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Abstract , N

This paper presents a numerical approach based on Cubic Trigonometric B-spline (CuTBS) interpolation for solv-
ing Time-Fractional Diffusion Equations (TFDEs) involving the Caputo-Fabrizio fractional time derivative. The
CuTBS-based scheme effectively combines accurate spatial interpolations with a robust finite-difference discretiza-

tion for the fractional derivative, ensuring high precision in both temporal and spatial domains. The method is
unconditionally stable and demonstrates second-order convergence in time and space. Numerical experiments are
conducted to validate the applicability and feasibility of the technique.
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1. INTRODUCTION

Classical diffusion equations, while successful in many applications, fail to adequately capture complex diffusion
processes that exhibit non-local behavior, memory effects, and anomalous scaling properties. In particular, these
traditional models assume Markovian processes-in which the future state depends only on the present state, ignoring
historical influences that may be crucial in many real-world phenomena [9].

Unlike classical diffusion where mean-squared displacement grows linearly with time (r2(t) oc t), anomalous diffusion
follows a power law relationship (r2(t) oc %), where « is not necessarily equal to 1 [21] where o < 1 implies subdiffusion
which occurs in crowded environments or porous media where particle movement is hindered, o = 1 implies normal
diffusion which corresponds to classical Brownian motion, 1 < a < 2 implies superdiffusion which is associated with
systems where long jumps are possible and o = 2 implies ballistic motion which represents constant velocity movement
[4]. This fundamental difference requires the use of fractional-order derivatives to accurately model this behavior [20].

Unlike Riemann-Liouville or standard Caputo derivatives that use singular kernels, the Caputo - Fabrizio fractional
derivative (CFFD) employs a non-singular exponential kernel that offers several benefits, such as better representation
of heterogeneities in materials and media, more effective modeling of memory effects with exponential decay rather than
power law, the ability to capture complex transition phenomena between different diffusion regimes and mathematical
advantages in terms of analytical solutions and numerical implementation [1, 5, 13, 38].

The CFFD represents processes where the influence of past states diminishes exponentially over time. This char-
acteristic makes it particularly suitable for modeling diffusion in heterogeneous porous media with complex geometric
structures, transport processes in biological systems with cellular obstacles, heat transfer in materials with spatial
memory, groundwater contamination and flow in geological formations and financial and economic systems exhibiting
non-Markovian behavior [19, 27].
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The one dimensional non - homogeneous time-fractional diffusion equation (TFDE) considered in this paper is given
by,

CEDIu(x,t) — tuge = flz,t), (2,0)€Q, 0<vy<1, (1.1)
where

Q= [a,b] x [0,7]
with initial condition (IC),

u(z,0)=g(z), a<z<b, (1.2)
and boundary conditions (BCs),

u(a,t) = gi(t), u(bt) =g2(t), 0<t<T. (1.3)

Here, the diffusion exponent is denoted by <y, which is a key parameter in characterizing the dynamics of diffusion
processes. f, g, g1, and go are given functions of the variables assumed to be continuous and w is the unknown
function, % D u(z,t) is the Caputo - Fabrizio fractional derivative (CFFD) of order + given by [7]

Y
CED;YU(QL',IJ}) = %U(l',t)
1.4)
R(w)(/i d o, (
= — —_— y—1 1
=/ aku(gv,k) e dk, ~v€(0,1),

where the normalization function R(v) satisfies the condition,
R(0)=R(1)=1.

The mathematical framework for TFDEs is grounded in fractional calculus, which extends traditional calculus to
non-integer order derivatives. The Riemann-Liouville and Caputo definitions are the most commonly used fractional
derivatives in TFDEs. Oldham and Spanier [25] in 1973 provided foundational insights into fractional calculus,
establishing a robust theoretical backdrop for subsequent studies. Following this, the works of Podlubny [31] in 1998
and Gorenflo et al. [11] in 2002 further elucidated the properties and applications of fractional derivatives, emphasizing
their utility in modeling real-world phenomena characterized by memory and hereditary effects.

Several researchers have investigated the diffusion equation with the Caputo time fractional derivative in place
of the first-order time derivative. In 2006, Zhuang and Liu [51] used a backward difference method to solve TFDE.
Sweilam et al. [43] introduced the Crank-Nicolson method to numerically solve TFDEs in 2012. Sun et al. [44] applied
a semi-structured finite element method (FEM) to address a range of TFDEs in 2013. Mustapha et al. [24] in 2014
created a discontinuous Petrov-Galerkin method to approximate solutions to TFDEs. Esmaeili and Garrappa [10] in
2015 formulated a pseudo-spectral method for numerical solutions of TFDEs. Tuan et al. [46] in 2019 investigated the
inverse problem for 1D TFDEs using a modified regularization method in the frequency domain. An ideal Galerkin
FEM in the absence of any regularity assumptions on its real solution was created by Liu et al. in [18] after studying
the well-posedness and solution regularity of a variable-order multi-term TFDE in 2022. In 2023, Roul et al. provided
a high-order computing technique for a TFDE’s numerical solution [36], and in 2024, Poojitha and Awasthi [29, 30]
presented a numerical approach based on an operational matrix of Legendre polynomials to solve the class of TFDEs
and a spectral approach based on derivatives of orthogonal polynomials to solve the time fractional convection -
diffusion - reaction equations.

