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Abstract

In this paper, we propose a hybrid and efficient numerical scheme with high accuracy to obtain approximate

solutions of the two-dimensional time-space diffusion-wave model in terms of the Riemann-Liouville and Riesz
fractional derivatives. To discretise the presented model, two approaches are used in the directions of space and

time. In the time direction, we use a second-order accurate difference numerical method and the weighted shifted

Grünwald derivative approximation of second-order. The weighted shifted Grünwald derivative approximation is
used to estimate the Riemann–Liouville’s fractional operator. Also, in the space direction, the Galerkin spectral

method based on the modified Jacobi functions is used. The study of convergence and stability analysis for the
proposed numerical approach is presented. At the end, some numerical examples are given to show the effectiveness

of the proposed numerical scheme. For all the examples, graphs are drawn, and numerical results are reported in

tables.
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1. Introduction

Nowadays, in order to understand the dynamics of several physical phenomena, the study of fractional order
differential equations is of great importance [4, 6–8, 15, 16, 33]. Because discovering the physical behaviour of a
phenomenon in mathematical and engineering sciences, we need the structure of models, which is related to their
differential equations [10–12, 20, 25, 26, 32, 34]. The viscoelastic damping and anomalous diffusion process study
using differential equations of integer order cannot be done accurately; that is why several authors studied differential
models of fractional order [13, 14, 19, 27, 28, 35, 37]. The uses of fractional operators in differential equations is related
to hereditary characteristics of several types of materials and processes [2, 21, 36, 41]. Fractional operators describe
many features better and more appropriately, such as wave propagation and random walk models.

This paper proposes an efficient numerical approach to obtain an approximate solution to the following diffusion-
wave model involving a weakly singular kernel term in the time direction and an integral term in the space direction:

Dγ
t w(x, y, t) =

1

Γ(α− 1)

∫ t

0

(
t− λ

)α−2
exp

(
− υ

(
t− λ

))(
Ax

∂ϑw(x, y, λ)

∂
∣∣x∣∣ϑ +Ay

∂νw(x, y, λ)

∂
∣∣y∣∣ν

)
dλ

+

∫ t

0

1√
t− τ

(∂2w(x, y, τ)
∂x2

+
∂2w(x, y, τ)

∂y2

)
dτ + h(x, y, t), (1.1)
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where γ ∈ (0, 1), ϑ ∈ (1, 2], ν ∈ (1, 2], υ > 0 and α ∈ (1, 2] with initial and boundary conditions

w(x, y, 0) = w0(x, y), (x, y) ∈ Ω = [a, b]× [c, d],

w(x, y, t) = 0, (x, y) ∈ ∂ Ω, t ∈ (0, T ), (1.2)

in which the operator Dγ
t w(x, y, t) in the time direction shows the Riemann-Liouville fractional derivative and the

operators ∂ϑw(x,y,t)

∂
∣∣x∣∣ϑ , ∂νw(x,y,t)

∂
∣∣y∣∣ν demonstrate the Riesz fractional opertaors in the space direction which are defined by

the formulas

Dγ
t w(x, y, t) =

1

Γ(1− γ)

∂

∂t

(∫ t

0

(
t− s

)−γ
w(x, y, s)ds

)
, (1.3)

and

∂ϑw(x, y, t)

∂
∣∣x∣∣ϑ = −

(
2 cos

(πϑ
2

))−1(
aD

ϑ
xw(x, y, t) + xD

ϑ
bw(x, y, t)

)
, (1.4)

∂νw(x, y, t)

∂
∣∣y∣∣ν = −

(
2 cos

(πν
2

))−1(
cD

ν
yw(x, y, t) + yD

ν
dw(x, y, t)

)
. (1.5)

Also, we define the given fractional operators in Eqs. (1.4) and (1.5) as follows:

aD
ϑ
xw(x, y, t) =

1

Γ(2− ϑ)

∂2

∂x2

(∫ x

a

(
x− s

)1−ϑ
w(s, y, t)ds

)
,

xD
ϑ
bw(x, y, t) =

1

Γ(2− ϑ)

∂2

∂x2

(∫ b

x

(
s− x

)1−ϑ
w(s, y, t)ds

)
,

cD
ν
yw(x, y, t) =

1

Γ(2− ν)

∂2

∂y2

(∫ y

c

(
y − s

)1−ν
w(x, s, t)ds

)
,

yD
ν
dw(x, y, t) =

1

Γ(2− ν)

∂2

∂y2

(∫ d

y

(
s− y

)1−ν
w(x, s, t)ds

)
. (1.6)

The motivation and interest behind considering the above diffusion-wave model with a weakly singular kernel term
is that this model is used to describe phenomena where diffusion and wave-like behaviours coexist, influenced by
memory effects or hereditary properties. This model often arises in various fields such as heat conduction, fluid flow
in porous media, viscoelastic materials, and anomalous transport processes. This model provides a powerful tool for
studying complex systems where standard diffusion or wave equations fail to capture the observed phenomena. It
bridges the gap between purely diffusive and purely wave-like behaviours, offering insights into processes with memory
and anomalous characteristics. The diffusion-wave model with a weakly singular kernel term is important because
it provides a robust mathematical framework for describing systems in which both diffusion and wave behaviours
are observed, particularly in systems exhibiting memory, nonlocality, and anomalous transport. Its ability to model
more complex and realistic behaviours makes it invaluable across a wide range of scientific and engineering disciplines,
leading to better predictions, designs, and understanding of real-world phenomena.

To approximate the proposed model presented in Eq. (1.1), a combined numerical approach based on the second-
order accurate difference numerical method, the weighted shifted Grünwald derivative approximation, and the Galerkin
spectral method is proposed in this study. The second-order accurate difference numerical method and the weighted
shifted Grünwald derivative approximation are applied to estimate the integral term, including the Riesz fractional
operator and the Riemann–Liouville’s fractional operator, respectively. The Galerkin spectral method based on the
modified Jacobi functions is applied to approximate the proposed model in the space direction. A convergence study
and stability analysis for the presented numerical approach are presented. The reason for using this type of model
goes back to studying the effects of the anomalous diffusion process in MRI. In this study, the spatial domain is
chosen as (0, 1) primarily to simplify the mathematical analysis and numerical implementation. This standard domain
enables clearer presentation of the theoretical results, such as stability and error estimates. However, it is important to



Unco
rre

cte
d Pro

of

CMDE Vol. *, No. *, *, pp. 1-19 3

emphasize that these results are not inherently restricted to this domain size. When considering an arbitrary domain
(0, L) with L > 1 , the constants involved in the error bounds and stability conditions may depend explicitly on L.
This dependence arises because the fractional derivatives, especially those involving non-local operators like the Riesz
derivative, inherently reflect the domain size in their integral definitions and boundary behavior.

