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Abstract

This paper introduces a SIR model with a nonlinear incidence rate and incorporates a vaccination scenario,
offering a more realistic framework for disease dynamics. Assuming a vaccination coverage of p%, we analyze its

influence on epidemic outcomes. The model features a disease-free equilibrium E0 from which we derive the basic
reproduction number R0, serving as the threshold for disease eradication. When R0 > 1, an endemic equilibrium

E1 emerges; conversely, R0 < 1 guarantees the global stability of E0, indicating disease elimination. A transcritical

bifurcation at R0 = 1 captures the transition between disease extinction and persistence, with no evidence of Hopf
bifurcations as shown by limit set analysis. Sensitivity analysis of R0 highlights key parameters influencing

transmission, informing intervention strategies. We also develop an optimal control framework to determine the

most effective vaccination coverage, providing actionable insights for public health policies. Numerical simulations
validate the theoretical results, illustrating how variations in p impact outbreak trajectories and underscoring the

importance of sustained vaccination efforts. By integrating nonlinear transmission with vaccination dynamics, this

study advances epidemic modeling and offers practical tools for disease management.
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1. Introduction

Epidemiology studies health patterns and factors affecting them in the population. While it has historically focused
on infectious diseases, it has now prioritized non-communicable diseases such as stroke and heart disease, which
dominate global mortality. However, infectious diseases such as pneumonia and HIV remain major health concerns.
Infectious diseases are diseases caused by pathogens such as bacteria, viruses, fungi, parasites, or prions, examples of
which include tuberculosis and HIV. Communicable diseases are a subset of infectious diseases that are transmitted
between people, while some, such as tetanus, are non-communicable. Infectious diseases are spread by several routes:
[? ]:

• Person-to-person: direct contact (e.g., HIV) or indirect contact through objects or fluids (e.g., influenza);
• Airborne: inhalation of contaminated air (e.g., tuberculosis or measles);
• Food and water: consumption of contaminated sources (e.g., cholera);
• Vector-Borne: transmitted by vectors like mosquitoes (e.g., malaria);
• Vertical: transmitted from mother to child during pregnancy or birth (e.g., HIV).

Knowing the routes of disease transmission is actually essential for designing effective prevention strategies, controlling
disease outbreaks, and making accurate mathematical models. In fact, by understanding and incorporating disease
pathways into mathematical models, we increase our ability to predict outbreaks, implement targeted interventions,
and reduce disease outbreaks.
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Mathematical epidemiology, which originated with Bernoulli’s 1760 smallpox model [? ], has made significant
progress with the foundational theories developed in 1935. It has become a cornerstone of public health policy, helping
to predict and control disease during outbreaks such as the 2001 foot-and-mouth disease crisis, the 2002–2003 SARS
epidemic, and the COVID-19 pandemic. Indeed, mathematical epidemiology reached a turning point in 1927 with
Kermack and McKendrick’s influential model of the spread of infectious diseases, detailed in [? ]. This deterministic
model introduced the concepts of

• Susceptible (S): Healthy individuals who are at risk of contracting the disease,
• Infected (I): Individuals who have the disease and are assumed to be infectious,
• Removed/Recovered (R): Individuals who have recovered and are immune, and cannot be reinfected.

Each individual in the population is placed in one of these three groups, and the changes in each group are formulated
as a differential equation. These categories form the basis of the SIR model used in mathematical epidemiology and
modern epidemic modeling. With the rise of emerging diseases, there is a growing need for more flexible models. The
study in [? ] highlights the importance of developing integrated modeling frameworks to enable rapid responses to new
threats. Addressing the shortcomings and refining epidemiological models has led to the introduction of numerous
models for the study of infectious diseases. The rates of change used in the model, such as birth rates, disease
incidence rates, and recovery rates, represent some of the most important differences between the introduced models
and the work done in this field. For example, in the works of Kermack and McKendrick, their model initially focused
on prevalence without considering natural birth and death rates. In subsequent works published in 1932 and 1933,
they extended their framework to address diseases that persist within populations. Their original trilogy of papers,
reprinted in 1991, remains a foundation for the field [? ? ? ].

Recent advances in epidemic modeling emphasize the importance of capturing complex human behaviors and
heterogeneous transmission patterns. Among various factors influencing disease dynamics, the incidence rate plays a
particularly critical role and has attracted increasing scholarly attention. Traditional models, such as those in [? ? ?
], often assume a linear incidence rate, typically expressed as βI, where β denotes the transmission rate.

