:

γ1 =
Ω

a
, M =

σB2
0

ρa
, K =

ν

ak
, Rd =

16T 3
∞σ∗

3kk∗
, Nt =

τDT (Tw − T∞)

νT∞
,

Nb =
τDB (Cw − C∞)

ν
, Ec =

U2
w

(cp)f (Tw − T∞)
, Kc =

K∗
c

a
,

λC = aΓc, λE = aΓe, Sc =
ν

DB
, Pr =

ν

α
, ϵ =

Q

a(ρcp)f
.

(2.15)

Here, the skin friction coefficient Cf on the surface expressed in both the x and y directions is defined respectively as:

Cfx =
τwx

ρU2
w

, Cfy =
2τwy

ρU2
w

. (2.16)

The wall shear stresses τwx and τwy in their respective directions are defined as

τwx = µB

(
1 +

1

β

)(
∂u

∂z

)
z=0

, τwy = µB

(
1 +

1

β

)(
∂v

∂z

)
z=0

. (2.17)

The skin friction coefficients in dimensionless form, are given by

(Rex)
1
2 Cfx =

(
1 +

1

β

)
∂2f

∂η2

∣∣∣∣
η=0

, (Rex)
1
2 Cfy =

(
1 +

1

β

)
∂g

∂η

∣∣∣∣
η=0

. (2.18)

where, Rex =
U2

w

aν depends on the stretching velocity Uw.
The remaining physical quantities of interest are as follows:

Nux =
Uwqw

ak(Tw − T∞)
, Shx =

qmx

DB (Cw − C∞)
. (2.19)

The wall thermal heat and mass fluxes, denoted by qw, qm and qn respectively, are defined as:

qw = −kf

(
∂T

∂z

)
z=0

+ (qr)w , qm = −DB

(
∂C

∂z

)
z=0

. (2.20)

As a result, the non-dimensional forms of the formulae in (2.19) are as follows:

NuxRe−1/2
x = −

(
1 +Rdθ2w

)
θ′ (0) , ShxRe−1/2

x = −ϕ′(0). (2.21)

3. Solution Methodology

The numerical computation of Equations (2.10)–(2.13), governed by the boundary conditions (2.14), is carried out
using the shooting method, which integrates the fourth-order Runge–Kutta technique with Newton’s method. This
method is chosen for its relatively low computational cost and high accuracy in solving boundary value problems
transformed into initial value problems. To facilitate numerical calculations, Equations (2.10) and (2.11) are reduced
to first-order equations by u:sing the following substitution:

f = Z1, f
′ = Z ′

1 = Z2, f
′′ = Z ′

2 = Z3, g = Z4, g
′ = Z ′

4 = Z5.
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As a consequence of the above notations, the following system of ODEs is acquired for Eqs. (2.10) and (2.11):

Z ′
1 = Z2, Z1(0) = 0,

Z ′
2 = Z3, Z2(0) = 1,

Z ′
3 =

β

1 + β

(
Z2
2 − Z1Z3 − 2γ1Z4 + κZ2 +MZ2sin

2(Γ)
)
, Z3(0) = r,

Z ′
4 = Z5, Z4(0) = 0,

Z ′
5 =

β

1 + β

(
− Z1Z5 + Z2Z4 + 2γ1Z2 + κZ4 +MZ4sin

2(Γ)
)
, Z5(0) = m,

(3.1)

where r and m are the missing initial conditions. The above initial value problem will be numerically solved by the
RK-4 method. The domain of current problem is considered to be bounded i.e. [0, η∞], where η∞ is a positive number
for which the variation in the solution is negligible after η = η∞ = 6. The missing conditions r and m are assumed to
satisfy the following relation:

Z2(η∞, r,m) = 0, Z4(η∞, r,m) = 0.

The Newton’s iterative formula for the updation of r and m, takes the following form:[
r
m

]
(n+1)

=

[
r
m

]
(n)

−
[
∂Z2

∂r
∂Z2

∂m
∂Z4

∂r
∂Z4

∂m

]−1

(n)

[
Z2

Z4

]
(n)

,

In order to incorporate Newton’s method the following derivatives have been introduced:

∂Z1

∂r
= Z6,

∂Z2

∂r
= Z7,

∂Z3

∂r
= Z8,

∂Z4

∂r
= Z9,

∂Z5

∂r
= Z10,

∂Z1

∂m
= Z11,

∂Z2

∂m
= Z12,

∂Z3

∂m
= Z13,

∂Z4

∂m
= Z14,

∂Z5

∂m
= Z15.