In 2016, Atangana and Algahtani explored the groundwater contamination equation and its application in [3],
where they established a numerical method for the advection-dispersion equation having CFFD in space and time.
In 2017, Mirza and Vieru [22] solved the 2D convection equation in the Caputo-Fabrizio sense using the Laplace
and Fourier transforms. In 2019, Liu et al. [17] used a finite difference method (FDM) to analyze and design a
quasilinear temporal fractional parabolic PDE having a non-singular kernel and using an iterative Laplace transform
technique, Shaikh et al. [40] examined the estimated solutions of the Fisher and Fitzhugh-Nagumo equations that
incorporate CFFD. To estimate the duration and extent of the spread, Panday et al. [28] in 2022 investigated the
dynamics of the Coronavirus disease 2019 (COVID-19) virus in the population of the human race. Using the CFFD,
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the suggested fractional mathematical model was numerically investigated using the Genocchi collocation approach. In
[41], a non-singular derivative called the Caputo-Fabrizio fractal fractional derivative was used to examine the tumor
growth model both statistically and numerically by Singh et al in 2023 and in 2024, Onitsuka and El-Fassi suggested
a generalization of CFFD [26].

The ability of B-splines to handle complex BCs and irregular geometries enhances their applicability in solving
fractional differential equations. As research in this area grows, B-spline interpolation is a valuable tool for advancing
the numerical analysis of fractional differential equations, providing insight into various applications across scientific
disciplines.

Recent advances in B-spline methodologies have significantly expanded their applicability to fractional differential
equations. In 2017, a cubic trigonometric B-spline (CuTBS) collocation technique was introduced by Yaseen et al.
[47] for the numerical solution of the non-integer order sub-diffusion problem, the authors of [48] put forth an effective
numerical technique to approximate the solution of a time-fractional diffusion-wave equation that includes reaction
components which are founded on cubic trigonometric basis functions and the nonlinear Burgers’ equation was solved
using cubic B-splines (CBS) after being linearized to the Heat equation through the Hopf-Cole transformation by
Lakshmi and Awasthi [15]. Mohyud-Din et al. put together extended CBS in [23] in 2018 to create a difference
scheme to approximate solutions of the time-fractional convection equation, and Lakshmi and Awasthi solved the
one-dimensional nonlinear modified Burgers equation using a combination of quintic splines for spatial discretization
and the Crank-Nicolson scheme for temporal discretization in [16]. The applications of 5th-degree non-polynomial
spline functions for the numerical analysis of the 4th-order fractional ordinary differential equations with product
terms were suggested by Khalid et al. [14]. An innovative method for the approximate solution of a class of 4th-order
time-fractional PDEs was described by Amin et al. in [2] where time discretization was accomplished through the use
of FDM. In contrast, spatial discretization was performed using the non-polynomial quintic spline approach. In 2020,
Yaseen and Abbas [49] published a numerical method based on cubic trigonometric B-spline functions for the time
fractional Bateman—Burgers problem. Later, Roul and Goura presented an efficient B-spline collocation technique
to address the one-dimensional nonlinear Bratu problem [35] and developed a high-order numerical method to solve
the time-fractional reaction—diffusion equation, where the fractional derivative was interpreted in the Caputo sense
in which a quintic B-spline collocation scheme was used for spatial discretization [33]. In addition, Roul developed a
higher-order numerical method for pricing Asian options with a fixed strike price [32]. The original two-dimensional
PDE that governed the option value was first reduced to a one-dimensional PDE. The time domain was discretized
using the Crank—Nicolson scheme, while a quartic B-spline collocation method was applied for spatial discretization.
In 2022, Roul and Kumari addressed the numerical solution of a broad class of nonlinear singular boundary value
problems (SBVPs). The approach began by reformulating the original problem to handle the singularity, followed by
the development of a numerical scheme using quartic trigonometric B-spline functions to solve the modified equation
[34].

Recently in 2023, Roul et al. [37] solved a class of TFDEs numerically effectively. The CFD discretization was
performed using the L1 method; while the space discretization was performed using a collocation technique based on
the sextic B-spline basis function. In 2024, the authors presented a novel numerical technique based on cubic spline
interpolation in [12] to solve Caputo-type fractional differential equations.