However, more sophisticated approaches incorporate nonlinear incidence functions to better reflect behavioral factors
impacting disease spread. For example, in [? ], the incidence rate is modeled as βI(1 + γI), enabling the analysis of
effects arising from multiple contacts and behavioral responses that influence transmission dynamics.

In [? ], the incidence rate is considered as βI/(1 + αI), where α is referred to as the suppression effect, stemming
from the behavioral changes of susceptible individuals in response to the increasing number of infected individuals. In
[? ], the incidence rate is defined as βIp/(1 + αIq), and in [? ], this model has been studied for p = q. In this paper,
inspired by the previous work [? ], we employ a nonlinear function for the disease incidence rate. This approach allows
for a broader examination, accommodating various transmission rates relevant to the specified conditions.

Another important aspect of epidemic models is the implementation of disease control strategies. Among various
methods, vaccination plays a pivotal role in limiting disease spread. Vaccination can be modeled in different ways; for
instance, as noted in [? ], vaccinated individuals are often assigned to a separate group. This approach increases the
system’s dimensionality, thereby elevating the complexity of calculations. Alternatively, vaccination can be represented
by considering a specific percentage of the population as vaccinated, simplifying the model while still capturing its
overall impact.

In [? ], the authors incorporated vaccination, assuming 100% efficacy, and conducted a comprehensive analysis
of its effects. In this paper, however, we will explore the effects of vaccination and the percentage of vaccinated
individuals within the community in our model. Our focus in this paper is on modeling diseases whose transmission
mechanisms are not sensitive to population density, such as Hepatitis B and HIV. Therefore, we will utilize the standard
transmission rate.

2. Model formulation

Let N(t) represent the total population size. Therefore, we have: N(t) = S(t)+I(t)+R(t), where S(t) is the number
of susceptible individuals, I(t) is the number of infected individuals, and R(t) is the number of recovered individuals.
Since the spread of an infectious disease is directly related to the interaction between class class I (infected) and S
(susceptible), it makes sense for the infection rate we propose to accurately reflect the impact of their interaction.
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Table 1. Description of the parameters used in the system (2.1).

Parameter Description
λ Birth rate
β Disease transmission rate
p Percentage of vaccinated population
v Vaccine effectiveness rate
µ Natural death rate
α The rate of recovery from the disease

What is important for us to consider is that if the number of infected individuals exceeds a certain threshold, then
the rate of infection resulting from the interaction will decline. To relate these aspects, we consider the function g(x)
under the following conditions:

(1) g(0) = 1.
(2) For x > 0, g(x) > 0.

(3) There exists a small positive constant σ > 0 such that if 0 < x < σ, then

(
x

g(x)

)′

> 0, and if x > σ, then(
x

g(x)

)′

< 0.

Now we consider the infection rate in the form:
βIS

Ng(I/N)
. In this case, we see that condition (3) fulfills our requirement

regarding the trend of patient infections. Furthermore, we assume that a portion of the population, denoted by p, is
vaccinated, with an efficacy rate of v. With these clarifications, we propose the following SIR model:

S′ = λN − βIS

Ng (I/N)
− pvS − µS,

I ′ =
βIS

Ng (I/N)
− (α+ µ)I,

R′ = pvS + αI − µR.

(2.1)

The description of all parameters is given in Table 1. The diagram of this model is shown in Figure 1. Using the

Figure 1. The diagram of SIR model (2.1).

change of variables x = S/N , y = I/N , and z = R/N , we rewrite system (2.1) as the following:
x′ = λ− βxy

g(y)
− (λ+ pv)x,

y′ =
βxy

g(y)
− (λ+ α)y,

z′ = pvx+ αy − λz.

(2.2)
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3. Equilibria and basic reproduction number

Since the variable z does not appear in the first and second equations of system (2.2), we can consider the following
two-dimensional system by using the equality z = 1− x− y:

x′ = λ− βxy

g(y)
− (λ+ pv)x,

y′ =
βxy

g(y)
− (λ+ α)y.

(3.1)

This system has a disease-free equilibrium point given by E0 = (λ/(λ+ pv), 0). Corresponding to this equilibrium
point, the basic reproduction number can be obtained using the next-generation technique [? ]. We define the functions
f(x, y) and v(x, y) as follows:

f(x, y) =
βxy

g(y)
, w(x, y) = (λ+ α)y.

Then, we can write y′ as y′ = f(x, y)− w(x, y). Denote

F =

[
∂f

∂y
(E0)

]
=

βλ

λ+ pv

and

W =

[
∂w

∂y
(E0)

]
= λ+ α.