Hence the Newton’s iterative formula takes the following form by using the above notations:[
r
m

]
(n+1)

=

[
r
m

]
(n)

−
[
Z7 Z12

Z9 Z14

]−1

(n)

[
Z2

Z4

]
(n)

. (3.2)

Differentiating (3.1) first w.r.t. r and then w.r.t. m, the following system of ten first order ODEs is obtained, which
when sloved by the RK-4 method helps to update r and m by using (3.2):

Z ′
6 = Z7, Z6(0) = 0.

Z ′
7 = Z8, Z7(0) = 0.

Z ′
8 =

β

1 + β

(
2Z2Z7 − Z6Z3 − Z1Z8 − 2γ1Z9 + κZ7 +MZ7sin

2(Γ)
)
, Z8(0) = 1.

Z ′
9 = Z10, Z9(0) = 0.

Z ′
10 =

β

1 + β

(
Z2Z9 − Z1Z10 + Z7Z4 − Z6Z5 + 2γ1Z7 + κZ9 +MZ9sin

2(Γ)
)
, Z10(0) = 0.

Z ′
11 = Z12, Z11(0) = 0.

Z ′
12 = Z13, Z12(0) = 0.

Z ′
13 =

β

1 + β

(
2Z2Z12 − Z11Z3 − Z1Z13 − 2γ1Z14 + κZ12 +MZ12sin

2(Γ)
)
, Z13(0) = 0.

Z ′
14 = Z15, Z14(0) = 0.

Z ′
15 =

β
(
Z2Z14 − Z1Z15 + Z12Z4 +−Z11Z5 + 2γ1Z12 + κZ14 +MZ14sin

2(Γ)
)

1 + β
Z15(0) = 1.
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Table 2. Computational results for grid independence test.

Interval size Skin friction along x Skin friction along y Nusselt number Sherwood number
0.12 -2.48263982 -0.66128645 0.10704113 2.10943312
0.03 -2.48263965 -0.66128680 0.07143689 1.98247806
0.01 -2.48263965 -0.66128680 0.06341752 1.95631411
0.008 -2.48263965 -0.66128680 0.062412380 1.95309335
0.006 -2.48263965 -0.66128680 0.06180899 1.95116614

Table 3. Comparison of current outcomes of −f ′′(0) with those of Shahzad and Sagheer [27] when
γ1 = k = β = 0 and Γ = π/2.

M Shahzad and Sagheer. [27] Present outcomes
0.0 1.00048 1.00048
0.2 1.09559 1.09560
0.5 1.22477 1.22478
1.0 1.41423 1.41422
1.2 1.48325 1.48324
1.5 1.58114 1.58114

Table 4. Comparison of current outcomes of f ′′(0) with Archana et al. [5] when M = β = k = 0
and Γ = π/2.

γ1
Archana et al. [5] Present outcomes

f ′′(0) g′(0) f ′′(0) g′(0)
0 -1.00048 0 -1.00048 0
0.5 -1.13848 -0.51268 -1.13848 -0.51268

The iterative process is repeated until the criteria listed below is met:

max{| Z2(η∞, rn,mn) |, | Z4(η∞, rn,mn) |} < ϵ,

for an arbitrarily small positive value of ϵ. Here, ϵ is taken as 10−10.
Equations (2.12) and (2.13) are solved simultaneously, by using the same procedure.
To ensure the reliability of the numerical methodology employed in this study, a grid independence test is conducted, as
presented in Table 2. Furthermore, the accuracy of the current results is validated through comparison with previously
published data in Refs. [5, 27], shown in Tables 3 and 4. In addition, Figure 2 illustrates the residual error, confirming
the stability and convergence of the numerical scheme.