Obtaining exact solutions of fractional models using analytical methods is not easy; therefore, using numerical
approaches to obtain approximate solutions of these types of models has made the work easier. Several authors have
proposed different numerical approaches to solve such types of fractional models. For example, in [6], the authors
studied a numerical approach based on the finite difference method to obtain approximate solutions of the Bloch-Torrey
model of fractional order. In [1], the authors studied the new spectral method for solving the nonlinear differential
model of fractional order. In [24], the authors presented the Crank–Nicolson numerical method to calculate the
approximate solution of the model along with convergence analysis. The authors in [46] displayed the finite element
scheme for obtaining the approximate solutions of the Boussinesq models of fractional order. In [47], the authors
proposed a numerical method to obtain approximate solutions of the cable model of fractional order using the finite
difference and Legendre spectral numerical method. In [5], the authors proposed the numerical method to obtain
approximate solutions of the generalised Schrödinger model involving the Riesz sense using a collocation method.
In [45], the authors studied the time-space fractional Bloch-Torrey model and obtained the numerical solutions by
applying the L − 2 − 1σ method. In [17], the authors studied the numerical approach based on the Crank-Nicolson
extrapolated fully discrete method to obtain the approximate solutions of the fractional model and also examined the
convergence analysis for the proposed numerical approach. In [13], the authors proposed the B-spline interpolation
and Galerkin finite element method for the two-dimensional Riesz space distributed-order diffusion-wave equation. In
[30], the authors studied the finite volume method for solving the fractional model involving the Riesz operator in the
space directions. In [31], the authors studied the sinc-Bernoulli collocation method for solving the time fractional cable
equation. In [22], the authors presented a numerical approach based on the iterative method to solve the Volterra
partial integro–differential models. In [23], the authors presented a numerical approach based on the central difference
method and the L2 − 1 method to solve the partial integro–differential model involving the weakly singular kernel.
In [44], the authors studied the second-order backward difference method to solve the integro–differential model. In
[18], the authors presented a numerical approach based on the stable least residue method to solve the partial integro–
differential model involving the weakly singular kernel. In [48], the authors presented a numerical approach based
on the Crank–Nicolson ADI spectral method for obtaining the estimated solutions of the two-dimensional nonlinear
reaction-diffusion model involving the Riesz space fractional operator. In [39], the authors developed numerical
methods suitable for approximating ψ- fractional differential equations and ψ- fractional integro-differential equations.
In [40], the Sinc-Galerkin method is recognized for its exponential error decay and, under certain conditions, achieves
an optimal convergence rate, even when applied to problems defined on infinite and semi-infinite intervals. In [29], the
focus is on the investigation of a (2+1)-dimensional space-time fractional coupled nonlinear Schr ödinger equations,
which model the amplitudes of circularly polarized waves in nonlinear optical fibers.

We organise the further manuscript as follows. In section 2, we state the discretisation of the proposed model in
terms of the time variable. In this section, the numerical approaches based on the second-order accurate difference
numerical method and the weighted shifted Grünwald derivative approximation are studied. As well as this, in this
section, the convergence analysis for the semi-discrete numerical approach is studied. In section 3, we present the
study of the fully-discrete numerical approach, which states that this numerical approach is based on the Galerkin
spectral method. In section 4, we focus on the numerical examples. At the end of this manuscript, the conclusion is
displayed in section 5.

2. Discretisation of the proposed model in terms of the time variable

This part studies the numerical approach to approximate the proposed model in the time variable direction. Also,
in this section, we state some important lemmas to prove stability and convergence analysis. Assume that tn = n∆t,
n = 0, 1, . . . ,Nt, and ∆t = T

Nt
. Also, we define the fractional Sobolev space over the Ω domain by

H2β
(
Ω
)
=

{
w ∈ L2

(
Ω
)
s.t.

(
1 + µ2

) 1
2+βF̃(w)(µ) ∈ L2

(
Ω
)}
, β ∈ (0, 1), (2.1)
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in which the symbol F̃(w)(µ) = w̃ is the Fourier transformation for the function w and

H2β
0

(
Ω
)
=

{
w ∈ H2β

(
Ω
)
s.t. w

∣∣∣
∂Ω

= 0
}
. (2.2)

Lemma 2.1. [3, 42] Assume that γ ∈ (0, 1). Then, the numerical approximation based on the shifted Grünwald
difference method for the Riemann-Liouville fractional operator in the time direction is obtained as below:

Dγ
t w(x, y, t) =

(
∆t

)−γ
n∑

l=0

σγ(l)w(x, y, tn−l) +O
((
∆t

)2)
, (2.3)

in which the parameters given in the above equation are computed by the following formulas:

σγ(l) =

{
γ+2
2 ιγ0 , l = 0,

γ+2
2 ιγl − γ

2 ι
γ
l−1, l > 0,

(2.4)

where

ιγ0 = 1, ιγl =
Γ(l − γ)

Γ(−γ)Γ(l + 1)
, ιγl =

l − γ − 1

l
ιγl−1, l = 1, 2, . . . . (2.5)

Also, for real value vector
{
wn

}N∈N

n=0
, we have the following relations:

N∑
i=0

i∑
j=0

σγ(j)
〈
wi−j , wi

〉
≥ 0,

i∑
j=0

σγ(j) < 0. (2.6)

Lemma 2.2. [9] Let 1 < α ≤ 2 and υ ≥ 0. Then, the numerical discretization for fractional integral term in the time
direction is obtained as

1

Γ(α− 1)

∫ t

0

(
t− λ

)α−2
exp

(
− υ

(
t− λ

))
w(x, y, λ)dλ =

(
∆t

)α−1
n∑

i=0

ςα−1
i w(x, y, tn−i) +O

((
∆t

)2)
, (2.7)

in which the values ςα−1
i are given by

ςα−1
i = exp

(
− υi∆t

)(3
2

)1−α
i∑

j=0

3−jf1−α
j f1−α

i−j . (2.8)

Lemma 2.3. [43] Suppose that g(t) ∈ C1
(
[0, T ]

)
∩
((
0, T

))
and

I
(
g, tn

)
=

∫ t

0

1√
tn − τ

g(τ)dτ. (2.9)

Then, the numerical approximation for the given integral term in Eq. (2.9) is calculated as follows:

I
(
g, tn

)
= cng(t0) +

n∑
p=0

dpg(tn−p) +O
((
∆t

) 3
2
)
, (2.10)
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where the coefficients cn and dn for n = 1, 2, . . . are given by

cn = 2
(√

tn −
(
∆t

)−1
∫ tn+1

tn

√
τdτ

)
,

d0 = 2
(
∆t

)−1
∫ t1

0

√
τdτ +

4

3

√
∆tη,

d1 = 2
(
∆t

)−1
(∫ t2

t1

√
τdτ −

∫ t1

t0

√
τdτ

)
− 4

3

√
∆t η,

dp = 2
(
∆t

)−1
(∫ tp+1

tp

√
τdτ −

∫ tp

tp−1

√
τdτ

)
, p ≥ 2, (2.11)

in which the constant η is a nonnegative constant.

Now we obtain a semi-discrete numerical approach for the presented model (1.1) in the time-variable direction.
Then, using Lemmas 2.1, 2.2, and 2.3, we have(

∆t
)−γ

n∑
l=0

σγ(l)w(x, y, tn−l) =
(
∆t

)α−1
n∑

i=0

ςα−1
i

(
Ax

∂ϑw(x, y, tn−i)

∂
∣∣x∣∣ϑ +Ay

∂νw(x, y, tn−i)

∂
∣∣y∣∣ν

)
+ cn

(
wxx(x, y, 0) + wyy(x, y, 0)

)
+

n∑
p=0

dp
(
wxx(x, y, tn−p) + wyy(x, y, tn−p)

)
+O

((
∆t

) 3
2
)
+O

((
∆t

)2)
+ h(x, y, tn), (2.12)

in which ∂2w(x,y,0)
∂x2 = wxx(x, y, 0) and ∂2w(x,y,0)

∂y2 = wyy(x, y, 0). By removing the terms O
((
∆t

) 3
2
)
and O

((
∆t

)2)
in

the above relation and considering the initial condition w(x, y, 0) = w0(x, y), Eq. (2.12) becomes

(
∆t

)−γ
n∑

l=0

σγ(l)W
n−l = −

(
∆t

)α−1
n∑

i=0

ςα−1
i

(
Ax

∂ϑWn−i

∂
∣∣x∣∣ϑ +Ay

∂νWn−i

∂
∣∣y∣∣ν

)
+ cn

(∂2w0

∂x2
+
∂2w0

∂y2
)

+
n∑

p=0

dp
(∂2Wn−p

∂x2
+
∂2Wn−p

∂y2
)
+ hn, (2.13)

in which W (x, y, tn) =Wn, h(x, y, tn) = hn and Wn is a approximate solution for w. Therefore, the variational weak

form of the above equation for each ϱ ∈ H ϑ
2

(
Ω
)
∩H ν

2

(
Ω
)
is written as follows:

