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Abstract ,

Typhoid fever remains a major public health threat on a global scale. It is mainly transmitted by contaminated
food and water, particularly in places with poor sanitation. In this study, we are building a fractional order
mathematical model to investigate the transmission dynamics of typhoid fever employing the Riemann—Liouville
fractional derivative operator. The model is analyzed using the homotopy decomposition method (HDM) combined
with the modified derivative 8, which allows the incorporation of memory effects without requiring linearization,
discretization, or restrictive assumptions, thus reducing computational complexity. The fixed-point theory (FPT)
is used to prove the existence and uniqueness of the proposed model. MATLAB simulations are performed to
graphically analyze the model’s behavior, demonstrating how fractional parameters influence disease progression.
The novelty of the present study lies in the detailed analysis of the effects of various epidemiological parameters
on the dynamics of the disease, which are effectively illustrated through comprehensive graphical solutions. The
results offer valuable insights for designing effective disease control strategies and contribute to the advancement
of fractional epidemiological modeling with potential applications in public health policy and clinical research.
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1. INTRODUCTION

Typhoid fever, which is common in places with poor sanitation around the world, is contracted by eating contami-
nated food or water (stool) contaminated with salmonella bacteria (Salmonella typhi) [40, 54]. The main symptoms
of the condition include fever that progressively increases to 40° C', anorexia, headaches, exhaustion, and insomnia
[19, 40, 49, 54]. In addition to fever, there may be gastrointestinal problems (constipation, diarrhea, or vomiting)
[14, 33, 44]. The signs and symptoms may last for a few weeks. The infected host contributes to the transmission
of the disease, although they may not always show any symptoms. Antibiotics are the cornerstone of typhoid fever
treatment, and several cases of evolution can be fatal in 10% of infected individuals if treatment is not received.
An estimated 11 to 21 million cases of typhoid fever and approximately 128,000 to 161,000 deaths occur annually,
compared to an estimated 6 million cases of paratyphoid fever and 54,000 fatalities.

Prevention and control strategies for typhoid fever include antibiotic treatment, standard hygiene precautions
related to stool handling, vaccination, improved environmental sanitation, and access to clean water [14]. Medical
treatment typically leads to symptom relief within four weeks; however, incomplete treatment may result in symptom
recurrence [16]. The first typhoid vaccine was developed over a century ago, and oral and injectable vaccines are now
available. The injectable Vi polysaccharide vaccine provides approximately 65% protection and is considered safe.
The Ty2la oral vaccine, approved for children aged two years and older, is available in liquid form but is generally
more expensive than the injectable option [18].
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Musa et al. [42] examined the dynamics of the spread of the typhoid fever epidemic. Their model assesses the
impact of public health education initiatives on curbing typhoid fever outbreaks, particularly in resource-constrained
regions. Nthiiri et al. [45] developed a mathematical model, comprising a set of ordinary differential equations, to
analyze the dynamics of typhoid fever infection, considering resistance to infection. Adeboye et al. [13] formulated
and explored a mathematical model addressing the co-infection of typhoid and malaria, aiming to control the spread
of both diseases simultaneously. Pitzer et al. [46] investigated an age-structured mathematical model of typhoid fever
to estimate the direct and indirect impacts of vaccination. Cook et al. [17] examined a mathematical model discussing
the safety and efficacy of vaccination, both directly and indirectly, in the context of widespread vaccination programs.

Khan et al. [34] introduced a mathematical model and analysis of a deterministic framework that describes the
transmission dynamics of typhoid fever. The model categorizes the total population N(t) into four distinct compart-
ments:

(i) S(t): Describes dynamics of susceptible humans,
(ii) E(t): Describes dynamics of unprotected humans,
(iii) I(t): Describes dynamics of infected humans,

(iv) R(t): Describes dynamics of recovered humans,

and the total population is expressed as N (¢) = S(t)+ E(t) +1(t)+ R(¢t). Using the SEIR model, Figure 1 illustrates
a fractional map of the typhoid disease transmission between exposed individual compartments.
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FIGURE 1. Diagrammatic representation of the epidemic model (Source: [34])
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TABLE 1. Description of Parameters

Parameter Description

The number of individuals succumbing to illness

The rate at which diseases interact

The rate of natural mortality

The rate of symptomatic transmission

The rate of recovery from infection

The rate of human recruitment (birth)