This study introduces a CuTBS collocation technique to determine numerical solutions to TFDEs. 60— weighted
scheme is employed to implement the proposed algorithm. This approach utilizes the Caputo—Fabrizio derivative in
conjunction with a forward difference method for time discretisation and CuTBS functions to interpolate over the
space grid. The analysis of convergence and stability is also addressed to demonstrate that the method does not
increase errors. Numerical experiments are conducted to validate the applicability and feasibility of the procedure.
The results are juxtaposed with [39], which is solved using the CBS collocation technique. The algorithm proposed is
new and has not yet been documented in the literature to date. The errors are also much smaller compared to many
other existing methods. Also, it is a very efficient method in terms of computation, as it is not much complex.

The subsequent sections of the paper are structured as follows. In Section. 2, the CuTBS numerical method is
derived and formulated. The analysis of stability and convergence for this scheme is detailed in Sections. 3 and 4
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4 7. KAMMAPPA AND A. AWASTHI

respectively. In the last section, the numerical results are discussed and compared with [39] and the final section
presents the results and conclusions of the study.

2. FORMULATION OF NUMERICAL METHOD - THE CUTBS

Divide the domain of time, [0,7] into N equal intervals of length k = %, using points, 0 =ty < t1 < ... <ty =T,
where t,, = nk, n=0,1,2,..., N. Similarly, divide the domain of space, [a, b] into M equal intervals of length, h = b*v“
using the points, a = 2y < 1 < 23 < ... < xpr = b, where x; = a+ih, ¢ = 0,1,2,..., M. Let u(x,t) represent
the analytical solution and U(x,t) denote the numerical solution of the specified differential equation. Then for the
solution u(z,t), the approximation, U(x,t) in terms of CuTBS functions can be represented as

M+1
u(a,t) Uz, t) = Y pi(t)Ti(x) (2.1)
i=—1
where p;(t) are unknown control points to be determined by the collocation method employing initial and end conditions
and T;(x), the CuTBS functions are specified as [50]

Pxi), © € (s, wipa]
L fa) (f(z)h(@ive) + M@igs) f(@ig1)) + M(@ipa) F2(@ig1), © € [Big1, Tiga]

Ti(x) = — 2.2
(=) K | M) (f(@ip1)M(@igs) + h(2iga) f(zig2)) + f(iti)hz(xwrs), T € [Tipo, Tiys) , 22)
W3 (iya), T € [Tiys, Tiya.
where
f(ai) = sin © ;x :
hw:) = sin == = —f(=:)

h
K = sin — sin hsin —.
2 2

The support of the CuTBS function, T;(x) is presumed to be [z;,2;14]. Each T; is non-zero and piece-wise cubic
throughout four successive sub-intervals and zero elsewhere. Thus, each subinterval [z;, ;1] comprises three segments
of T;(z). T; is also characterized by geometric properties such as partition of unity and C? continuity. Furthermore,
T 1, Ty, T1, ..., Tar+1 have been constructed to function as a basis for the space interval [a, b]. Using Equations (2.1)
and (2.2), the values of U(z,t) and its required derivatives at nodes are ascertained with the parameters, p; as follows:

Ui =11 [pic1(t) + pig1(t)] + rapi(t) ,
(Uz)i =73 [pis1(t) — pi—1(@)] (2.3)
(Usza)i = ra[pi—1(t) + pixa ()] + 75pi(t)

where

~ 1l—cosh

"7 Ssinhsin 2

B 2

r273—4sin2%’

B 3

r3_4sin%7

3( 3sin®L-2

7’4—1 sin2%—sin2% ’
3

rs = —

2h"
2(1 4 2cos h) tan® §
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By substituting Equation (2.1) into Equation (1.1),
CEDJU(w,t) — Uy = f(,1).
The Caputo-Fabrizio fractional-time derivative in the above equation is discretized at t = t,, 1 as follows :

1 tnt1 A(tng1 =)
CEDIU (2, tpy1) = —— U,(z,v)e T dy
L=vJo
n

1 tit (g1 -1)
= mz‘/ Uy(z,v)e” -1 du.
j=0"t

The above equation is revised using the forward difference formulation as follows:

n i1 (g —»)
DU (2, tn11) = 1 Z (2, tn—jy1) U($7tn7j)]/ e T dy £ Ep!
o ]:0 tj
1 - 6% - L n+1
= T [U($7tj+1) - U(x’tj)] et +E.
=0

As a consequence,

CEDYU (2, tni1) = ’“L Zz (@ tnji1) — U@ tnj)] + EPF

= % Zlnfj [U(x,tj+1) — U(Z’,t])] 4 EZZ’+1.

where
Yk
p=1—e71
Yik
lj =ev-1

Furthermore, the truncation error is specified by [45],
2
B s 2

T 2(1—9)?
= ck?.

Here, ¢ represents a constant. Based on the characteristics of the exponential function, it is evident that

0 1,>0,j=01,2.n,
o 1l=Ig>1l1>1ly>.. >l],l%0asj%oo,
® ZJ ollj =lit1) +lnyr = 1.