(
∆t

)−γ
n∑

l=0

σγ(l)
〈
Wn−l, ϱ

〉
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i

(
Ax

〈∂ϑWn−i

∂
∣∣x∣∣ϑ , ϱ

〉
+Ay

〈∂νWn−i

∂
∣∣y∣∣ν , ϱ

〉)
+ cn

〈
∆w0, ϱ

〉
+

n∑
p=0

dp
(〈∂2Wn−p

∂x2
, ϱ
〉
+

〈∂2Wn−p

∂y2
, ϱ
〉)

+
〈
hn, ϱ

〉
, (2.14)

in which ∆w0 =
(
∂2w0

∂x2 + ∂2w0

∂y2

)
. Therefore, we can rewrite the Equation (2.14) as follows:

(
∆t

)−γ
n∑

l=0

σγ(l)
〈
Wn−l, ϱ

〉
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i B

〈
Wn−i, ϱ

〉
+ cn

〈
∆w0, ϱ

〉
−

n∑
p=0

dp

〈
∇Wn−p,∇ϱ

〉
+
〈
hn, ϱ

〉
, (2.15)
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where

B
〈
Wn, ϱ

〉
= Axκ1

{〈
aD

ϑ
2
x W

n, xD
ϑ
2

b ϱ
〉
+

〈
xD

ϑ
2

b W
n, aD

ϑ
2
x ϱ

〉}
+Ayκ2

{〈
cD

ν
2
y W

n, yD
ν
2

d ϱ
〉
+
〈
yD

ν
2

d W
n, cD

ν
2
y ϱ

〉}
, (2.16)

and κ1 =
(
2 cos

(
πϑ
2

))−1

, κ2 =
(
2 cos

(
πν
2

))−1

.

Lemma 2.4. [38] Assume that the sequences xn and yn be two sequences such that the following inequality is true:{
y0 ≤ δ0,

y0 ≤ δ0 +
∑n−1

i=0 ϖi +
∑n−1

i=0 xiyi, n ≥ 1,
(2.17)

in which xn is a nonnegative sequence. Then, if δ0 ≥ 0 and ϖ0 ≥ 0, we have

yn ≤
{
δ0 +

n−1∑
i=0

ϖi

}
exp

( n−1∑
i=0

xi

)
, n = 1, 2, . . . . (2.18)

Theorem 2.5. Suppose that Wn ∈ H ϑ
2

(
Ω
)
∩ H ν

2

(
Ω
)
. Then, the semi-discrete numerical approximation obtained in

Eq. (2.15) is unconditionally stable.

Proof. To prove this theorem, we introduce the symbol En =Wn−W̃n that En shows the roundoff error term and W̃n

is the approximate solution for Eq. (2.15). Thus, for each ϱ ∈∈ H ϑ
2

(
Ω
)
∩H ν

2

(
Ω
)
, we obtain the following equation:(

∆t
)−γ

n∑
l=0

σγ(l)
〈
En−l, ϱ

〉
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i B

〈
En−i, ϱ

〉
+ cn

〈
∆E0, ϱ

〉
−

n∑
p=0

dp

〈
∇En−p,∇ϱ

〉
. (2.19)

By inserting the value ϱ = En into the above equation, we get(
∆t

)−γ
n∑

l=0

σγ(l)
〈
En−l, En

〉
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i B

〈
En−i, En

〉
+ cn

〈
∆E0, En

〉
−

n∑
p=0

dp

〈
∇En−p,∇En

〉
. (2.20)

Also, we have∣∣∣B〈En, En
〉∣∣∣ ≤ ∣∣∣Axκ1

∣∣∣{∣∣∣〈aD
ϑ
2
x En, xD

ϑ
2

b En
〉∣∣∣+ ∣∣∣〈xD

ϑ
2

b En, aD
ϑ
2
x En

〉∣∣∣}
+
∣∣∣Ayκ2

∣∣∣{∣∣∣〈cD
ν
2
y En, yD

ν
2

d E
n
〉∣∣∣+ ∣∣∣〈yD

ν
2

d E
n, cD

ν
2
y En

〉∣∣∣}
≤

∣∣∣Axκ1

∣∣∣{ ∥ aD
ϑ
2
x En ∥0∥ xD

ϑ
2

b En ∥0 + ∥ xD
ϑ
2

b En ∥0∥ aD
ϑ
2
x En ∥0

}
+
∣∣∣Ayκ2

∣∣∣{ ∥ cD
ν
2
y En ∥0∥ yD

ν
2

d E
n ∥0 + ∥ yD

ν
2

d E
n ∥0∥ cD

ν
2
y En ∥0

}
≤ C3 ∥ En ∥2

H
ϑ
2

(
Ω
)
∩H

ν
2

(
Ω
), (2.21)

in which C3 =
∣∣∣C1Axκ1

∣∣∣+ ∣∣∣C2Ayκ2

∣∣∣. As well as,∣∣∣B〈En, En
〉∣∣∣ ≥ ∣∣2Axκ1

∣∣∣∣∣〈aD
ϑ
2
x En, xD

ϑ
2

b En
〉∣∣∣+ ∣∣2Ayκ2

∣∣∣∣∣〈cD
ν
2
y En, yD

ν
2

d E
n
〉∣∣∣

≥ min
(∣∣2Axκ1

∣∣, ∣∣2Ayκ2
∣∣){∣∣∣〈aD

ϑ
2
x En, xD

ϑ
2

b En
〉∣∣∣+ ∣∣∣〈cD

ν
2
y En, yD

ν
2

d E
n
〉∣∣∣}

≥ C5 ∥ En ∥2
H

ϑ
2

(
Ω
)
∩H

ν
2

(
Ω
), (2.22)

in which C5 = C4 min
(∣∣2Axκ1

∣∣, ∣∣2Ayκ2
∣∣). With summation on the index n from 0 to N for Eq. (2.20), we get

(
∆t

)−γ
N∑

n=0

n∑
l=0

σγ(l)
〈
En−l, En

〉
= −

(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i B

〈
En−i, En

〉
+

N∑
n=0

cn
〈
∆E0, En

〉
−

N∑
n=0

n∑
p=0

dp
〈
∇En−p,∇En

〉
. (2.23)
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Applying Lemma 2.1, we have(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i B

〈
En−i, En

〉
≥ 0, (2.24)

and

−
N∑

n=0

n∑
p=0

dp

〈
∇En−p,∇En

〉
≤ 0. (2.25)

As well as, from Eq. (2.22), we get(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i B

〈
En−i, En

〉
≥

(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i C5 ∥ En ∥2

H
ϑ
2

(
Ω
)
∩H

ν
2

(
Ω
) . (2.26)

Thus, using Eqs. (2.25) and (2.26), we have(
∆t

)−γ
N∑

n=0

n∑
l=0

σγ(l) ∥ En ∥2
H

ϑ
2

(
Ω
)
∩H

ν
2

(
Ω
)≤ N∑

n=0

cn

〈
∆E0, En

〉
. (2.27)

By changing the index, we obtain(
∆t

)−γ
n∑

i=0

i∑
l=0

σγ(l) ∥ E i ∥2
H

ϑ
2

(
Ω
)
∩H

ν
2

(
Ω
)≤ n∑

i=0

ci

〈
∆E0, E i

〉
. (2.28)