4. Results and Discussion

In this section, we thoroughly discuss the influence of some crucial dimensionless parameters on the skin friction

coefficients Re
1
2
xCfx , Re

1
2
y Cfy , Nusselt number Re

− 1
2

x Nux and Sherwood number Re
− 1

2
x Shx through different graphs

and tables.

4.1. Analysis of computational and graphical results of physical quantities. Table 5 presents the influence of
the Casson parameter β, rotation parameter γ1, magnetic parameter M , porous medium parameter K, and inclination

angle Γ on the skin friction coefficients Re
1
2
xCfx and Re

1
2
y Cfy , along with the intervals If and Ig , from which the

missing initial slopes r and m can be selected. An increase in the Casson parameter β, which is associated with higher
yield stress, enhances the fluid resistance, resulting in a rise of approximately 5.71% to 13.37% in both skin friction
coefficients when β is increased by 25% to 60%, as also depicted in Figure 3. On the other hand, an increase in the
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Figure 4. Shx distribution against Nb
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rotation parameter γ1 leads to a reduction in skin friction along the surface, with a maximum decline of around 4.96%
due to the Coriolis force resisting the flow motion.

Table 6 elaborates the behavior of the Nusselt and Sherwood numbers under the variation of different dimensionless
parameters. A rise in the temperature difference parameter leads to a significant enhancement in the rate of heat
transfer, with the Nusselt number increasing by approximately 37.55% to 64.50%, despite the parameter itself varying
only 5.59% to 6.67%. In contrast, the Brownian motion parameter Nb causes a decline in the heat transfer rate due to
enhanced random particle motion. However, the thermophoresis parameter Nt contributes to a notable rise in the heat
transfer rate, as thermal gradients drive nanoparticles away from the hot region, boosting thermal energy distribution,
as also depicted in Figure 4. The rate of mass transfer, represented by the Sherwood number, is observed to increase
slightly by about 0.26% to 0.39% with higher values of the concentration relaxation time parameter λC , indicating
slower diffusion due to delayed mass response. Furthermore, an increase in the chemical reaction parameter Kc results
in a higher rate of mass transfer, as stronger reactions enhance species consumption at the surface, as shown in Table
6.

4.2. Velocity distribution. Figure 5 shows a decreasing behaviour of the velocity distribution f ′ while increasing the
values of β. Physically, the Casson parameter β is influenced by the yield stress, which creates an opposing force that
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Table 5. Results of Re
1
2
xCfx and Re

1
2
xCfy for various parameters.

β γ1 M K Γ

Re
1
2
xCfx Re

1
2
xCfy

If Ig

0.5 0.5 0.5 0.4 π/2 -2.48263 -0.66128 [-1.70, 1.90] [-2.30, 1.70]

0.8 -2.15059 -0.57329 [-1.90, 1.60] [-2.50, 1.90]

1.0 -2.02772 -0.54057 [-1.80, 2.30] [-2.70, 0.60]

0.3 -2.42473 -0.40770 [-1.10, 2.60] [-3.10, 2.20]

0.6 -2.51875 -0.78023 [-2.20, 2.80] [-2.60, 3.00]

0.9 -2.64364 -1.10502 [-2.30, 3.10] [-2.40, 1.70]

0 -2.19783 -0.76779 [-1.20, 3.50] [-2.80, 2.70]

0.4 -2.42669 -0.67951 [-1.80, 3.30] [-3.10, 3.30]

0.8 -2.64515 -0.61357 [-1.80, 3.60] [-2.00, 1.10]

0.6 -2.59172 -0.62842 [-2.20, 3.80] [-2.60, 3.10]

0.8 -2.69784 -0.59963 [-2.30, 3.40] [-1.90, 1.20]

1.0 -2.80102 -0.57418 [-2.00, 3.30] [-2.70, 3.30]

π/6 -2.27046 -0.73718 [-2.50, 3.10] [-3.10, 3.20]

π/4 -2.34222 -0.70947 [-2.10, 2.70] [-1.80, 1.50]

π/3 -2.41297 -0.68427 [-2.20, 3.00] [-3.20, 3.30]

results in a decrease in the velocity of the fluid with a gradual increase in β values. The effect of the same parameter
on the coupled velocity distribution g(η) is reflected in Figure 5, which reveals an upward trend with respect to β as
mentioned in this figure.