The 0 - weighted discretization for Equation (2.4) using Equation (2.6) is articulated as

ki go Uz, tjp1) — U@, ;)] — 0Ue (2, ") — (1 — 0)Use (2, ") = f(a, t"+1).
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Discrete the above equation implicitly, that is, for 6 = 1,

RN n n
ky & <mﬁwwmﬁn—vmwm—0@w¢+w=f@¢+H
N - j+1 J Mot oy n+l | pntl
i XZ:O[ i (U; Ui)}+k7(U1 UP) = (Uga)? T + f] (2.9)
n—1 . )
— U = B(U) ! = U = Y [ty (U = UD)] + 817
j=0
where
k
g==1,
i
U = U(wi, tn)
and

[ = F@iytnga).
Substituting Equation (2.3) into the above equation, we get
71 [Pi-1(tnt1) + Pit1 (tng1)] + 12pi(tns1) — B [rapi—1(tns1) + 15piltnr1) + rapiv1(tng)]

n—1

=11 [pic1(tn) + pig1(ta)] + r2pi(tn) = Y [lnej (ripica(tjsn) + r2pi(tig) + rapiva (1)
7=0

—ripi—1(ty) — rapi(t;) — ripisa ()] + B!

= G I a8 (a5l ) = () (2.10)

- Z [l"—j (Tlp +rop] il =l — rep] - rlpfﬂ))} AL
= (" 57“4) (P} Sy +p?:11) + (ro =Brs)pi Tt =r (P +Dpityr) + 7207
- Z [n ; (7"1 [pﬂﬂ +pli =l —p{H} + 72 [ JH pim + B i =0,1,2,..., M,

where
Py = pi(tn)-

This system comprises (M + 1) linear equations in (M + 3) unknowns. BCs (Equation (1.3)) are used to obtain the
other two additional equations to obtain the unique solution.

U (a,thrl) =U (]90, n+1)
=r (pn+l +pn+1) e p6L+l ’

U (b7 tn+1) =U (pM7 tn+1)
=r (pM L +pM+1) 4 ,r2pn+1.
As a result, a matrix system of (M + 3) x (M + 3) dimension is achieved,

P =B (g = lamjr] V) + 1p® | +F (2.11)

j=1
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where
I T1 T2 1 0
—Bry ro—Prs ri—pPry 0
A 0 ry—0rqy To— fBrs ... 0
0 0 0 ro — Ors
I 0 0 0 T9
[0 0 O 0 0
T1 T2 T1 0 O
B = 0 re T2 0 0 7
0O 0 0 .. r9 7T
|10 0 0 0 0
n n+1
P-1 g1
Po Bfo
p’n _ D1 and F — ﬂfl
PM Bfm
Pm+1 g2

To solve the above system of equations, the initial vector,

0
pP-1

Po

bPm
PM+1

is required and it is obtained by using the ICs as,

(U)gig(l’o),
— (@), i =0,1,2,., M,
( =9 )

The matrix representation of the equation system described above is as follows:

Ccp’=D
where
—T3 0 T3 0 0
T1 Te T1 0 0
C . T T2 0 0
0 0 0 e T2 T1
0 0 O 0 73

o

1 — Bry

T1

(2.12)

(2.13)
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and

g(war)

9'(xm)
Equation (2.13) is solved using MATLAB’s mldivide operator for p°. All the numerical calculations are performed
with the help of MATLAB.

3. NUMERICAL STABILITY OF PROPOSED SCHEME

Stability refers to the property that any errors introduced during the computational process diminish or remain
bounded as the procedure progresses [6]. Duhamel’s principle is a mathematical tool that simplifies the study of
inhomogeneous linear partial differential equations (PDEs) by relating their behavior to the corresponding homoge-
neous equations [42]. For stability analysis, this principle states that the stability properties of the inhomogeneous
problem are the same as those of the homogeneous problem. Consequently, it is sufficient to analyze the stability of
the homogeneous equation (f = 0) to establish the stability of the complete inhomogeneous problem. For the TFDE
(Equation (1.1)), which is linear, the stability of the numerical scheme can be effectively analyzed using the Fourier
method. The error at a grid point, denoted by €, is defined as

79
P =u'—U" i=1,23,..M—1,n=0,1,2,...,N, (3.1)

7 K2 3

and can be represented as a vector:

n

EM—1
Using this definition, the error equations of Equation (2.10) is derived,

(r1 = Bra) (5 + e5!) + (ro = Bra)ef ™ =11 (ef-y + €efq) + rae]

B s (ra [ 41+ et Sdd — ] o [ = ] (3:3)
§=0

Boundary and initial conditions then become,

e =g1(tn), €y =92(tn), n=0,1,2,.., N, (3.4)
and

& =g(x;), i=1,2,3,.., M. (3.5)
Establish grid functions via the Fourier approach as outlined:

n . _h < gp. 4+ h i _

R LAV E RN Sl T @0
The Fourier series may then be used to express € as

€"(x) = i n"(m)ezzﬂfi, n=123,..,N, (3.7)
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where

2rmxi

b
) = [ @R (3.8)

:b—a

Computing the ||.||2 norm,

M—-1

le"llz = | Y hlepl?

i=1

atl M-1 .+
_ / e dz+ 3 /
a i=1 YT

h
2
b
[ e
a

and utilizing Parseval’s identity in the context of the discrete Fourier transform [8],

h
2

b
|e”|2dx+/ len|2dx
b—h
2

b o0
[ lepas =37 prmp
a m=—o0
we obtain
"3 = > I"(m). (3.9)

The solution is expressed through Fourier series analysis in the following manner.

e =n"e”™, (3.10)
where o € [—m, 7] and

I=v-1.