Therefore,

∥ En ∥2
L2
(
Ω
) ≤

(
∆t

)−γ
n∑

i=0

i∑
l=0

σγ(l) ∥ E i ∥2
H

ϑ
2

(
Ω
)
∩H

ν
2

(
Ω
)≤ n∑

i=0

ci

〈
∆E0, E i

〉
≤ c0

〈
∆E0, E0

〉
+

n∑
i=1

ci

〈
∆E0, E i

〉
≤

∣∣c0∣∣ ∥ ∇E0 ∥2
L2
(
Ω
) + ∥ ∆E0 ∥

L2
(
Ω
) n∑

i=1

ci ∥ E i ∥
L2
(
Ω
)

≤ 1 +
∣∣c0∣∣ ∥ ∇E0 ∥2

L2
(
Ω
) + ∥ ∆E0 ∥

L2
(
Ω
) n∑

i=1

ci ∥ E i ∥
L2
(
Ω
) . (2.29)

Then, from the above relation, we have

∥ En ∥2
L2
(
Ω
)≤ 1 +

∣∣c0∣∣ ∥ ∇E0 ∥2
L2
(
Ω
) + ∥ ∆E0 ∥

L2
(
Ω
) n∑

i=1

ci ∥ E i ∥
L2
(
Ω
) . (2.30)

Since
∑n

i=1 ci ≤
∑n

i=1(ci)
2, then

∥ En ∥2
L2
(
Ω
) ≤ 1 +

∣∣c0∣∣ ∥ ∇E0 ∥2
L2
(
Ω
) + ∥ ∆E0 ∥

L2
(
Ω
) ∆t

n∑
i=1

1

∆t
(ci)

2 ∥ E i ∥
L2
(
Ω
)

≤
{
1 +

∣∣c0∣∣ ∥ ∇E0 ∥2
L2
(
Ω
) }

exp
(
∆t ∥ ∆E0 ∥

L2
(
Ω
) n∑

i=1

1

∆t
(ci)

2
)

(2.31)

≤
{
1 +

∣∣c0∣∣ ∥ ∇E0 ∥2
L2
(
Ω
) }

exp
(
C
( n∑

i=1

ci

)2){
1 +

∣∣c0∣∣ ∥ ∇E0 ∥2
L2
(
Ω
) }

exp
(
C∆t

)
.

Therefore, the above inequality shows that the semi-discrete numerical approach for the presented model (1.1), which
is displayed in Eq. (2.15), is unconditionally stable. □
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Theorem 2.6. Suppose that wn,Wn ∈ H ϑ
2

(
Ω
)
∩H ν

2

(
Ω
)
. Then, the semi-discrete numerical approximation, which is

obtained in Eq. (2.15), is convergent.

Proof. Since wn and Wn are the exact and approximate solution of Eq. (1.1), then from Eqs. (2.12) and (2.13), we
have (

∆t
)−γ

n∑
l=0

σγ(l)w
n−l = −

(
∆t

)α−1
n∑

i=0

ςα−1
i

(
Ax

∂ϑwn−i

∂
∣∣x∣∣ϑ +Ay

∂νwn−i

∂
∣∣y∣∣ν

)
+ cn

(∂2w0

∂x2
+
∂2w0

∂y2
)

+
n∑

p=0

dp
(∂2wn−p

∂x2
+
∂2wn−p

∂y2
)
+ hn +R∆t, (2.32)

and (
∆t

)−γ
n∑

l=0

σγ(l)W
n−l = −

(
∆t

)α−1
n∑

i=0

ςα−1
i

(
Ax

∂ϑWn−i

∂
∣∣x∣∣ϑ +Ay

∂νWn−i

∂
∣∣y∣∣ν

)
+ cn

(∂2w0

∂x2
+
∂2w0

∂y2
)

+
n∑

p=0

dp
(∂2Wn−p

∂x2
+
∂2Wn−p

∂y2
)
+ hn, (2.33)

in which
∣∣∣R∆t

∣∣∣ ≤ C6
(
∆t

) 3
2 . Therefore, by subtracting the above two relations from each other and defining the symbol

Pn = wn −Wn, we have(
∆t

)−γ
n∑

l=0

σγ(l)Pn−l = −
(
∆t

)α−1
n∑

i=0

ςα−1
i

(
Ax

∂ϑPn−i

∂
∣∣x∣∣ϑ +Ay

∂νPn−i

∂
∣∣y∣∣ν

)
+

n∑
p=0

dp
(∂2Pn−p

∂x2
+
∂2Pn−p

∂y2
)
+R∆t. (2.34)

Thus, for each ϱ ∈∈ H ϑ
2

(
Ω
)
∩H ν

2

(
Ω
)
, we get the variational weak form of Eq. (2.34) as follows:(

∆t
)−γ

n∑
l=0

σγ(l)
〈
Pn−l, ϱ

〉
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i B

〈
Pn−i, ϱ

〉
−

n∑
p=0

dp

〈
∇Pn−p,∇ϱ

〉
+

〈
R∆t, ϱ

〉
. (2.35)

To continue proving this theorem, we put ϱ = Pn, then(
∆t

)−γ
n∑

l=0

σγ(l)
〈
Pn−l,Pn

〉
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i B

〈
Pn−i,Pn

〉
−

n∑
p=0

dp

〈
∇Pn−p,∇Pn

〉
+
〈
R∆t,Pn

〉
. (2.36)

By summing the above equation on the index n from 0 to N , we get(
∆t

)−γ
N∑

n=0

n∑
l=0

σγ(l)
〈
Pn−l,Pn

〉
= −

(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i B

〈
Pn−i,Pn

〉
−

N∑
n=0

n∑
p=0

dp

〈
∇Pn−p,∇Pn

〉
+

N∑
n=0

〈
R∆t,Pn

〉
. (2.37)

By using Lemma 2.1, we have(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i B

〈
Pn−i,Pn

〉
≥ 0, (2.38)

and

−
N∑

n=0

n∑
p=0

dp

〈
∇Pn−p,∇Pn

〉
≤ 0. (2.39)
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Moreover, from Eq. (2.22), we conclude that

(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i B

〈
Pn−i,Pn

〉
≥

(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i C5 ∥ Pn ∥2

H
ϑ
2

(
Ω
)
∩H

ν
2

(
Ω
) . (2.40)

So, using the relations (2.38), (2.39) and (2.40), we have

∥ Pn ∥2
L2
(
Ω
) ≤

(
∆t

)−γ
n∑

i=0

i∑
l=0

σγ(l) ∥ Pi ∥2
H

ϑ
2

(
Ω
)
∩H

ν
2

(
Ω
)≤ n∑

i=0

〈
R∆t,Pn

〉
≤

n∑
i=0

∥ Pn ∥
L2
(
Ω
)∥ R∆t ∥

L2
(
Ω
)= C6

(
∆t

) 3
2

n∑
i=0

∥ Pn ∥
L2
(
Ω
)= C6∆t

n∑
i=0

√
∆t ∥ Pn ∥

L2
(
Ω
)

≤ 1

2
C6∆t

{ n∑
i=0

∆t+
n∑

i=0

∥ Pn ∥2
L2
(
Ω
) }

≤ 1

2
C6∆t

{
T +

n∑
i=0

∥ Pn ∥2
L2
(
Ω
) }

≤ C6∆tT + C6∆t
n∑

i=0

∥ Pn ∥2
L2
(
Ω
) . (2.41)

Thus

∥ Pn ∥2
L2
(
Ω
)≤ C6∆tT + C6∆t

n∑
i=0

∥ Pn ∥2
L2
(
Ω
)≤ C6∆tT exp

(
C6T∆t(n+ 1)

)
≤ C∗∆t. (2.42)

The above equation show that the semi-discrete numerical approximation which is obtained in Eq. (2.15), is convergent.
□

3. Fully-discrete numerical approach

This section focuses on the approximation of the presented model based on the general Jacobi functions [36] in
terms of the space variables. Here we define the weighted Sobolev space on the domain Ω by the following set

L2
ω

(
Ω
)
=

{
w :