The rate of loss of temporary immunity in recovered individuals

AT E >

Fractional calculus has emerged as a powerful mathematical tool due to its ability to capture memory effects
and hereditary properties in dynamic systems, making it particularly effective for modeling complex biological and
epidemiological phenomena [53, 55]. These systems are prevalent in various disciplines, including physics [28, 29], fluid
mechanics, materials science, engineering [10, 11, 25], medical science [1, 3, 12, 36, 52], economics, and many others
[4, 23, 43, 48]. Jalil and Mehrdad [37] derive exact periodic and solitary wave solutions of the integrable sixth-order
Drinfeld-Sokolov—Satsuma-Hirota system by employing both the generalized (G'/G)-expansion and the generalized
tanh—coth methods, showcasing their effectiveness for symbolic computation in nonlinear PDEs. Jalil et al. [38] present
a systematic comparison between the generalized tanh—coth method and the (G’/G)-expansion method—applied to
both nonlinear partial differential equations and ordinary differential equations—demonstrating that the tanh—coth
method emerges as a specific case under the broader (G'/G)-expansion framework.

Integrated into mathematical modeling, fractional calculus provides a more accurate and flexible representation of
real-world processes by incorporating nonlocality and time-dependent behavior [6, 21, 43]. This combination enables
improved simulation, prediction, and analysis of system dynamics, and plays a vital role in formulating and assessing
control strategies, especially in the context of disease transmission and intervention planning [20, 26, 35, 39]. Ibrahim
et. al [32] introduced a theoretical and numerical analysis of a coronavirus (COVID-19) infection model based on a
collection of fractional differential equations. Ahmed et. al [2] developed an accurate approximation of the fractional
derivative with a non-singular kernel, and provide the numerical solution of the blood ethanol concentration system.
Adel et al. [5] presented a numerical study for the blood ethanol concentration system (BECS) and the Lotka-Volterra
system employing an accurate variational iteration method of development.

In recent years, mathematical modeling has become a cornerstone for analyzing and simulating complex systems
across domains such as epidemiology, cyber security, and environmental science. Mohammed and Zaheer [41] intro-
duced Neuro Cyber Guard, a deep neural learning-based framework that tightly integrates mathematical modeling
with machine learning to construct robust defense mechanisms against cyber threats, effectively preserving system
invariants during real-time operation. Alsalami [9] developed an Optimal Fully Connected Deep Neural Network
(OFCDNN-SA) for sentiment analysis on social media, leveraging GloVe embeddings and salp swarm-optimized hy-
perparameters to support high-dimensional data interpretation by uncovering latent structures. Hussan et al. [31]
designed a deep belief network for vulnerability detection in smart environments, adeptly capturing hidden system
interactions consistent with dynamic modeling goals. Shakir [50] employed deep learning and remote sensing for smart
sugarcane crop monitoring, showcasing the predictive power of modeling in precision agriculture. Additionally, Ahmed
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and Mustafai [7] implemented convolutional neural networks optimized by Sea Lion Optimization for vehicle detection,
illustrating how machine learning can address optimization challenges in mathematical models.

In this study, we analyzed fractional typhoid fever model using the homotopy decomposition method [24, 27], which
provides a solution to the fractional differential equations by combining homotopy theory with the Cauchy n-order
integral formula. In comparison with other methods, the homotopy decomposition method (HDM) does not require
linearization or assumptions of weak nonlinearity. Unlike the Adomian decomposition method (ADM), it does not
produce solutions in a general form, and does not involve Lagrange multipliers, which are essential in the variational
iteration method (VIM). The proposed method also has limitations: the convergence of the series solution is not always
guaranteed and can be slow for highly nonlinear or complex problems. The derived system is investigated through
graphical simulations to assess the influence of key parameters on the transmission dynamics of the disease.

The rest of the article is organized as follows: section 2 provides fundamental definitions. Section 3 discusses the
fractionalized model, equilibrium points, and their stability. Section 4 presents the solution of the proposed model.
Section 5 examines the convergence analysis of the method. Section 6 includes numerical simulations and graphical
discussions. Finally, we conclude our work in section 7. References are given at the end of the paper.

2. FRACTIONAL CALCULUS

The Riemann-Liouville (RL) fractional derivative [15], notable for its independence from the continuity requirement
at the origin and the condition of differentiability, serves as an extended form of Cauchy’s integral, ranging from natural
numbers to real numbers.