Using the expression above in Equation (3.3),

(r1 — Bra) (nn-i-lea(i—l)hI + nn+1ea(i+1)h1) + (o — Brs)nnﬂeaim = (nneo(i—l)hl + nnea(i-i-l)hI)

n—1
+ Tznneaihl o Z lln_j (7"1 [nj+1eo(i71)hl + nj+1ecr(i+1)hl _ njea(ifl)hl _ njea(iJrl)hI}

= (3.11)

+ 7y [anrlecm'hI _ njeoihl] >] )

oihl

Dividing the above equation by e and using the trigonometric identity,

eohI +

—7 = 2cosoh,
e

and consolidating similar expressions, we obtain the following.

n—1
B (2rycosch +15) 1 ) .
1— g N L (P =l 3.12
( 211 cosoh + 1 " " jz—:o i (m ) (3.12)

With no loss of generality, let
o=0.
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Hence, Equation (3.12) simplifies to

B 2ry + 15 n n nl . .
(1 B ér +r*) N =" =Y e (P =) (3.13)
1 2 =
Subsequently,
n—1 i 1
n _ L (it — I
,',ITL+1 — 77 2370 n(sj (77 77 ) , (314)
where
5:1_ ,8(2T4+T‘5)
2ry +1r9

It is important to note that

B(2ra+rs)  3Btan® &

2r1 4+ 1o 4

Then

Proposition 3.1. If n* (k = 0,1,2,..., N) represents the solution of Equation (3.14), then the magnitude, |n*| is
bounded by the initial value |n°|, i.e.

" < 10°| V &
Proof We give a proof by induction on k. For, k = 0, the Equation (3.14) gives, n! = %0. Then,

0
bl
< In°|
because § > 1. Assume |p7| < |°] for j = 1,2,3, ..., k. Then

n—1 ; ;
| < "] = 32720 lny (7] = 1)

5
0
<l
=75
< |n°

Theorem 3.2. The scheme (2.10) is unconditionally stable.
Proof. Using the relation (3.9) and the above proposition, we get
le"]]2 < |2 n=0,1,2,...,N .

The proposed method is hence unconditionally stable. O

(=)=
E)NE
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4. CONVERGENCE ANALYSIS OF PROPOSED SCHEME

In this section, convergence estimates are provided for the time-discretized problem (2.9). Similarly to the approach
taken in the analysis of stability, the convergence study is conducted exclusively for the homogeneous problem.

Theorem 4.1. Consider the exact solution {u(x,t,)}) =5 of Equation (5.1) and the time-discrete approzimation
{U™YNZ4 corresponding to Equation (2.9). Define the error in the (n + 1)-th step by

" =zt ) - UM

Then, there exists a constant ¢ such that the following error bound holds:
le™ | < D + ck?,
where k is the discrete time increment.

Proof. As in the previous analysis, the case where the source term f = 0 is considered. Note that the exact solution
u(z, t,) satisfies the same semi-discrete scheme as given in Equation (2.9). Therefore, the exact solution at time ¢,,14
is expressed as:

n

w(@,tng1) = D (Inoj = n—j)u(@, ;) + lpu(@, to) + Btias (T, tny1). (4.1)
j=1

Similarly, the numerical approximation at the same time level is given by:

n
U™ =3 (e = bogs)U7 +1,U° + BUL

j=1
Subtracting the above equation from Equation (4.1) gives the error equation:

n
ol — Z(ln—j —lpjy1)€ + 1" + Bertt 4 B
Jj=1

n
= (nj —ln—jy1)e + Belt 4 EfH
j=1

where
e" =u(x,t,) —U"
and
e’ =0.
Here, E,’;H denotes the truncation error in step n + 1. Now take the inner product of both sides of Equation (4.2)
with e, 1. Using the identity,
(x,2) = ||z||* > 0,

we get:

||en+1H2 _ Z(anj _ ln7j+1)<€j’ en-‘rl) + ﬁ<eg;-1’ en+1> + <E;€l+1’ en—&-1>. (43)
j=1

By applying the identity,

<uzxa U> = —<’LLI,’LLm>,
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Equation (4.3) is simplified as:

lem T H|* = Z(lnfj —lnjr)(e, ") — Blel, en) + (Bt et
j=1
=3 ey = a6, ) = Bllel | + (Bt ety
j=1
<3 sy — lomjan) (e, ™) 4 (BpH et