∫
Ω

w2(x)ω(x) dx < +∞
}
, (3.1)

in which the symbol ω(x) shows the weight function and the defined norm for this the weighted Sobolev space defined
by

∥ w ∥2
L2

ω

(
Ω
)= ∫

Ω

w2(x)ω(x) dx. (3.2)

Also, we consider the following set with the given values ρ ∈ (1, 2), ζ ∈ (0, ρ), ζ ∈ (0, ρ), θ = −1, 0, 1, . . . ,m such that
m ∈ N:

Vm
ρ,p,ξ,ζ =

{
w ∈ L2

ω−ξ,−ζ

(
Ω
)
: Dρ+1

p w ∈ L2
ωζ+θ,ξ+θ

(
Ω
)}
, (3.3)

where the symbol Dρ+1
p w shows the two-sided fractional operators. Here the space Vm

ρ,p,ξ,ζ demonstrates the non-
uniform Jacobi weighted space. We introduce the polynomial space of fractional order with finite dimensional as

Q−ξ,−ζ
N

(
Ω
)
=

{
ψ =

(
1− x

)ξ(
1 + x

)ζ
φ : φ ∈ KN

}
, (3.4)

in which KN is the set of polynomials of N degree. Now we display the projection operator by the following map:

Πh : Hϑ
0

(
Ω
)
∩Hν

0

(
Ω
)
∩ C0

(
Ω
)
→ Xh, (3.5)

where

B
〈
Πhz, u

〉
, ∀u ∈ Xh, (3.6)
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and Xh is the finite element space. Also, for each w ∈ Ho
(
Ω
)
that o = 1, 2, . . . ,m, we have

∥ w − Pm
h w ∥

Ho
(
Ω
)≤ C∗∗hm−o ∥ w ∥

Ho
(
Ω
), (3.7)

in which Pm
h shows the interpolation operator. Thus, the variational weak form of Eq. (1.1) using the fully discrete

numerical approach for each Φh ∈ Hϑ
0

(
Ω
)
∩Hν

0

(
Ω
)
∩ C0

(
Ω
)
is obtained as follows:(

∆t
)−γ

n∑
l=0

σγ(l)
〈
Wn−l

h , Φh

〉
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i B

〈
Wn−i

h , Φh

〉
+ cn

〈
∆w0, Φh

〉
−

n∑
p=0

dp

〈
∇Wn−p

h ,∇Φh

〉
+

〈
hn, Φh

〉
. (3.8)

In the above equation, we find Wn
h ∈ Hϑ

0

(
Ω
)
∩Hν

0

(
Ω
)
∩ C0

(
Ω
)
.

Lemma 3.1. [6] Assume that w ∈ Hϑ
0

(
Ω
)
∩Hν

0

(
Ω
)
and ν ≤ ϑ ≤ k + 1. Then

∥ w −Πhw ∥
Hν

0

(
Ω
)≤ Chϑ−ν ∥ w ∥

Hϑ
0

(
Ω
) . (3.9)

Theorem 3.2. Suppose that w(x, y, tn) = wn ∈ Hϑ
0

(
Ω
)
∩ Hν

0

(
Ω
)
be the exact solution of Eq. (1.1) and Wn

h ∈ Xh is
the approximate solution for Eq. (1.1). Then, we obtain the following inequality:

∥ wn −Wn
h ∥

Hϑ
0

(
Ω
)≤ C7

((
∆t

) 3
2 + hϑ−ν

)
. (3.10)

Proof. Since wn and Wn are the exact and approximate solution of Eq. (1.1), then(
∆t

)−γ
n∑

l=0

σγ(l)w
n−l = −

(
∆t

)α−1
n∑

i=0

ςα−1
i

(
Ax

∂ϑwn−i

∂
∣∣x∣∣ϑ +Ay

∂νwn−i

∂
∣∣y∣∣ν

)
+ cn

(∂2w0

∂x2
+
∂2w0

∂y2
)

+
n∑

p=0

dp
(∂2wn−p

∂x2
+
∂2wn−p

∂y2
)
+ hn +R∆t, (3.11)

and (
∆t

)−γ
n∑

l=0

σγ(l)W
n−l
h = −

(
∆t

)α−1
n∑

i=0

ςα−1
i

(
Ax

∂ϑWn−i
h

∂
∣∣x∣∣ϑ +Ay

∂νWn−i
h

∂
∣∣y∣∣ν

)
+ cn

(∂2w0

∂x2
+
∂2w0

∂y2
)

+
n∑

p=0

dp
(∂2Wn−p

h

∂x2
+
∂2Wn−p

h

∂y2
)
+ hn. (3.12)

By subtracting the above relations from each other, we conclude that:(
∆t

)−γ
n∑

l=0

σγ(l)
(
wn−l −Wn−l

h

)
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i

(
Ax

∂ϑ
(
wn−i −Wn−i

h

)
∂
∣∣x∣∣ϑ +Ay

∂ν
(
wn−i −Wn−i

h

)
∂
∣∣y∣∣ν

)
+

n∑
p=0

dp
(∂2(wn−p −Wn−p

h

)
∂x2

+
∂2

(
wn−p −Wn−p

h

)
∂y2

)
+R∆t. (3.13)

So, the weak variational form of the above equation for each ϱ ∈ Hϑ
0

(
Ω
)
∩Hν

0

(
Ω
)
is obtained as follows:(

∆t
)−γ

n∑
l=0

σγ(l)
〈
wn−l −Wn−l

h , ϱ
〉
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i B

〈
wn−i −Wn−i

h , ϱ
〉

−
n∑

p=0

dp

〈
∇
(
wn−p −Wn−p

h

)
,∇ϱ

〉
+

〈
R∆t, ϱ

〉
. (3.14)
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For the proof process, we introduce the following symbols:

Ψn
h = Πhw

n −Wn
h , Υn

h = wn −Πhw
n. (3.15)

Thus,

(
∆t

)−γ
n∑

l=0

σγ(l)
〈
Ψn−l
h , ϱ

〉
+
(
∆t

)−γ
n∑

l=0

σγ(l)
〈
Υn−l

h , ϱ
〉
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i B

〈
Ψn−i
h , ϱ

〉
−

n∑
p=0

dp

〈
∇Ψn−p

h ,∇ϱ
〉
+
〈
R∆t, ϱ

〉
. (3.16)

Considering the value ϱ = Ψn
h into the above equation, we have

(
∆t

)−γ
n∑

l=0

σγ(l)
〈
Ψn−l
h , Ψn

h

〉
+
(
∆t

)−γ
n∑

l=0

σγ(l)
〈
Υn−l

h , Ψn
h

〉
= −

(
∆t

)α−1
n∑

i=0

ςα−1
i B

〈
Ψn−i
h , Ψn

h

〉
−

n∑
p=0

dp

〈
∇Ψn−p

h ,∇Ψn
h

〉
+
〈
R∆t, Ψ

n
h

〉
. (3.17)

By summing the above relation on the index n from n = 0 : N , we get the following formula:

(
∆t

)−γ
N∑

n=0

n∑
l=0

σγ(l)
〈
Ψn−l
h , Ψn

h

〉
+
(
∆t

)−γ
N∑

n=0

n∑
l=0

σγ(l)
〈
Υn−l

h , Ψn
h

〉
= −

(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i B

〈
Ψn−i
h , Ψn

h

〉
(3.18)

−
N∑

n=0

n∑
p=0

dp

〈
∇Ψn−p

h ,∇Ψn
h

〉
+

N∑
n=0

〈
R∆t, Ψ

n
h

〉
.