Then, the basic reproduction number, which is the spectral radius of the matrix FW−1, is equal to

R0 =
βλ

(λ+ α)(λ+ pv)
.

System (3.1) has another equilibrium point, which we call the endemic equilibrium point. To find this equilibrium
point, we solve the following system:

λ− βxy

g(y)
− (λ+ pv)x = 0,

βxy

g(y)
− (λ+ α)y = 0.

Since, in this case, y ̸= 0, we obtain from the second equation that x = (λ+ α) g(y)/β and by substituting it into the
first equation, we get that

λ− (λ+ α)y − (λ+ pv) (λ+ α)

β
g(y) = 0.

We set

G(y) = λ− (λ+ α)y − (λ+ pv) (λ+ α)

β
g(y). (3.2)

In this case:

lim
y→∞

G(y) = −∞

and

G(0) = λ− (λ+ pv)(λ+ α)

β
=

(λ+ pv)(λ+ α)

β
(R0 − 1).

As for y > 0 we have g′(y) > 0, thus

G′(y) = −(λ+ α)− (λ+ pv)(λ+ α)

β
g′(y) < 0.
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Therefore, if R0 > 1, then G(0) > 0, which implies that G(y) has a unique positive root y∗, leading to the endemic
equilibrium point E1 = (x∗, y∗). It is worth noting that if R0 ≤ 0, then G(0) < 0. Based on the strict monotonicity
of G(y) and by Bolzano’s theorem, the function G(y) will not have any positive roots.

What has been discussed so far about system (3.1) is summarized in the following theorem:

Theorem 3.1. Consider system (3.1).

a) If R0 ≤ 1, then the system has a unique disease-free equilibrium point.
b) If R0 > 1, then the system, in addition to the disease-free equilibrium point, possesses an endemic equilibrium

point.

Epidemiological interpretation of R0. Two points regarding R0 deserve attention and explanation:
1. Formula: It is essential to clarify the formula used to calculate R0 in the context of this model.

2. Behavior Near 1: The second point concerns how changes in R0, particularly around the value of 1, affect the
dynamics of system (3.1).
The variations of R0 around 1 indicate that if an infected individual cannot infect at least one other person, the disease
will disappear from the population. Conversely, if R0 is greater than 1, the disease will persist within the community.

The epidemiological interpretation of the formula for R0 will be discussed below. It is shown in [? ] that if ρ

represents the exit rate from a group, then
1

ρ
corresponds to the average time spent in that group. Since λ + α is

the rate of exit from the infectious class y, the average time spent in this class for each individual will be
1

λ+ α
. On

the other hand, the exit rate for each individual from the susceptible class is λ + pv. Therefore, the average time
of susceptibility for each individual will be 1

λ+pv . The disease is transmitted to a susceptible individual at a rate β.

Consequently, an infectious person can infect a susceptible person at a rate of
β

(λ+ pv)(λ+ α)
during the time they

are infected. Since individuals are born and enter the susceptible class at a rate λ, an infected individual can infect

during the time
βλ

(λ+ pv)(λ+ α)
, which is equal to R0. It is important to note that as more individuals are vaccinated,

R0 will decrease, indicating a reduced spread of the disease within the community.

4. Local stability of the equilibrium points

4.1. Local stability of the disease-free equilibrium point E0. To analyze the stability of the disease-free equi-
librium point in system (3.1), we employ the linearization method and the Jacobian matrix. The Jacobian matrix of
the system at the equilibrium point E0 = (λ/(λ+ pv), 0) is given by:

JE0
=


−(λ+ pv)

−βλ

λ+ pv

0
βλ

λ+ pv
− (λ+ α)

 .

This matrix has two eigenvalues: −(λ+ pv) and
βλ

λ+ pv
− (λ+α). The first eigenvalue is negative, indicating stability

in that direction. For the second eigenvalue, we need to analyze it further. We have that

βλ

λ+ pv
− (λ+ α) = (λ+ α)

(
βλ

(λ+ pv)(λ+ α)
− 1

)
= (λ+ α)(R0 − 1).

Therefore, if R0 < 1, the disease-free equilibrium point E0 is locally stable. Conversely, if R0 > 1, it becomes
unstable. At R0 = 1, this equilibrium point is non-hyperbolic, and considering the change in stability, one can expect
a bifurcation to occur. We will examine this case in section 6.
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4.2. Local stability of the endemic equilibrium point E1. The Jacobian matrix of the system (3.1) at the
equilibrium point E1 = (x∗, y∗) is given by:

JE1
=


− βy∗

g(y∗)
− (λ+ pv) −βx∗

(
g(y∗)− y∗g′(y∗)

g2(y∗)

)
βy∗

g(y∗)
βx∗

(
g(y∗)− y∗g′(y∗)

g2(y∗)

)
− (λ+ α)

 .