<
Il
—_

Finally, applying the Cauchy—Schwarz inequality,

(@, y) < lz[lllyll;

we attain
n
||€n+1H2 < Z(ln_j — ln—j+1)||€JH||en+1|| + HEIZL+1||H€TL+1H
j=1
Dividing by ||€,+1]|, a bound for the error at time step, n + 1 is obtained as :
n
lemsrll < Dty = g lle? BRI
J=1

Introducing

Dy = max fles])

we acquire,

n
lensall < Du Y lumy = bamgn + [ EZ
j=1

= Dy(1—ln) + | B
Using the relation 1 —[,, < 1 and Equation (2.7),
lentall < Dy + B
< D + ck?,
where

D= max D,.
0<n<N

5. NUMERICAL RESULTS AND DISCUSSIONS

The section reports the numerical results of the problems solved using the method presented in this paper. The
computational accuracy of the method is evaluated using the error norms, Ly and L., as follows:

Ly = ”Uexact _ UN”2

M
hZ(Uiemact _ UiN)Q ,

=0

Q
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TABLE 1. Absolute errors when M = 80, t =1, kK = 0.01 and v = 0.5 at several space grid points of
Example 5.1.

x Approx Sol Exact Sol Absolute Error
0.1 3.823449453735425 3.823452746534693 3.292799 x 10~
0.2 3.939678565149819 3.939684586619215  6.02147 x 1076
0.3 4.068132491048232 4.068140636035048  8.14499 x 106
0.4 4.210096914703770 4.210106526100315 9.611397 x 10~
0.5 4.366992742517661 4.367003099159174  1.03566 x 10~°
0.6 4.540390325586540 4.540400628849554  1.03032 x 10~°
0.7 4.732025176970544 4.732034535929522  9.35896 x 106
0.8 4.943815341967077 4.943822756951513  7.41498 x 1076
0.9 5.177880595237690 5.177884939615995  4.34438 x 1076

and
Loo — HUezact o UN”oo

~ max |UF* —UN|.

0<i<M
Additionally, the Order of Convergence (OC) in both temporal and spatial directions is calculated as log, ’5::((:?)
and log, ‘f:((gi)) .
Example 5.1. Consider the TFDE,
EDIu(x,t) — gy = flz,t), (2,0)€Q, 0<vy<1, (5.1)
where

Q=10,1] x [0,1] ,
with IC,
u(z,0)=1+4+¢€", 0<z<1,
and BCs,
w(0,t) =1+e™7, u(l,t)y=eders, 0<t<1,

for
fot) sinhﬁ—v y
r,t) = ———¢e",
1—n~

Equation (5.1) has the exact solution,
u(z,t) =e* + et |

The absolute errors and numerical results of this example at several spatial grid points with M = 80 and 100, v = 0.5
and 0.3, and k£ = 0.01 at ¢t = 1 are presented in Tables. 1 and 2 respectively. Table 3 presents the error norms for
M =64, k=0.01, v € [0,1] and v = 0.6 across various time levels. Tables. 4 and 5 compare convergence orders with
those documented in [39] for both spatial and temporal directions. Figure. 1 compares the exact solution with the
numerical solution for Example 5.1 at various points in the temporal grid, with v = 0.3 and 0.5 and M = 32. Figure.
2 presents a space-time plot comparing the numerical and exact solutions for M = 90, £k = 0.01, v = 0.5, and ¢t = 1.
At t = 1, Figure 3 illustrates the 2D and 3D error profiles and Figure 4 illustrates the exact and approximate solutions
for K =0.01, M = 16, and ¢t = 1, which correspond to a variety of ~ values.
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14 7. KAMMAPPA AND A. AWASTHI

TABLE 2. Absolute errors when M = 100, ¢ = 1, k = 0.01 and v = 0.3 at several space grid points
of Example 5.1.

Absolute Error
2.31918 x 10°©
4.22326 x 10~
5.690896 x 106
6.69247 x 10~6
7.18934 x 1075
7.13299 x 10~
6.46405 x 106
5.11116 x 106
2.98964 x 106

Exact Sol
2.640233927330858
2.756465767415380
2.884921816831213
3.026887706896480
3.183784279955338
3.357181809645719
3.548815716725687
3.760603937747678
3.994666120412160

x Approx Sol
0.1 2.640231608151269
0.2 2.756461544159319
0.3 2.884916125935474
0.4 3.026881014425153
0.5 3.183777090616226
0.6 3.357174676657497
0.7 3.548809252674672
0.8 3.760598826587128
0.9 3.994663130773039

TABLE 3. Error norms for Example 5.1: M = 64, k£ = 0.01 and v = 0.6.

t Lo Ly

TABLE 4. Order of Convergence in the spatial direction for Example 5.1: £ = 0.01 and v = 0.5.