From the above equation, we have

(
∆t

)−γ
N∑

n=0

n∑
l=0

σγ(l)
〈
Ψn−l
h , Ψn

h

〉
≥ 0,

Ψ0
h = 0,

−
N∑

n=0

n∑
p=0

dp

〈
∇Ψn−p

h ,∇Ψn
h

〉
≤ 0. (3.19)

From Eq. (2.22), we get

(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i B

〈
Ψn
h , Ψ

n
h

〉
≥

(
∆t

)α−1
N∑

n=0

n∑
i=0

ςα−1
i C5 ∥ Ψn

h ∥2
Hϑ

(
Ω
)
∩Hν

(
Ω
) . (3.20)

Using Lemma 2.1, we have(
∆t

)−γ

2

N∑
n=0

n∑
l=0

σγ(l)
〈
Ψn−i
h , Ψn

h

〉
=

(
∆t

)−γ

2

( N∑
n=0

∥ Ψn
h ∥2

L2
(
Ω
) n∑

l=0

σγ(l)
)
< 0. (3.21)
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By applying Eqs. (3.19), (3.20) and (3.21), the equation (3.18) changes to the following relation

γ + 2

2

(
∆t

)−γ
N∑

n=0

∥ Ψn
h ∥2

L2
(
Ω
) + (

∆t
)α−1

N∑
n=0

n∑
i=0

ςα−1
i C5 ∥ Ψn

h ∥2
Hϑ

(
Ω
)
∩Hν

(
Ω
)

≤
(
∆t

)−γ

2

N∑
n=0

n∑
l=0

σγ(l) ∥ Υn−l
h ∥2

L2
(
Ω
) +

1

4

N∑
n=0

∥ Ψn
h ∥2

L2
(
Ω
) +

N∑
n=0

∥ R∆t ∥2
L2
(
Ω
)

+
1

4

N∑
n=0

∥ Ψn
h ∥2

L2
(
Ω
) . (3.22)

Also, we can be written Eq. (3.22) as

N∑
j=0

∥ Ψ j
h ∥2

L2
(
Ω
) + 2

(
∆t

)α−1
N∑
j=0

j∑
i=0

ςα−1
i C5 ∥ Ψ j

h ∥2
Hϑ

(
Ω
)
∩Hν

(
Ω
)

≤
(
∆t

)−γ
N∑
j=0

j∑
l=0

σγ(l) ∥ Υj−l
h ∥2

L2
(
Ω
) +2

N∑
j=0

∥ R∆t ∥2
L2
(
Ω
) . (3.23)

Therefore, we can conclude from the above equation

∥ Ψn
h ∥2

L2
(
Ω
) ≤

N∑
j=0

∥ Ψ j
h ∥2

L2
(
Ω
) +2

(
∆t

)α−1
N∑
j=0

j∑
i=0

ςα−1
i C5 ∥ Ψ j

h ∥2
Hϑ

(
Ω
)
∩Hν

(
Ω
)

≤
(
∆t

)−γ
N∑
j=0

j∑
l=0

σγ(l) ∥ Υj−l
h ∥2

L2
(
Ω
) +2

N∑
j=0

∥ R∆t ∥2
L2
(
Ω
) . (3.24)

Using Eq. (3.24) and Lemma 3.1, we obtain

∥ Ψn
h ∥2

L2
(
Ω
)≤ C8

(
∆t

)−γ(
hϑ−ν)2

N∑
j=0

j∑
l=0

σγ(l) + 2C9
N∑
j=0

(
∆t

) 9
4 . (3.25)

Then, (
∆t

)γ ∥ Ψn
h ∥2

L2
(
Ω
) ≤ 2C8

N∑
j=0

(
hϑ−ν

)2
+ 2C9

(
∆t

)γ N∑
j=0

(
∆t

) 9
4

≤ 2
(
∆t

)γ(C8 + C9
) N∑
j=0

((
∆t

) 3
2 + hϑ−ν

)2
≤ C10 exp

(
T
)((

∆t
) 3

2 + hϑ−ν
)
≤ C7

((
∆t

) 3
2 + hϑ−ν

)
. (3.26)

Therefore, the proof of this theorem is concluded from the above equation. □

4. Numerical experiments

This part studies and checks the efficiency of the proposed numerical approach by analysing some numerical exper-
iments along with simulation, from which we understand that the numerical approach has high accuracy compared
to other methods. All numerical simulations were carried out using MATLAB software on a laptop equipped with an
Intel Core i5 processor (2.40 GHz) and 16 GB of RAM. We state the computational order, which is presented by

Rate =
log10

(E1

E2

)
log10

(
h1

h2

) , (4.1)

in which E1 and E2 are the absolute error function corresponding to steps h1 and h2, respectively.
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Example 4.1. We consider the time-fractional model

Dγ
t w(x, y, t) =

1

Γ(α− 1)

∫ t

0

(
t− λ

)α−2
exp

(
− υ

(
t− λ

))(∂ϑw(x, y, λ)
∂
∣∣x∣∣ϑ +

∂νw(x, y, λ)

∂
∣∣y∣∣ν

)
dλ

+

∫ t

0

1√
t− τ

(∂2w(x, y, τ)
∂x2

+
∂2w(x, y, τ)

∂y2

)
dτ + h(x, y, t), (4.2)

under the initial and boundary conditions

w(x, y, 0) = 0, (x, y) ∈ Ω = (0, 1)× (0, 1),

w(x, y, t) = 0, (x, y) ∈ ∂ Ω, t ∈ (0, 1), (4.3)

where Ay = Ax = 1 and

h(x, y, t) = (x(1− x)y(1− y))3t4−γ
1Ψ1

[
(5, 1)1,1

(5− γ, 1)1,1

∣∣∣− υt

]
−

4! exp
(
− υt

)
Γ(α+ 4)

× tα+3
{
v1
(
y(1− y)

)3(Z1(x)− 3Z2(x)

+ 3Z3(x)−Z4(x)
)
+ v2

(
x(1− x)

)3(T1(y)− 3T2(y) + 3T3(y)− T4(y)
)}

+
√
πt

9
2 1Ψ1

[
(5, 1)1,1

( 112 , 1)1,1

∣∣∣− υt

]{
6(x− x2)2 − 6(1− 2x)2(x− x2) + 6(y − y2)2 − 6(1− 2y)2(y − y2)

}
, (4.4)

in which v1 = −
(
2 cos

(
πϑ
2

))−1

, v2 = −
(
2 cos

(
πν
2

))−1

and

Z1(x) = Γ(4)
(
Γ(4− ϑ)

)−1(
x3−ϑ +

(
1− x

)3−ϑ)
, Z2(x) = Γ(5)

(
Γ(5− ϑ)

)−1(
x4−ϑ +

(
1− x

)4−ϑ)
,

Z3(x) = Γ(6)
(
Γ(5− ϑ)

)−1(
x5−ϑ +

(
1− x

)5−ϑ)
, Z4(x) = Γ(7)

(
Γ(6− ϑ)

)−1(
x6−ϑ +

(
1− x

)6−ϑ)
,

T1(y) = Γ(4)
(
Γ(4− ν)

)−1(
y3−ν +

(
1− y

)3−ν)
, T2(y) = Γ(5)

(
Γ(5− ν)

)−1(
y4−ν +

(
1− y

)4−ν)
,

T3(y) = Γ(6)
(
Γ(5− ν)

)−1(
y5−ν +

(
1− y

)5−ν)
, T4(y) = Γ(7)

(
Γ(6− ν)

)−1(
y6−ν +

(
1− y

)6−ν)
. (4.5)

Here, the function pΨq(t) shows the generalized Wright function and defined by [21, p. 184, 6.3.11] and [2] as follows:

pΨq(t) = pΨq

[
(al, αl)1,p
(bl, βl)1,q

∣∣∣t] =
∞∑
k=0

∏p
l=1 Γ(al + αlk)∏q
j=1 Γ(bj + βjk)

tk

k!
. (4.6)

The exact solution for this proposed model is w(x, y, t) = t4 exp
(
− υt

)(
xy(1 − x)(1 − y)

)3
. We solved the proposed

model using the presented numerical approach and showed the numerical results in the form of graphs and tables. The
parameters considered to obtain approximate solutions for the proposed model are ϑ = ν = 1.75, α = 1.5, and υ = 0.1
when N = 20. Figure 1 shows the approximate solutions of the proposed model for the considered parameters using
the presented numerical approach. The graph of the absolute error function is shown in Figure 2. Figure 3 shows the
plot of the absolute error function with values ϑ = ν = 1.75, α = 1.5, γ = 0.95, and υ = 0.1 with various values of
N . A comparison between the computational orders and the absolute error function for different values of N when
ϑ = ν = 1.75, α = 1.5, and υ = 0.1 is displayed in Table 1. From Table 1, we can see that when the time step becomes
smaller, the value of the absolute error function decreases, and better approximations are obtained.