Definition 2.1. The RL fractional derivative of 7 of order 5 > 0 is defined as follows [15, 47].

1 d?

¢
F<q_5)d§q/(£‘I’)"‘”T(\I/) dv, £>0,9q-1<¢<gq, qe Z*. (2.1)

a

RLDPT () =

Definition 2.2. A real-valued function 7(£), £ > 0, is called in space C,, if 3 a real number K > v such that
7(€) = %7 (€), where 71 (€) € C'[0,00), and it is said to be in C7 if 7(?) € C,,, o € N.

Definition 2.3. The RL fractional integral of 7 € C,,, v > —1 of order 3, is defined as follows [15, 47].

£
S 7 (6)] = ﬁ / (€~ 0PI r (B)AT, 5> 0, €0, (2.2)
0

and
U [r () =7(¢). (2.3)

3. THE FRACTIONALIZED MODEL OF TYPHOID FEVER DISEASE

Since fractional models incorporate non-integer order derivatives, they account for memory and hereditary properties
of the system, making them more suitable for accurately describing complex and history-dependent phenomena such
as the spread of infectious diseases. Motivated by the advantages of fractional calculus, we reformulate the typhoid
fever model (1.1)—(1.4) into a fractional-order system using the Riemann—Liouville fractional derivative operator.

D§S(€) = ¢+ oR — AST — S, (3.1)
DS{E(€) = ASI — BE — Y E, (3.2)
DSI(€) = BE — 01 — 01 — 1 (3.3)

(=)=
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DgR(f) =6l —oR—YR. (3.4)
with initial conditions
S(O) = S(), E(O) = Eo, I(O) = Io, andR(O) = RQ. (35)

Since we are dealing with a population model, all population compartments remain positive for all £ > 0 within the
feasible region A = {S,E,I,R} € A C R%. It can be shown that all solutions are bounded in A for all £ > 0, such

that 0 < N < % This ensures that the model is epidemiologically well-posed within the region A and is therefore
justified for further analysis.

3.1. Equilibrium points. To find the equilibrium of the typhoid fever model (3.1)-(3.4) with fractional derivatives
in the sense of R-L derivative, we must set

0=¢+R—\SI— S,
0=\SI — BE — ¢FE,
0=BE —0I — 61 — I,
0=6I—oR—YR.

Solving these equations, we get two equilibrium points:
1. Virus-free equilibrium (Ej):

Ey=(S°% E° I° R") = <Z,0,0,0> .
2. Endemic equilibrium (FE;): E* = (S*, E*, I*, R*),

where,
g+ — BHY)(0+5+y)

A 9
B — (0-45-10) (0 +0) (BN B(B+0)(O+540))
ABl(o+9)(B+¢) (0+0+1)]—080 ’
I — (ot) BBA—(B+4) (0+5+1) )

a [(o+9)(B+9)(0+0+4)] =380
1 _[8BA=89[(B+4) (0+5+)]]
a ((o+9)(B+9)(0+5+y)—dB0)

R* =

3.2. Basic Reproductive Number. , The basic reproductive number (Rp), which is the average number of sec-
ondary infections caused by an infectious individual introduced into a completely susceptible population, is obtained
using the next generation matrix as indicated here using the infected compartment E and I, their rate of change equa-
tions and considering the partial derivatives of and with respect to E and I leading to square matrices and, respectively,
described as

F_<)\OS 8) and V—((ﬁgw (9+_5ﬁ+w))'

Finding inverse of V and multiplying it with F

1 B
v-1= ( (Bte)  (B+9)(O+5+7) )7

6+5+¢)
1 0 0
FV— = AS BAS .
B+y)  (B+)(0+5+9)
Introducing Eigen values and solving the determinant gives two Eigen values as follows Ay = 0 and \; = m.
The most dominant eigenvalue is Ay = 0 and A\ = % which forms our basic reproductive number. At
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disease free equilibrium Ry = m-

Theorem 3.1. Disease free equilibrium is locally asymptotically stable if less than unity and unstable if greater than
unity.

Proof. Basic reproductive number is

Ry = Ao .
P(B+Y)(O+5+9)
At Disease Free Equilibrium Ry < 1, hence
b2 <1
YB+P)O+5+y)
or,
g YOI+

Ap—p(0+5+)

Therefore, if § < %, disease free equilibrium will be locally stable.