The characteristic polynomial of this matrix in the variable t is given by p(t) = t2 + a1t+ a2, where

a1 = −tr(JE1
) = (λ+ pv) +

βy∗

g(y∗)
− βx∗

(
g(y∗)− y∗g′(y∗)

g2(y∗)

)
+ (λ+ α),

a2 = det(JE1) =
βy∗(λ+ α)

g(y∗)
− (λ+ pv)βx∗

(
g(y∗)− y∗g′(y∗)

g2(y∗)

)
+ (λ+ pv)(λ+ α).

According to the Routh-Hurwitz test, two roots of p(t) have negative real parts if and only if both a1 and a2 are
positive. Since E1 is the equilibrium point of system (3.1), from the second equation of this system, we obtain that

βx∗y∗

g(y∗)
− (λ+ α)y∗ = 0,

which yields βx∗

g(y∗) = λ+ α. Consequently,

a1 = (λ+ pv) +
βy∗

g(y∗)
− βx∗

g(y∗)
+

βx∗y∗g′(y∗)

g2(y∗)
+ (λ+ α) = (λ+ pv) +

βy∗

g(y∗)
+

βx∗y∗g′(y∗)

g2(y∗)
> 0,

a2 =
β(λ+ α)y∗

g(y∗)
− (λ+ pv)βx∗

g(y∗)
+

(λ+ pv)βx∗y∗g′(y∗)

g2(y∗)
+ (λ+ pv)(λ+ α)

=
β(λ+ α)y∗

g(y∗)
+

(λ+ pv)βx∗y∗g′(y∗)

g2(y∗)
> 0.

Hence, the equilibrium point E1 is locally asymptotically stable because the real part of both eigenvalues at this point
is negative.

5. Global stability

To investigate the global stability of the equilibrium points, we will use the Poincaré-Bendixson theorem. For this
purpose, we will first demonstrate the boundedness of the solutions of the system (3.1).

Theorem 5.1. The set R2
+ = {(x, y) ∈ R2 | x > 0, y > 0}, which represents the positive area of the plane, is positively

invariant under the flow of the system (3.1), and the solutions of the system (3.1) are bounded in this region.

Proof. To prove the first part of the theorem, we show that the flow is directed inward or tangent to the boundary
of the region R2

+. For this purpose, we observe that on the boundary of x = 0, we have x′ = λ, which indicates that
the flow is directed inward into the region R2

+. Along the boundary y = 0, we have y′ = 0, which shows that the flow
is directed neither to the left nor to the right but is tangent to the boundary y = 0. This implies that the solutions
cannot cross the boundary of y = 0, confirming that the region R2

+ is positively invariant and the flow remains within
this bounded area.
To prove the boundedness of the solutions, it is enough to show that the function n(t) := x(t) + y(t) is bounded. We
have:

n′(t) = x′(t) + y′(t) = λ− λn(t)− pvx(t)− αy(t) ≤ λ(1− n(t)).
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Therefore,

n(t) ≤ (n0 − 1)e−λt + 1 ≤ 1.

□

Theorem 5.2. The system (3.1) does not have periodic orbits in the first quadrant.

Proof. We will prove this theorem using the Dulac criterion. We consider the function B(x, y) =
g(y)

xy
as the Dulac

function. Let

[
f1
f2

]
be the vector field associated with the system (3.1). Then:

Bf1 =
λg(y)

xy
− (λ+ pv)g(y)

y
− β, Bf2 = β − (λ+ α)g(y)

x
.

Therefore,

div(Bf) =
∂(Bf1)

∂x
+

∂(Bf2)

∂y
= −λyg(y)

x2y2
− (λ+ α)g′(y)

x
< 0.

Now, since the divergence of the vector field Bf in the first quadrant of the xy plane does not change in sign and has
a constant sign, by the Dulac criterion, this system will not have periodic orbits in the first quadrant. □

Theorem 5.3. If X(t) = (x(t), y(t)) is a solution of the system (3.1) in the region R2
+, then lim

t→∞
X(t) exists and its

value is equal to E1 = (x∗, y∗).