0.2
0.4
0.6
0.8
1

1.48068 x 10—°
1.43861 x 10~

1.370502 x 10~°

1.26992 x 10~°
1.12784 x 10~5

1.08393 x 105
1.05125 x 102
9.99784 x 106
9.24544 x 10~6
8.18496 x 106

CBS [39] Proposed Method
h Lo Order Loy Lo Order | CPU Time (s)
0.25 1.01779 x 1073 5.10824 x 1073 | 3.74626 x 103 0.031
0.125 | 2.51478 x 10~* | 2.01694 | 1.25518 x 1073 | 9.22614 x 10~* | 2.02493 0.047
0.0625 | 6.16166 x 1075 | 2.02904 | 3.11801 x 10~* | 2.28591 x 10~* | 2.009197 0.063
0.03125 | 1.381 x 10™® | 2.15761| 7.64588 x 10~? | 5.59104 x 1073 2.028 0.094
TABLE 5. Order of Convergence in the temporal direction for Example 5.1: h = 0.01 and v = 0.5.
CBS [39] Proposed Method
k L Order Lo Lo Order | CPU Time (s)
0.1 2.13309 x 10~ % 2.06945 x 10~% [ 1.51713 x 10~% 0.016
0.05 | 5.21507 x 1072 | 2.03219 | 4.57799 x 1072 | 3.35534 x 1075 | 2.17646 0.031
0.025 | 1.18261 x 1075 | 2.14071 | 8.50394 x 1076 | 5.99638 x 1076 | 2.42851 0.063
0.0125 | 1.75263 x 1076 | 2.75438 | 2.71519 x 1076 | 2.42629 x 1075 | 1.64708 0.078
Example 5.2. Consider the TFDE,
CEDYu(z,t) — Upy = f(x,1), (2,0)€Q, 0<y<]1
where
Q=10,1] x [0,1],
with IC,
u(z,0) =€, 0<z<1,
[c[m)
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F1GURE 1. Approximate and exact solutions at different time points for Example 5.1 with £ = 0.01
and M = 32 for (a) and (b) v = 0.3 and (c¢) and (d) v = 0.5.

and BCs,

u(0,t) =et, wu(l,t)=e", 0<t<1,
for

f(z,t) =er*tt (1 —~2 - eﬁ>
The Equation (5.2) has exact solution,

u(z,t) = 7"t

For Example 5.2, the absolute errors are reported in Tables 6 and 7 when £ = 0.01, ¢t = 1, v = 0.1 band 0.3, and
M = 10 and 20, respectively. Error norms are presented in Table 8 at various time intervals. In Table 9, the maximal
errors of Example 5.2 are compared to the results in [39] at ¢ = 1 for various ~ choices. Table 10 juxtaposes the
error and the order of convergence at t =1 and v = 0.5. The graphs of computational and exact solutions at different
an
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16 7. KAMMAPPA AND A. AWASTHI

(a) (b)

FIGURE 2. 3D approximate and exact solutions respectively for Example 5.1 with & = 0.01, v =
0.5, t=1, x €[0,1] And M = 90.

%108
.
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FI1GURE 3. 2D and 3D error profiles respectively for Example 5.1 with £k =0.01, v =05, t =1, x €
[0,1] and M = 90.

temporal phases for v = 0.5,M = 16 and 100 and k¥ = 0.01 are shown in Figure 5. 3D plots of numerical and
exact solutions are illustrated in Figure 6 illustrating the accuracy of the proposed scheme. At the time ¢t = 1, the
error profiles in both 2D and 3D are presented in Figures 7 and 8 illustrates the exact and approximate solutions for
k=0.01, M =100, and ¢t = 1, which correspond to a variety of v values.

Example 5.3. To further demonstrate the practicability of the CuTBS scheme on a problem without a known analytic
solution, consider a one-dimensional sub-diffusive transport with a smoothly ramped, continuous source:

1
CEDYSu(x,t) — gy = sinmz (1 - est) ,  (z,t) € Q, (5.3)

(=)=
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FIGURE 4. A comparison of the exact and approximate solutions at various -y values for Example 5.1,

, No. *, * pp. 1-24
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where £ = 0.01, t =1 and M = 16.

TABLE 6. Absolute errors when M =10, t =1, kK = 0.01 and 7y = 0.1 at several space grid points of

Example 5.2.

04 05 06 07
X

0.9 1

X

Approx Sol

Exact Sol

Absolute Error

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2.745544117810513
2.773093861516842
2.800933496246069
2.829065618645931
2.857492983658018
2.886218504189339
2.915245252135056
2.944576460760067
2.974215528461246

2.745601015016916
2.773194763964298
2.801065834699079
2.829217014351560
2.857651118063164
2.886370989267959
2.915379499976997
2.944679551065524
2.974274072563066

5.68972 x 1077
1.00903 x 10~*
1.32339 x 10~¢
1.51396 x 104
1.58134 x 10~*
1.52485 x 10~*
1.34248 x 10—+

1.030903 x 10~*

5.85441 x 1075

TABLE 7. Absolute errors when M = 20, t =1, kK = 0.01 and v = 0.3 at several space grid points of

Example 5.2.