Similarly, if Ry > 1, then it follows that
BA¢
Y(B+Y)(0+0+)
This implies that
5> V2 (0 + 6+ 1)
Ap— 1 (046 +1))

which means that disease free equilibrium is locally asymptotically unstable.

> 1.

O
4. PROPOSED METHODOLOGY
Let’s examine a fractional-order non-homogeneous differential equation represented as follows [25, 30].
D¢ [r (€] =R[r (€] +R[T (O] +h(§), 0<F<1, (4.1)
accompanied by the initial condition:
7 (&) = ¢, (4.2)

where, D? denotes RL derivative with fractional order 3, ® and R represent linear and nonlinear functions, respectively,
while h is source term. In this way, first, we transform the fractional differential equation to the fractional integral
equation

¢
1 _
T(§) —7(0) = T3 / (€= T RIF (W] + R (W] +h (W) dp. (4.3)
0

According to the given approach, the solution may be written as the following power series:

T(&p) =Y 1 (6), (4.4)

0=0

and

7(§) =lm (¢ p). (4.5)

(=)=
E)NE
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While, the nonlinear term X [7 (£)] is decomposed as
=Y pH, (1), (4.6)
0=0

where p € (0, 1] denotes the embedding parameter. H, (1) signifies He’s polynomial, which can be stated as [8, 22, 51].

1
Hg (7_0;7—177—27...77—9) = mapg [ <Zp Tk )1 , p=0,1,2,... (4'7)

Replacing equations (4.4), (4.6), and (4.7) into equation (4.3), we get
h(u )] du) . (45)

o 3
1
;)p’-’TQ(E)—T() ( ﬁ/< [ [Zp o (1 Zp 7o (1

By comparing the identical powers of p on both sides, we find solutions of various orders, leading with an initial
approximation

70 (&) = ¢ (4.9)
In this paper, we modified the beta derivative for the first time, then Equation (4.1) becomes

+ N

o0 5 o0 o0
2, PiTe (§) —7(0) =p (1“1/3 J €=’ [3? lZOPQTg ()| +RY 2 PETe ()| + 1 (1) du) - (4.10)
o= 0 o= o=
Thus, the solution of Equation (4.1) is given as
T:T0—|—7'1—|—7'2—|— ...... +7'g. (411)

5. STABILITY ANALYSIS OF PROPOSED MODEL
Theorem 5.1. Define &1, &9, @3, and P4, as well as their relationships to unknown variables.

Proof. Firstly, we reduce Equations (3.1), (3.2), (3.3), and (3.4) into integral equations, respectively.

13
S© =50+ / (€~ ) [0 o R(n) — AS(u) T (1) — () (51)
£
1 c 1
E(©) =E©)+ [ (€~ m™ WSWI() - BEG) — bEG]du, (-2
0
£
1 g 1
1€ =10)+ - / (€ = ) [BE () — 01(u) — 81() — w1 ()] dp, (5.3)
0
! 3
R(©) = RO+ 1 [ €0 I - o) ~ oR(0) i, 0 < <1, (5.4)
0
here, we have the following kernels:
By (6,8) = 6+ O R(E) ~ AS(ET(E) — ¥S(E), (5.5)
B, (€, F) = AS()I(€) — BE(E) — wE(©), (5.6)
B0
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D3 (&, 1) = BE(S) — 01(8) — 61(§) — ¥ I(8), (5.7)
D4 (5, R) = 61(€) — o R(E) —PR(E) - (5-8)
]

Theorem 5.2. ¢, &5, and P3 satisfy the Lipchitz condition.

Proof. Firstly, we show that ®; satisfies the Lipchitz condition. Let S and S; be two functions, then
[@1(£,5) = @1(& Sl = [[(¢+ o R(E) — AS(§)I(§) — ¥ S(§)) — (¢ + aR(E) — AS1(§I(E) —vS1E)I,  (5.9)

using Cauchy’s inequality, we have

[@1(£,9) — @1 (&SI < [[Y + AL OIS (&) — 51O, (5.10)