Example 4.2. We consider the time-fractional model

Dγ
t w(x, y, t) =

1

Γ(α− 1)

∫ t

0

(
t− λ

)α−2
exp

(
− υ

(
t− λ

))(∂ϑw(x, y, λ)
∂
∣∣x∣∣ϑ +

∂νw(x, y, λ)

∂
∣∣y∣∣ν

)
dλ

+

∫ t

0

1√
t− τ

(∂2w(x, y, τ)
∂x2

+
∂2w(x, y, τ)

∂y2

)
dτ, (4.7)
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Figure 1. Plots of the approximate solutions with values ϑ = ν = 1.75, α = 1.5, and υ = 0.1 when
N = 20 for Example 4.1.

Figure 2. Plots of the absolute error function with values ϑ = ν = 1.75, α = 1.5, and υ = 0.1 when
N = 20 for Example 4.1.

under the initial and boundary conditions

w(x, y, 0) = exp
(
− 10

{
(x− 0.5) + (y − 0.5)

})
, (x, y) ∈ Ω = (0, 1)× (0, 1),

w(x, y, t) = 0, (x, y) ∈ ∂ Ω, t ∈ (0, 1), (4.8)

where Ay = Ax = 1. We solved this model using the proposed numerical approach for the values ϑ = ν = 1.75,
α = 1.5, and υ = 0.1. To calculate and obtain the convergence order and approximate solutions using the suggested
numerical approach, we follow the following steps:

1.: We consider a N ∗ and ∆t that the value ∆t is small enough and get the approximate solutions W∆t
N∗ .

2.: Put N1, N2, . . . that N ∗ > N j for j = 1, 2, . . . and we get approximate solutions corresponding to the values
N1, N2, . . . which are considered with W∆t

N1
, W∆t

N2
, . . ..
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Figure 3. Plot of the absolute error function with values ϑ = ν = 1.75, α = 1.5, γ = 0.95, and
υ = 0.1 with various values of N for Example 4.1.

Table 1. The comparison between the absolute error function, CPU time, and L2 error for different
values of N for Example 4.1 with ϑ = ν = 1.75, α = 1.5, γ = 0.95, and υ = 0.1.

∆t N = 10 N = 20 CPU − time L2-Error
AE Rate AE Rate N = 10 N = 20

1
10 5.5673e− 14 − 1.1135e− 14 − 10 1.23e− 13 6.12e− 14
1
20 2.7837e− 14 2.3020 5.5673e− 15 2.0653 30 6.78e− 14 3.45e− 14
1
40 1.3918e− 14 2.0730 2.7837e− 15 2.0223 51 3.45e− 14 1.75e− 14
1
80 6.9592e− 15 2.0107 1.3918e− 15 2.0081 82 1.75e− 14 8.91e− 15
1

160 3.4796e− 15 2.0053 6.9592e− 16 2.0028 98 8.91e− 15 4.56e− 15
1

320 1.7398e− 15 2.0011 3.4796e− 16 2.0007 131 4.34e− 15 2.23e− 15

3.: Set

LN∗

∞ = max
j=1,2,...,M−1

∣∣∣W∆t
h∗ −W∆t

hj

∣∣∣, j = 1, 2, . . . . (4.9)

Numerical results for this proposed model are shown in Figures 4 and 5. Figure 4 shows the approximate solutions of
the proposed model for the given values ϑ = ν = 1.75, α = 1.5, and υ = 0.1. A plot of the absolute error function
is shown in Figure 5. The comparison between the error functions and computational orders is displayed in Tables 2
and 3 when t = 0.5. From Table 3, we can see that the convergence accuracy in the time variable direction using the
proposed numerical approach is the second-order accuracy.

5. Conclusion

In this study, we have developed a high-performance, fully discrete numerical method to approximate solutions of the
two-dimensional time-space diffusion-wave model with a weakly singular kernel in time and the Riesz fractional operator
in space. By combining a second-order accurate difference scheme in time with a Galerkin spectral method based on
generalized Jacobi functions in space, the proposed approach achieves both stability and second-order convergence
accuracy in time. Numerical examples demonstrate the effectiveness and precision of the method, supported by
comprehensive graphical and tabular results. While the proposed numerical method demonstrates robust accuracy and
stability for the two-dimensional model, certain limitations should be acknowledged. Scalability to higher-dimensional
or more complex systems may pose computational challenges due to the increased cost of the Galerkin spectral
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Figure 4. Plots of the approximate solutions with values ϑ = ν = 1.75, α = 1.5, and υ = 0.1 when
N = 20 for Example 4.2.

Figure 5. Plots of the absolute error function with values ϑ = ν = 1.75, α = 1.5, and υ = 0.1 when
N = 20 for Example 4.2.

method and the handling of fractional operators in multiple dimensions. Additionally, the current method assumes
linearity and uniform discretization, which may limit its effectiveness in problems featuring nonlinear dynamics or
highly irregular domains. Addressing these challenges will be essential to extend the applicability of the method
to a wider range of practical problems. Despite these promising results, several avenues remain open for further
investigation. Future work could extend the current framework to higher-dimensional models, enabling the analysis
of more complex physical phenomena. Additionally, incorporating nonlinear terms into the diffusion-wave equation
could provide a richer understanding of systems exhibiting nonlinear dynamics, requiring modifications to the numerical
scheme. Improving computational efficiency through adaptive mesh refinement techniques presents another important
direction, particularly in handling regions with steep solution gradients or singular behavior. Implementing parallel
computing strategies could further enhance the scalability of the method for large-scale simulations.

Data availability statement. All data that support the findings of this study are included within the article.
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Table 2. The comparison between the absolute error function, CPU time, and computational orders
for Example 4.2 with values of ϑ = ν = 1.75, α = 1.5, γ = 0.95, and υ = 0.1.

N N ∗ = 80, ∆t = 1
1000 N ∗ = 80, ∆t = 1

100000 CPU − time

LN∗

∞ Rate LN∗

∞ Rate
5 6.4546e− 14 − 1.2909e− 15 − 16
10 3.2273e− 14 5.7046 6.4546e− 16 5.7008 76
20 1.6136e− 14 6.1843 3.2273e− 16 7.7023 136
30 1.0758e− 14 7.6517 2.1515e− 16 8.5702 246
40 8.0682e− 15 8.4109 1.6136e− 16 11.6550 393

Table 3. The comparison between the absolute error function and computational orders for Example
4.2 with values of ϑ = ν = 1.75, α = 1.5, γ = 0.95, and υ = 0.1.

∆t N ∗ = 40, ∆t = 1
10000 N ∗ = 80, ∆t = 1

10000
AE Rate AE Rate

1
10 3.2273e− 14 − 6.4546e− 14 −
1
20 1.6136e− 14 1.9941 3.2273e− 14 1.9933
1
40 8.0682e− 15 1.9995 1.6136e− 14 1.9911
1
80 4.0341e− 15 1.9998 8.0682e− 15 1.9988
1

160 2.0171e− 15 1.9999 4.0341e− 15 1.9991

Funding. NA
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numerical study of two-dimensional time-fractional Cattaneo model with Riesz distributed-order space-fractional
operator along with stability analysis, Physica Scripta, 99(9) (2024), 095242.