Proof. Assume that N > 1. Consider the set M = {(x, y) ∈ R2 | 0 ≤ x ≤ N, 0 ≤ y ≤ N − x}. Then M is clearly a
compact set and is positively invariant under the flow of the system (3.1) because along the line x+ y = N , we have:

x′ + y′ = λ− λ(x+ y)− αy = λ− λN − αy ≤ λ(1−N) < 0.

Now, if (x0, y0) ∈ M such that y0 > 0, then it follows from the Poincaré-Bendixson theorem combined with theorem
5.2 that the omega limit set ω(x0, y0) of the point (x0, y0) is an equilibrium point. Specifically, in the case that
y0 = 0, we have ω(x0, 0) = {E0}. As we have seen, system (3.1) can have at most two equilibrium points E0 and E1.
Therefore, there are two cases, as described below:

• If R0 ≤ 1, then there is no equilibrium point E1. Thus, in this case, we have:

lim
t→∞

(x(t), y(t)) = E0,

which means that the equilibrium point E0 is globally stable.
• If R0 > 1, then it is proved that E0 is unstable. Therefore,

lim
t→∞

(x(t), y(t)) = E1,

which means that the equilibrium point E1 is globally stable.

□

6. Analysis of the Transcritical Bifurcation

As we saw in section 4, the stability status of the equilibrium point E0 changes as R0 passes through 1, and another
equilibrium point is added to the system (3.1) for R0 = 1. Since E0 is a non-hyperbolic equilibrium point for R0 = 1,
it is predicted that the system (3.1) experiences a bifurcation at R0 = 1. We will demonstrate by the Sotomayor
theorem that a transcritical (or a stability exchange) bifurcation occurs.

Theorem 6.1. [Sotomayor [? ]] Let X ∈ Rn and µ ∈ R. Assume for the system X ′ = f(X,µ) that f(X0, µ0) = 0
and the Jacobian matrix A = Df(X0, µ0) has a simple zero eigenvalue. If VL and VR are the left and right eigenvectors
corresponding to the zero eigenvalue of the matrix A, then the system X ′ = f(X,µ) admits a transcritical bifurcation
at the point (X0, µ0) whenever:
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(1) VLfµ(X0, µ0) = 0;
(2) VLDfµ(X0, µ0)VR ̸= 0;
(3) VLD

2f(X0, µ0)(VR, VR) ̸= 0.

Since R0 = 1 is equivalent to β0 =
(λ+ α)(λ+ pv)

λ
, we consider β as the bifurcation parameter of the system (3.1).

The Jacobian matrix of the system (3.1) at the point E0 and at the parameter value β0 is given by

J0 = J(E0,β0) =

[
−(λ+ pv) −(λ+ α)
[15pt]0 0

]
.

The left and right eigenvectors corresponding to the zero eigenvalue of the matrix J0 are, respectively, denoted by

VL = [0 1] , VR =

 1

−(λ+ pv)

λ+ α

 .

Considering system (3.1) as (x′, y′) = f(x, y, β), we will examine the points mentioned in Theorem 6.1. Since

∂f

∂β
(x, y, β) = fβ(x, y, β) =


− xy

g(y)

xy

g(y)

 , fβ(E0, β0) =

[
0
0

]
,

we see that the first condition

VLfβ(E0, β0) = 0

of Theorem 6.1 holds. To examine the second condition, we note that

Dfβ(x, y, β) =


− y

g(y)
−x

g(y)− yg′(y)

(g(y))2

y

g(y)
x
g(y)− yg′(y)

(g(y))2

 .

Hence,

Dfβ(E0, β0) =


0

−λ

λ+ pv

0
λ

λ+ pv

 ,

which yields that

VLDfβ(E0, β0)VR =
−λ

λ+ α
̸= 0.

Thus, the second condition is also satisfied. We will now examine the third condition of Theorem 6.1. We have that

Df =


− βy

g(y)
− (λ+ pv) −βx

g(y)− yg′(y)

(g(y))2

βy

g(y)
βx

g(y)− yg′(y)

(g(y))2
− (λ+ α)

 =

Df1

Df2

 ,
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D(Df1)
T =


0 −β

g(y)− yg′(y)

(g(y))2

−β
g(y)− yg′(y)

(g(y))2
βx

yg(y)g′′(y) + 2g(y)g′(y)− 2y(g′(y))2

(g(y))3

 ,

D(Df2)
T =


0 β

g(y)− yg′(y)

(g(y))2

β
g(y)− yg′(y)

(g(y))2
−βx

yg(y)g′′(y) + 2g(y)g′(y)− 2y(g′(y))2

(g(y))3

 .