[@1(£,5) = @1 (&, S < O[S (€) = S (I, (5.11)
where,

[+ AL (§)] < ©. (5.12)
Also for @,

12 (&, E) — ©2 (&, Ev)l| = [[(AS(§)1(E) — BE(E) — v E(S)) = (ASEI(E) — BEL(E) —vEL())I, (5.13)

by using Cauchy’s inequality, we have

12 (&, E) — 2 (& E)I| < (B + ) E(€) — Er &)l (5.14)

@2 (&, E) — 2 (&, E1)l| < p [ E () — Ev(@)Il, (5.15)
where,

18 +¥)Il < p. (5.16)
Also for 5

13 (&, 1) = @3 (&, LI = [IBE(S) — 01(§) — 01(§) — I(£)) — (BE(E) — 01 (§) — 1. (§) = L(E),  (5.17)

by using Cauchy’s inequality, we have

@3 (&, 1) — @3 (&, 1) < QL) — L (O], (5.18)
where,

0+0+y| <Q. (5.19)
Also for &4

@4 (& R) — @4 (&, Bo)|l = I(61() — o R(§) — ¥ R(E)) — (61(§) — o R1(€) — P R1(§))] (5.20)
by using Cauchy’s inequality, we have

[@4 (&, R) — @4 (&, Ry)|| < £ [|R(E) = Ra ()], (5.21)
where,

lo+vl| <. (5.22)
an
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We take the recursive formula
1 &
52(6) = B1(6:S,0) + o [ (€= 17 (. Symr) . (5:23)
0
Now analyse the sequential difference of two terms

Ug (§) = 5o (§) = Sp-1(§) = @1 (£, 50-1) = D1 (£, 5,-2)

¢
e (€= (@1 (1 Smr) = B0 (1 Sa)) (524
by taking norm of Eq. (5.24), we have
1U ()] = [S¢ (§) = Sp—1 ()l
¢, (6’ 59*1) -9 (6) 5972)
¢
+1c of (€= )" (@1 (1, Sp1) — 1 (1, Sp2)) dpe ||
< HCI)I (57 S‘Q*l) - (57 59*2)”
i €= @0 80) - @ (1,52 (525)
0
and similarly, we obtain
Ve (O = 1B, (§) — Eo—1 (§)l
< |2 (€, Ep1) — P2 (&, Ep—a)|
i €= @0 Bom) — @20 B (5.26)
0
Wo (Ol = 1o (&) — To—1 (§)
< [R5 (€,1o-1) — D3 (& [p=2)|
¢
g | (i AR P )| P (5.27)
0
1P () = (1R (§) = Ro—1 ()l
< [[@4 (€, Ro— ) Dy (& Ro—2)l
¢
b []l€ =m0 @ G Ra) Ry (5.25)
0
O

Theorem 5.3. The fractional typhoid fever model has a solution, under the restriction with & as 1 + J1(&)° <
1, o+ Jz(fo)g <1, and 3 + Jg(&)f <1

Proof. Since Egs. (5.25), (5.26), (5.27), and (5.28) are bounded and the kernels @, &3, P53, and P4 satisfy the Lipchitz
conditions. As a result of the outcomes of the recursive technique, we have
1T () < 1S (0)] {S1 + J1 (&)} (5.29)

(&)
ENE
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As a result, the aforementioned results are both continuous and present. Furthermore, to show that solutions of Eq.
(3.1) as described before, we have

S(6) = 5(0) =5 (8) = o (€), (5.30)

thus, we have

(1(£,9) = D1 (£, 5-1)) @
= § , 5.31
0o = T e ™ (@ (0.9) — 1 (1.5, 1)) >3
0
or
9 (I < [1(@1(€,5) — P1(&, So—1))l
H - 5.32
+1: Hf (&= ) (@1 (1, S) — @1 (1, Sp—1)) || i, (5.32)
0
or
oo (O <SS = So-all + €T (IS = So-all, (5.33)
by recursively solving, we obtain
l90 (€)] < {S1 + e} e+, (5.34)
thus at &
lpe ()l < {S1+ &}, (5.35)
as lim o — oo, we have
9 ()| — 0. (5.36)
Thus, we have proven the existence and can establish further findings in the same way. O

Theorem 5.4. The fractional typhoid fever model possesses a unique solution.