[14] M. H. Derakhshan, P. Kumar, and S. Salahshour, A high-order space-time spectral method for the distributed-order
time-fractional telegraph equation, International Journal of Dynamics and Control, (2024), 1–17.

[15] M. H. Derakhshan, A. Ansari, and M. R. Ahmadi Darani, On asymptotic stability of Weber fractional differential
systems, Computational Methods for Differential Equations, 6(1) (2018), 30–39.

[16] M. H. Derakhshan and A. Ansari, Numerical approximation to Prabhakar fractional Sturm–Liouville problem,
Computational and Applied Mathematics, 38(2) (2019), 71.

[17] Q. Ding, X. Long, and S. Mao, Convergence analysis of Crank-Nicolson extrapolated fully discrete scheme for
thermally coupled incompressible magnetohydrodynamic system, Applied Numerical Mathematics, 157 (2020),
522–543.

[18] H. Du, Z. Chen, and T. Yang, A stable least residue method in reproducing kernel space for solving a nonlinear
fractional integro-differential equation with a weakly singular kernel, Applied Numerical Mathematics, 157 (2020),
210–222.

[19] M. H. Derakhshan, H. R. Marasi, and P. Kumar, A linear B-spline interpolation/Galerkin finite element method
for the two-dimensional Riesz space distributed-order diffusion-wave equation with error analysis, The European
Physical Journal Plus, 139(4) (2024), 1–17.

[20] K. Diethelm, N. J. Ford, and A. D. Freed, Detailed error analysis for a fractional Adams method, Numerical
Algorithms, 36(1) (2004), 31–52.

[21] R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. Rogosin, Mittag-Leffler Functions, Related Topics and Applications,
Springer, Berlin, 2020.

[22] X. M. Gu and S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems
with weakly singular kernel, Journal of Computational Physics, 417 (2020), 109576.

[23] B. Ghosh and J. Mohapatra, Analysis of a second-order numerical scheme for time-fractional partial inte-
gro–differential equations with a weakly singular kernel, Journal of Computational Science, 74 (2023), 102157.

[24] M. Hamid, T. Zubair, M. Usman, and R. U. Haq, Numerical investigation of fractional-order unsteady natural
convective radiating flow of nanofluid in a vertical channel, AIMS Math, 4(5) (2019), 1416–1429.

[25] S. Irandoust-Pakchin, M. H. Derakhshan, S. Rezapour, and M. Adel, An efficient numerical method for the
distributed-order time-fractional diffusion equation with the error analysis and stability properties, Mathematical
Methods in the Applied Sciences, 48(3) (2025), 2743–2765.

[26] S. Kosari, P. Xu, J. Shafi, and M. H. Derakhshan, An efficient hybrid numerical approach for solving two-
dimensional fractional cable model involving time-fractional operator of distributed order with error analysis,
Numerical Algorithms, (2024), 1–20.

[27] Y. Luchko, Fractional wave equation and damped waves, Journal of Mathematical Physics, 54(3) (2013), 031505.
[28] Z. Liu, F. Liu, and F. Zeng, An alternating direction implicit spectral method for solving two dimensional multi-

term time fractional mixed diffusion and diffusion-wave equations, Applied Numerical Mathematics, 136 (2019),
139–151.

[29] M. Lakestani and J. Manafian, Analytical treatments of the space–time fractional coupled nonlinear Schrödinger
equations, Optical and Quantum Electronics, 50 (2018), 1–33.

[30] J. Li, F. Liu, L. Feng, and I. Turner, A novel finite volume method for the Riesz space distributed-order advec-
tion–diffusion equation, Applied Mathematical Modelling, 46 (2017), 536–553.



Unco
rre

cte
d Pro

of

REFERENCES 19

[31] N. Moshtaghi and A. Saadatmandi, Numerical solution of time fractional cable equation via the sinc-Bernoulli
collocation method, Journal of Applied and Computational Mechanics, 7(4) (2021), 1916–1924.

[32] J. Manafian and M. Lakestani, Interaction among a lump, periodic waves, and kink solutions to the fractional
generalized CBS-BK equation, Mathematical Methods in the Applied Sciences, 44(1) (2021), 1052–1070.

[33] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach,
Physics Reports, 339(1) (2000), 1–77.

[34] F. Mainardi, G. Pagnini, and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed
order, Applied Mathematics and Computation, 187(1) (2007), 295–305.

[35] H. R. Marasi, M. H. Derakhshan, A.A. Ghuraibawi, and P. Kumar, A novel method based on fractional order
Gegenbauer wavelet operational matrix for the solutions of the multi-term time-fractional telegraph equation of
distributed order, Mathematics and Computers in Simulation, 217(2024), 405–424.

[36] Z. Mao and G. E. Karniadakis, A spectral method (of exponential convergence) for singular solutions of the
diffusion equation with general two-sided fractional derivative, SIAM Journal on Numerical Analysis, 56(1) (2018),
24–49.

[37] F. Mainardi and G. Spada, Creep, relaxation and viscosity properties for basic fractional models in rheology, The
European Physical Journal Special Topics, 193(1) (2011), 133–160.

[38] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, New
York, 1997.

[39] P. Rahimkhani and M. H. Heydari, Numerical investigation of Ψ-fractional differential equations using wavelets
neural networks, Computational and Applied Mathematics, 44(1) (2025), 54.

[40] A. Safaei, A. H. Salehi Shayegan, and M. Shahriari, Two-dimensional temporal fractional advection-diffusion
problem resolved through the Sinc-Galerkin method, Computational Methods for Differential Equations, (2024).

[41] S. Shamseldeen, A. Elsaid, and S. Madkour, Caputo–Riesz-Feller fractional wave equation: analytic and approxi-
mate solutions and their continuation, Journal of Applied Mathematics and Computing, 59 (2019), 423–444.

[42] W. Tian, H. Zhou, and W. Deng, A class of second order difference approximations for solving space fractional
diffusion equations, Mathematics of Computation, 84(294) (2015), 1703–1727.

[43] T. Tang, A finite difference scheme for a partial integro–differential equations with a weakly singular kernel,
Applied Numerical Mathematics, 11 (1993), 309–319.

[44] F. Wang, X. Yang, H. Zhang, and L. Wu, A time two-grid algorithm for the two dimensional nonlinear fractional
PIDE with a weakly singular kernel, Mathematics and Computers in Simulation, 199 (2022), 38–59.

[45] Z. Yang, F. Liu, Y. Nie, and I. Turner, An unstructured mesh finite difference/finite element method for the
three-dimensional time-space fractional Bloch-Torrey equations on irregular domains, Journal of Computational
Physics, 408 (2020), 109284.

[46] P. Zhuang, F. Liu, I. Turner, and Y. T. Gu, Finite volume and finite element methods for solving a one-dimensional
space-fractional Boussinesq equation, Applied Mathematical Modelling, 38(15–16) (2014), 3860–3870.

[47] R. Zheng, F. Liu, X. Jiang, and I. W. Turner, Finite difference/spectral methods for the two-dimensional
distributed-order time-fractional cable equation, Computers & Mathematics with Applications, 80(6) (2020),
1523–1537.

[48] F. Zeng, F. Liu, C. Li, K. Burrage, I. Turner, and V. Anh, A Crank–Nicolson ADI spectral method for a two-
dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM Journal on Numerical Analysis,
52(6) (2014), 2599–2622.


	1. Introduction
	2. Discretisation of the proposed model in terms of the time variable
	3. Fully-discrete numerical approach
	4. Numerical experiments
	5. Conclusion
	Data availability statement
	Funding
	Competing interests

	References