The consequence of altering the magnetic parameter M for the velocity distributions f ′ and g can be visualized
in Figure 6, showcasing a decrease in f

′
and an increase in g due to an inclination in M . This occurs because a

drag force which is termed as the Lorentz force appears due to the applied magnetic field generated by the motion of
charges. This force causes a decrement in the magnitude of the velocity along the x-direction. Figure 7 depicts the
velocity distributions for varying values of the porous medium parameter K. The distribution denoted as f ′ exhibits a
decreasing trend as K increases, while g demonstrates an increment with rising values of K. This occurs because the
increasing permeability of the porous medium increases the flow rate of fluid through it, assuming a constant pressure
gradient. The influence of the rotation parameter γ1 on f ′ and g is portrayed in Figures 8. It has been observed that
an increase in the rotation parameter leads to a deterioration in the velocity along the x-direction.

4.3. Temperature distribution. The Figure 9 indicates that increasing the Casson parameter brings about an
enhancement in the thermal boundary layer thickness, leading to a higher fluid temperature. This occurs because a
larger Casson parameter signifies increased fluid yield stress, which restricts momentum diffusion more than thermal
diffusion, thereby allowing heat to spread more effectively. Figure 10 illustrates the behavior of the temperature
distribution θ for variations in θw. As this parameter increases, the temperature also experiences an observable hike.
Physically, θw reflects the wall-to-ambient temperature ratio, and a rise in this parameter promotes heat transfer from
the wall into the fluid, thus raising the local fluid temperature. Figures 11 demonstrate the influence of Nb. As
Nb increases, the temperature distribution rises. The occurrence of Brownian motion in the fluid is attributed to the
presence of nanoparticles. Brownian motion enhances the random molecular agitation, which facilitates thermal energy
dispersion, leading to a higher temperature within the fluid. Figure 12 expresses the relation between the relaxation
time parameter λE and the temperature distribution θ, where θ shows a decreasing trend with rising λE . Physically, we
can say that when λE attains higher values, the system possesses a non-conductive feature that results in contraction
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Table 6. Results of Re
− 1

2
x Nux and Re

− 1
2

x Shx for various parameters.

β γ1 M K Γ Rd θw Pr Nb Nt Ec Sc λE ϵ λC Kc Re
− 1

2
x Nux Re

− 1
2

x Shx

0.5 0.5 0.5 0.4 π/2 0.2 1.5 2.0 0.5 0.5 0.2 5.0 0.1 0.2 0.1 0.2 0.01724 1.96539

0.6 0.01285 1.95535

0.2 0.06499 1.96819

0.3 0.05309 1.96747

0.0 0.14902 1.96936

0.3 0.06959 1.96686

0.3 0.02879 1.96765

0.5 0.00547 1.96319

π/6 0.11585 1.96828

π/4 0.08277 1.96726

0.4 0.06359 1.95224

0.5 0.07338 1.94802

1.6 0.02836 1.96224

1.7 0.03901 1.95920

1.0 0.05238 1.93649

1.5 0.04469 1.95296

0.2 0.08835 2.00692

0.3 0.05054 1.97964

0.0 0.05179 1.90933

0.05 0.03431 1.93689

0.0 0.40286 1.92442

0.05 0.30721 1.93453

3.0 0.00517 1.49949

4.0 0.01153 1.74717

0.2 0.03533 1.96580

0.3 0.05267 1.96630

0.0 0.26899 1.94262

0.1 0.15202 1.95344

0.13 0.01758 1.97309

0.15 0.01782 1.97828

0.1 0.01203 1.69165

0.0 0.01479 1.83341

of the thermal distribution. This is due to the Cattaneo-Christov theory, where a larger λE introduces a thermal
relaxation effect, limiting the instantaneous conduction of heat and hence suppressing the temperature field. Figure
13 displays the impact of the Prandtl number Pr on the temperature distribution θ. Both the thickness of the thermal
boundary layer and the temperature distribution decrease as Pr increases. A higher Pr implies that momentum
diffuses more rapidly than heat, which restricts thermal diffusion and reduces fluid temperature. Figure 14 reflects a
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Figure 5. Velocity distributions against β.
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Figure 6. Velocity distributions against M .