Proof. To demonstrate the uniqueness, we suppose that there is another set of solutions for the system (3.1), (3.2),
(3.3), and (3.4) which are provided by S (§), E (&), I(§), and R(£). Firstly, we consider

S(§) = 51(§) = (1 (£,5) — @1 (& 51))
'3

1 2
i [ (€ (1,8) ~ 1 S0 (537)
0
taking the norm of Eq. (5.37), we obtain

15(8) =S < [[(21(E,5) — @1 (€, 5))

1 1
o [[{e— w7 @) - @ G5} an. (5.39)
0

Since the solution is bounded, the Lipchitz condition provides.

S(&)=81(5). (5.39)
Similarly, we obtain

E (&) =Ei (), (5.40)
and

I(§)=1(¢). (5.41)
an
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Hence, we conclude that the model has unique solution. O

6. APPROXIMATE SOLUTION OF TYPHOID FEVER MODEL

According to suggested technique, we have

- 4 — b AN |
>ors@ =50+ £ [

o0 g o0
ZngQ(g):E(O)—i_IZ‘Z/(g_M)g_l[ (ZPQS Zpgl ) (B+2) <ZP9E )]d/m (6.2)

0=0 0=0

o0 g o0
> p, (&) =1(0)+ F% / (€—pt lﬂ (ZpQEQ (u)) 0+ +) (Zpgl )] dp, (6.3)
0=0 0

and
£

fijRg(O:R(owIi/ &= 1[ (Zpgl ) (0+1) (ZpQR )] (6.4)

0
Computing the coefficients of different powers of p on both sides, we get

PS50 (€)=5(0),  S(0) =5, (6.5)
P By (€)= E(0), E(0)=Ep, (6.6)
Pl € =10), 10)=T, (6.7)
and
P Ro(€) = R(0)  R(0)=Rq (6.8)
Also,
] 13
YGRS / (€ — )" 6+ o Ro (1) — MSolp)Iop) — S (1)) (6.9)
0
1 £
PB© = / (€ — 1) NSo(w) o (1) — (8 + ) Bo(u)]d, (6.10)
0
1 £
P - o / (€ — 1) [BEo () — (0 + 6+ ) To ()]s, (6.11)
0
an
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1

o [ €= Bl = (o + ¥) Ro(i0)ld (612

p' iRy (&) =

o

in the same manner

¢
P 520 = o [ (€= T o+ oRal) = ASali)Ti () ~AS()o(w) — S ()] d (6.13)
0
.
P’ By (&) = T / (€= 1) HIN(So () Iy (1) + A (St () Io (1) — (B + %) By (1)) dps, (6.14)
0
-
Pin© =1 0/ €= 1) [BEY (1) — (0+ 6+ V)11 (w)]d, (6.15)
.
P Re () = o [ (€= 7 B0 () — (o + )R (0l (6.16)
0
L -
p° Ro/ E—p) 7 [+ oRe (p) — /\j:O (S5 (1) Io—j—1 () — ¥Sp—1 (u)] du, (6.17)
] e
p°:E Ro/ E—p) [Ajzo Si () Lo—j—1 (1) — (B+ ) Ep—1 (u)] dp, (6.18)
.
R AGE / &= 1) T [BE L (1) — (046 + ) o1 ()]dp (6.19)
PR (€)= o / (€ =) (011 () — (0 + )Ry (w)]dp, (6.20)
0
hence, the solution of proposed model is given as
SE)=So+S5S1(§)+52(8) + ... (6.21)
E@)=Ey+E1(&)+E2(8)+ ... (6.22)
TE) =Io+ 11 (€) + I (€) + oo (6.23)
R(E=Ro+Ri1(§) +Ra(§)+ oveennn (6.24)

(=)=
E)NE
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7. RESULTS AND DISCUSSIONS