Therefore

D2f1(E0, β0) := D(Df1)
T (E0, β0) =


0 − (λ+ α)(λ+ pv)

λ

− (λ+ α)(λ+ pv)

λ
2(λ+ α)g′(0)

 ,

D2f2(E0, β0) := D(Df2)
T (E0, β0) =


0

(λ+ α)(λ+ pv)

λ

(λ+ α)(λ+ pv)

λ
−2(λ+ α)g′(0)

 .

Assume that {e1, e2} is the standard basis for R2. Then

D2f(E0, β0)(VR, VR) = α1e1 + α2e2,

where

α1 = V T
R D2f1(E0, β0)VR =

[
1

−(λ+ pv)

λ+ α

]
0 − (λ+ α)(λ+ pv)

λ

− (λ+ α)(λ+ pv)

λ
2(λ+ α)g′(0)




1

−(λ+ pv)

λ+ α


=

2(λ+ pv)2

λ
+

2(λ+ pv)2

λ+ α
g′(0) > 0,

α2 = V T
R D2f2(E0, β0)VR =

[
1

−(λ+ pv)

λ+ α

]
0

(λ+ α)(λ+ pv)

λ

(λ+ α)(λ+ pv)

λ
−2(λ+ α)g′(0)




1

−(λ+ pv)

λ+ α


= −2(λ+ pv)2

λ
− 2(λ+ pv)2

λ+ α
g′(0) < 0.

Hence,

VLD
2f(E0, β0)(VR, VR) = α2 ̸= 0,

which means that the third condition of Theorem 6.1 also holds. Consequently, system (3.1) at β = β0 has a
transcritical bifurcation.
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7. Sensitivity index of R0

The sensitivity index is a tool used to evaluate how changes in a model’s input parameters affect its outputs. It
helps identify which parameters have the most significant influence, enhancing our understanding of the model and
guiding improvements. In epidemiological models, the sensitivity index is particularly valuable for analyzing how
different parameters impact disease prevalence. By using this measure, we can pinpoint the factors that most strongly
influence the spread of the disease. These parameters can serve as suitable targets for health interventions. In addition,
the sensitivity index helps decision-makers in allocating resources in a way that maximizes the impact of reducing
disease outbreaks. By changing the parameters and observing their effects on the model results, more effective control
strategies can be identified or designed. It is worth noting that the basic reproduction number can be a criterion for
the severity and weakness of an epidemic. In this section, to demonstrate the impact of each parameter on controlling
or spreading the disease, we obtain the sensitivity index of the basic reproduction number for each parameter, which
is used to identify the parameter that has the most significant effect on the disease prevalence.

Definition 7.1. The normalized sensitivity index of R0 with respect to the parameter δ is equal to

CR0

δ =
∂R0

∂δ
× δ

R0
.

From the recent formula, it is clear that the sensitivity index regarding each parameter indicates a direct relationship
between the parameter changes and disease prevalence. For example, the sensitivity index of R0 with respect to the
vaccination parameter p is represented as:

CR0
p =

∂R0

∂p
× p

R0
=

−βλv

(λ+ α)2(λ+ pv)2
× p(λ+ α)(λ+ pv)

βλ
=

−pv

λ+ pv
< 0,

which is negative regardless of any initial data. Therefore, as we expect, with the increase in vaccination, we observe
a decrease in the basic reproduction number, which ultimately leads to the end of the epidemic. Additionally, the
sensitivity index of R0 with respect to the parameter β, the disease transmission rate, is denoted as:

CR0

β =
∂R0

∂β
× β

R0
=

λ

(λ+ α)(λ+ pv)
× β(λ+ α)(λ+ pv)

βλ
= 1 > 0.

In this case, we also see that regardless of any data, the transmission rate has a direct relationship with epidemic
prevalence. Comparing the magnitudes of the indices clarifies the impact of each parameter on controlling the epidemic
relative to the other parameters.

8. Optimal Control System

Optimal control methods can be used to obtain the minimum number of vaccinated individuals in the community
to control the epidemic. Here, we will examine the general steps to form an optimal control system using the control
variable p as a function of time, p : [0,∞) → [0, 1]. Therefore, system (3.1) becomes:

x′ = λ− βxy

g(y)
− (λ+ vp(t))x, x(0) = x0 ≥ 0,

y′ =
βxy

g(y)
− (λ+ α)y, y(0) = y0 ≥ 0,

x(T ) and y(T ) are free,

(8.1)

where the terminal time T is the final vaccination time. We introduce the following set as acceptable optimal solutions:

A := {p ∈ L1(0, T ) | p(t) ∈ A = [0, 1]}.