variation in the temperature distribution θ due to the radiation parameter Rd. As Rd increases, more heat energy is
emitted into the flow, resulting in an uplifted temperature distribution. This increase in Rd amplifies radiative heat
flux, enhancing energy transfer throughout the fluid medium. For increasing values of the heat generation/absorption
parameter ϵ, Figure 15 depicts that the temperature distribution θ increases. Clearly, a positive change in the
heat sink parameter results in increased heat generation within the liquid, contributing to the improvement of the
thermal boundary layer thickness and temperature distribution. This internal heat source supplements thermal energy
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Figure 7. Velocity distributions against K.
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Figure 8. Velocity distributions against γ1.

within the fluid, thereby raising its overall temperature. The influence of the Eckert number Ec on the temperature
distribution θ showcases a rising pattern in θ as mentioned in Figure 16. The temperature distribution escalates as
the value of the Eckert number goes up. This is because a larger Ec reflects more viscous dissipation, where kinetic
energy is converted into internal heat, directly enhancing the fluid’s thermal state.

4.4. Concentration distribution. A decline in the concentration distribution ϕ is evident as the Schmidt parameter
Sc increases, as illustrated in Figure 17. A higher Sc value corresponds to a fluid with relatively lower mass diffusivity,
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Figure 9. Temperature distribution
against β
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Figure 10. Temperature distribution
against θw
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Figure 11. Temperature distribution
against Nb
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Figure 12. Temperature distribution
against λE

which hinders the mobility of nanoparticles, thereby reducing the spread of concentration within the boundary layer.
Figure 18 illustrates that an increase in the chemical reaction parameter Kc leads to a decreasing trend in ϕ. With
higher Kc, the rate of chemical reaction accelerates, promoting the consumption of reactant species and diminishing
the concentration level throughout the domain. Figure 19 presents the effect of the concentration relaxation time
parameter λC on ϕ. It is evident that ϕ decreases as λC increases. Larger values of λC delay the diffusion process due
to thermal inertia effects under the Cattaneo-Christov framework, thereby restricting mass transfer and leading to a
thinner concentration profile. Figure 20 displays the influence of the thermophoresis parameterNt on the concentration
distribution. As Nt increases, ϕ undergoes an enhancement. This is attributed to stronger thermophoretic forces,
which drive nanoparticles from the heated region towards the cooler region, causing an accumulation of particles that
thickens the concentration boundary layer.
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Figure 13. Temperature distribution
against Pr
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Figure 14. Temperature distribution
against Rd
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Figure 15. Temperature distribution
against ϵ
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Figure 16. Temperature distribution
against Ec

5. Conclusion

A detailed examination is conducted to investigate the rotational behavior of non-Newtonian Casson nanofluid in
the presence of Cattaneo-Christov double diffusion, inclined magnetic filed, viscous dissipation, porous medium and
rate of chemical reaction. The current study’s notable results are listed below:

• An increase in the porous medium permeability K and rotation parameter both decrease f ′(η), while g(η)
increases with K, indicating higher transverse flow due to increased permeability and rotational influence.

• Increasing the Casson parameter β by 25% to 60% leads to a 5.71% to 13.37% rise in both skin friction
coefficients, indicating enhanced fluid resistance due to higher yield stress.

• Larger thermal relaxation time parameter (λE) reduces the temperature distribution by introducing a delay
in heat conduction, limiting instantaneous thermal diffusion.

• The Nusselt number improves by 37.55% to 64.50% with a modest increase (5.59% to 6.67%) in the temperature
difference parameter, reflecting significantly enhanced heat transfer.

• Increasing the Schmidt number Sc reduces the concentration distribution ϕ due to lower mass diffusivity,
limiting the nanoparticle mobility.
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Figure 17. Concentration distribution
against Sc
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Figure 18. Concentration against Kc
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Figure 19. Concentration distribution
against λC
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Figure 20. Concentration distribution
against Nt

• The Sherwood number increases by 0.26% to 0.39% with rising concentration relaxation time and the chemical
reaction parameter further boosts the mass transfer due to stronger surface species consumption.
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