This section presents the numerical results and analytical behavior of the proposed fractional-order typhoid fever
model, solved using the homotopy decomposition method (HDM). The model incorporates the Riemann—Liouville
fractional derivative and accounts for memory effects that are essential in disease dynamics. All simulations are
based on the following parameter values: ¢ = 0.75,5 = 1.99,¢ = 0.02,0 = 0.1503,\ = 0.0125,§ = 0.625, and
o = 0.125, as referenced in prior studies [34]. Figures 2(a), 3(a), 4(a), and 5(a) illustrate the temporal evolution of
the susceptible S(£), exposed E(£), infected I(£), and recovered R(£) populations for varying fractional orders ¢ €
{0.8,0.85,0.9,0.95,1}. In Figure 2(a), the number of exposed individuals increases as the fractional order approaches
one, indicating that the disease model behaves more like traditional integer-order dynamics. Figure 3(a) shows that
vaccination consistently reduces the number of infected individuals, with this effect being more pronounced at lower
fractional orders, where memory effects are stronger. In Figure 4(a), the recovered population grows over time in
all cases, but the rate and stabilization point differ. Lower fractional orders result in slower recoveries and longer
stabilization times, while higher orders lead to faster recovery rates. Figure 5(a) demonstrates that the total number
of cases remains significantly lower when memory effects are more prominent. Collectively, these figures highlight
that models incorporating stronger memory effects not only reduce the number of infections but also enhance the
effectiveness of vaccination, underscoring the power of fractional calculus in understanding and controlling disease
spread.

Figures 2(c), 3(c), 4(c), and 5(c)show the impact of varying the transmission rate 5 on model dynamics. For
increasing values of 8 € {0.0199,0.199,1.99}, there is a notable rise in the exposed E(&) and infected I(£) populations,
along with a faster decline in the susceptible S(&) class. These results confirm that the transmission rate is directly
proportional to disease spread. As [ increases, the infection becomes more aggressive, leading to a sharper rise in
prevalence and faster growth in the recovered population due to the higher turnover of infected individuals. This
sensitivity to 8 highlights the importance of interventions such as vaccination, public health campaigns, or isolation
strategies in reducing effective transmission. Figures 2(d), 3(d), 4(d), and 5(d) show that a higher infection interaction
rate A intensifies contact-based transmission, causing the exposed and infected populations to peak earlier and at higher
levels. Consequently, the susceptible population declines more rapidly, while the recovered population grows at an
accelerated rate.

Figures 2(e), 3(e), 4(e), and 5(e) demonstrate that increasing the recovery rate 6 leads to a lower peak and shorter
duration for the infected compartment (), while accelerating the growth of the recovered compartment R(£). This
increase in 6 also slows the depletion of the susceptible class S(&), as fewer infectious individuals are available to drive
new infections. These dynamics indicate that higher values of 6, whether due to improved healthcare or enhanced
natural immunity, effectively reduce the infection burden and assist in epidemic control.

Figures 2(f), 3(f), 4(f), and 5(f) assess the influence of the natural mortality rate 1. As 1 increases, all compartments
display reduced values over time, reflecting the background attrition of the population due to natural death. Further,
We compared the solution obtained by the proposed method (using up to ten terms) with that of the classical RK-4
method for the integer-order case, as shown in Figures 2(b), 3(b), 4(b), and 5(b). These figures demonstrate that
the solutions from both methods are in close agreement, validating the homotopy decomposition method as a robust
and accurate semi-analytical tool for solving fractional epidemiological models, even in the presence of nonlinear and
complex system behavior.

Finally, the traveling wave solutions obtained from our fractional-order model exhibit realistic epidemic wave struc-
tures characterized by sharp onset, pronounced peaks, and gradual declines. The fractional order serves as a memory
parameter lower values delay and flatten the peak, reflecting slower immune or behavioral responses. The model
provides explicit expressions for wavefront propagation speed and peak infection magnitude, allowing quantitative
forecasting of outbreak timing and intensity based on fractional dynamics. These analytical insights can inform
timely vaccination campaigns or sanitation measures before peak incidence, thereby enhancing the practical utility of
fractional epidemiological modeling.
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8. CONCLUSIONS

In this article, we have established criteria to examine typhoid fever models from qualitative and analytical aspects.
We have demonstrated the existence and solution of our suggested model by using Banach theorem. To examine the
transmission and control dynamics of typhoid fever, we developed an algorithm to obtain semi-analytical solutions for
the proposed fractional-order model. The approximate solutions, represented in truncated series form, are illustrated
graphically to provide deeper insight into the qualitative behavior of the disease dynamics. Finally, we conclude that
the proposed technique is effective in studying biological models in a deeper way. Looking ahead, this research lays
a foundation for future investigations into the application of fractional calculus in modeling other infectious diseases
characterized by complex dynamics. Further studies may incorporate regional variations, demographic factors, and
the impact of emerging interventions such as new vaccines and improved sanitation technologies. Expanding the
scope of the current model can deepen the understanding of disease transmission mechanisms and contribute to the
development of more effective public health strategies.
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