We apply the optimal control theory to determine the best number of vaccinated individuals to minimize the disease
spread and vaccination costs. In particular, we seek a control p∗ that minimizes the payoff functional

J [p∗] = min
p∈A

J [p] := min
p∈A

∫ T

0

(w1

2
y2(t) +

w2

2
p2(t)

)
dt, (8.2)
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where w1 and w2 are some fixed weight coefficients, and that (x(t), y(t)) solves (8.1) for the specified control p(t). We
first prove the existence of an optimal pair (X∗(t), p∗(t)). We use the Filippov-Cesari Existence Theorem given by
Theorem 9.1 of [? ].

Proposition 8.1. The optimal control problem (8.1)-(8.2) has a solution.

Proof. We consider the set N(t,X) as follows:

N(t,X) =
{(w1

2
y2 +

w2

2
p2 + ξ, f(X, p)

)
: ξ ≤ 0, p ∈ A = [0, 1]

}
,

where f is the vector field of the system (8.1) and X = (x, y) ∈ R2. We show that N(t,X) is convex for every
(t,X) ∈ R× R2. To do this, we consider Y1, Y2 ∈ N(t,X) and show that for any a ∈ [0, 1] we have that

aY1 + (1− a)Y2 ∈ N(t,X).

The fact that Yi ∈ N(t,X) for i = 1, 2, implies that there exist ξi ≤ 0 and control variables pi ∈ [0, 1], i = 1, 2, such
that

Yi =
(w1

2
y2 +

w2

2
p2i + ξi, f(X, pi)

)
, i = 1, 2.

Then, we have

a
(w1

2
y2 +

w2

2
p21 + ξ1

)
+ (1− a)

(w1

2
y2 +

w2

2
p22 + ξ2

)
=

w1

2
y2 +

w2

2
(ap21 + (1− a)p22) + (aξ1 + (1− a)ξ2).

Letting p3 =
√
ap21 + (1− a)p22, we see that p3 ∈ A = [0, 1]. Furthermore, letting ξ3 = aξ1 + (1 − a)ξ2, we observe

that ξ3 ≤ 0. Thus, the first component satisfies the convexity condition. Next, we check the second component. By a
simple computation, we see that af(X, p1) + (1 − a)f(X, p2) = f(X, ap1 + (1 − a)p2). Letting p4 = ap1 + (1 − a)p2,
we have that p4 ∈ A = [0, 1]. This completes the proof of the convexity of N(t,X). Clearly, A = [0, 1] is compact.
We also proved the boundedness of the solutions of system (8.1) in Theorem 5.1. Then, by Theorem 9.2 of [? ], there
exists an optimal pair (X∗(t), p∗(t)), where p∗ ∈ A. □

After verifying the existence of an optimal solution, it can be found with Pontryagin’s principle of minimum
(Theorem 9.2 of [? ]). Considering the time-varying vector η(t) = (η1(t), η2(t)) ∈ R2 of the Lagrange multipliers,
whose elements are called the adjoint variables of the system, we define the Hamiltonian H for all t ∈ [0, T ] as follows:

H (X(t), p(t), η(t)) =
w1

2
y2(t) +

w2

2
p2(t) +

2∑
i=1

ηi(t)fi (X(t), p(t))

=
w1

2
y2 +

w2

2
p2 + η1

(
λ− βxy

g(y)
− (λ+ vp(t))x

)
+ η2

( βxy

g(y)
− (λ+ α)y

)
.

The optimal control p∗ must be a critical point of the Hamiltonian function. Thus, we must have ∂H
∂p (p

∗) = 0. This

leads to the following condition on the optimal control:

p∗(t) =
v

w2
η1(t)x(t).

On the other hand, we have ∂2H
∂p2 = w2 > 0, which indicates that the critical point p∗ is a minimum of the Hamiltonian

H. Since p∗ must belong to A, we must have

p∗(t) = min

{
1,max

{
0,

v

w2
η1(t)x(t)

}}
. (8.3)

The adjoint system is given by
η′1 = −∂H

∂x = (η1 − η2)
βy

g(y)
+ η1

(
λ+ vp∗(t)

)
,

η′2 = −∂H
∂y = −w1y + βx(η1 − η2)

g(y)− yg′(y)

g2(y)
+ (λ+ α)η2,

η1(T ) = η2(T ) = 0.
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Table 2. Parameters used in the system (3.1).

parameter p v λ β α
value 0.8 0.6 0.3 0.8 0.2

To find the optimal solution, we must solve the following system:

x′ = λ− βxy

g(y)
− (λ+ vp∗(t))x, x(0) = x0 ≥ 0,

y′ =
βxy

g(y)
− (λ+ α)y, y(0) = y0 ≥ 0,

η′1 = (η1 − η2)
βy

g(y)
+ η1

(
λ+ vp∗(t)

)
, η1(T ) = 0,

η′2 = −w1y + βx(η1 − η2)
g(y)− yg′(y)

g2(y)
+ (λ+ α)η2, η2(T ) = 0,

(8.4)

where p∗(t) is given by (8.3). System (8.4) is an optimal control system that cannot be solved manually, and numerical
methods must be used. In the next section, this system will be solved numerically using the discretization method
implemented in Maple. A concise explanation of this method is provided in Section 9.1.

9. Numerical Simulation

To examine the results obtained in the previous sections, we consider the function g in system (3.1) as g(y) = 1+y2

and the data from Table 2. In this case, R0 = 0.6153846154 < 1 implies that system (3.1) has only one disease-free
equilibrium point E0 = (0.3846153846, 0), which is a globally stable node, as shown in Figure 2(a).

(a) p = 0.9. (b) p = 0.2.

Figure 2. The phase portrait of system (3.1).

Now, we examine system (3.1) with the same data from Table 2, but with only a change, p = 0.2. In this
case, we have R0 = 1.142857143 > 1, which, as expected, indicates that system (3.1) has two equilibrium points,
E0 = (0.7142857143, 0) and E1 = (0.6282633338, 0.07225879959), where E0 is the disease-free equilibrium point and
E1 is the endemic equilibrium point. E0 is unstable, and E1 is a globally stable node, as shown in Figure 2(b).

Figure 3 shows the changes in each of the groups x(t), y(t), and z(t), which represent the relative population of
susceptible, infected, and recovered individuals under the initial condition (x0, y0, z0) = (0.8, 0.2, 0).

9.1. Optimal Control. To find the optimal trajectories, we simulate the optimal control system (8.4). For this, we
utilize the discretization method. First, we consider the data from Table 2 and use the function g(y) = 1 + y2. We
set the initial population to x0 = 0.8 and y0 = 0.2, with w1 = w2 = 1 and the final time T = 1.
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(a) p = 0.9. (b) p = 0.2.

Figure 3. The graph shows the changes in the solutions of system (3.1).

In this method, the integral appearing in (8.2) is approximated using the Trapezoidal-Romberg formula:∫ b

a

f(x) dx ≈ h

2

[
f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)

]
,

where h is the step size, which we set to 0.01 for this study. The first and second equations in the system (8.4) are
discretized using finite differences to formulate the optimization constraints:

xi − xi−1

h
= f1(xi−1, yi−1, pi−1),

yi − yi−1

h
= f2(xi−1, yi−1), 0 ≤ xi, yi, pi ≤ 1,

where f1 and f2 are the components of the vector field in the system (8.4). The optimal control p is then computed
using the command Optimization[NLPSolve](J,s) in Maple, where J is the cost function and s denotes the set of
constraints. The optimal control trajectory is illustrated in Figure 4(a). Additionally, the corresponding optimal state
trajectories are shown in Figures 4(b) and (c).

(a) Graph of the optimal control
p∗(t).

(b) Graph of the state variable
x∗(t).

(c) Graph of the state variable
y∗(t).

Figure 4. Optimal path diagrams.

10. Conclusion

In this paper, we introduced an SIR model with a nonlinear infection rate assuming 100% vaccine efficacy. We
observed that the corresponding system has a disease-free equilibrium point E0 and an endemic equilibrium point E1.
Corresponding to E0, we derived the basic reproduction number R0. The equilibrium point E0 is globally stable for
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R0 < 1 and unstable for R0 > 1, and the equilibrium point E1, if it exists, will be stable. The system possesses a
stability exchange bifurcation at R0 = 1. In addition, by calculating the sensitivity index of R0, the effects of vaccine-
related parameters and disease transmission rate were examined. In the final section, the results were discussed using
numerical examples. In that section, the function g(y) was chosen as 1 + y2. As expected, the system exhibited only
one equilibrium point E0 when R0 < 1, while a second equilibrium point E1 appeared when R0 > 1. The phase
portrait of the system confirms that the stability of these equilibrium points aligns with the theoretical predictions in
each case.
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