xT

Approx Sol

Exact Sol

Absolute Error

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2.801045582428107
2.886334835886546
2.974226332598537
3.064799206604017
3.158135053759219
3.254318006015866
3.353434808515173
3.455574899580859
3.560830493703757

2.801065834699079
2.886370989267959
2.974274072563066
3.064854203293002
3.158192909689768
3.254374202889671
3.353484652549024
3.455613464762676
3.560852562355521

2.02523 x 107°
3.61534 x 1075

4.773997 x 10~°

5.49967 x 1075
5.78559 x 107°
5.61969 x 10~°

4.984403 x 1075

3.85652 x 1075
2.20687 x 10~°

17
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TABLE 8. Error norms for various 7 choices with £ = 0.01 and M = 32 for Example 5.2.

t Lo L,

v=0.3 v=0.5 v=0.3 v=0.5
0.2 9.97195 x 1079 | 1.66317 x 10~° | 7.31467 x 10° | 1.219903 x 10—°
0.4 | 1.21431 x 10™° | 2.03392 x 10~° | 8.90511 x 1076 | 1.49098 x 10~°
0.6 | 1.47975 x 1072 | 2.48634 x 102 | 1.08498 x 10~° | 1.82192 x 10~°
0.8 | 1.80421 x 10~° | 3.03859 x 10~ ° | 1.32269 x 10~° | 2.22601 x 10~°
1.0 | 3.71281 x 107° | 7.86892 x 10~° | 1.61322 x 1075 | 2.71945 x 10~°

TABLE 9. The comparison of the maximum error when ¢ = 1 for Example 5.2.

h k CBS [39] Proposed Method
~=0.75 v=0.95 v=0.75 v=0.95
0.05 | 2.41731 x 10~% | 1.88707 x 103 | 5.72081 x 10~° | 1.58968 x 10~3
0.05 | 0.02 | 1.3786 x 107° | 2.34313 x 10~* | 1.70919 x 10~% | 6.377628 x 10~°
0.01 | 1.88081 x 107° | 5.83444 x 1076 | 1.03555 x 1076 | 3.04028 x 10~
0.05 [ 2.66772 x 10~ | 1.9591 x 10~ | 2.37247 x 10~ % | 1.91155 x 102
0.02 | 0.02 | 3.8726 x 10=® | 3.066 x 10~* | 9.17163 x 107% | 2.58939 x 10~*
0.01 | 6.1196 x 1076 | 6.64896 x 107° | 2.34416 x 1076 | 1.88124 x 107°
0.05 | 2.70322 x 10~% | 1.96935 x 1073 | 2.62942 x 10~* | 1.95746 x 103
0.01 | 0.02 | 4.22867 x 10~° | 3.16918 x 10~* | 3.48988 x 10~* | 3.05004 x 10~*
0.01 | 9.68207 x 1076 | 7.68187 x 1075 | 2.29261 x 106 | 6.49009 x 10~

TABLE 10. Temporal order of convergence’s comparison when v = 0.5 and ¢t = 1 for Example 5.2.

h k CBS [39] Proposed Method
Lo Order Lo Loy Order | CPU Time (s)
0.05 [ 0.02 | 6.01029 x 10~6 9.09089 x 10~° | 6.67057 x 107> 0.063
0.01 | 2.32171 x 1076 | 1.37225 | 2.925703 x 105 | 2.28346 x 10~° | 1.63564 0.078
0.02 | 0.02 | 1.03118 x 10~° 5.2161004 x 1076 | 3.81597 x 10~ 0.086
0.01 | 1.96501 x 1076 | 2.39169 | 1.35655 x 10~% | 9.93318 x 10=% | 1.94303 0.094
0.01 [ 0.02 | 1.09244 x 10~° 7.04276 x 10 [ 5.16136 x 10~ © 0.125
0.01 | 2.57792 x 1076 | 2.08327 | 1.30432 x 10~% | 9.54199 x 10~ 7 | 2.43284 0.141
where
Q=1[0,1] x [0,1],
with IC,
u(z,0) =0, 0<z<1,
and BCs,
u(0,t) =u(l,£) =0, 0<t<L

In this example, in order to verify the effectiveness of the method, assume that the exact solution of the equation is
unknown and take the solution on the finer grid, i.e. M = N = 2000 as the corresponding exact solution. First, the
proposed scheme will be used to test the accuracy in the direction of time. In this case, take M = 200. The errors,
temporal OC, and CPU times are shown in Table 11. The data in Table 11 show that the temporal OC is about 2.
Furthermore, the accuracy of the scheme for space is tested. Choose N = 1000 for different M (M = 10, 20, 40 and
ao
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FIGURE 5. Approximate and exact solutions of Example 5.2 at different times when & = 0.01 And
~v=10.5 for (a) M =16 And (b) M = 100.

(a) (b)

FI1GURE 6. 3D exact and approximate solutions respectively for Example 5.2 with £ = 0.01, v =
03,t=1, x €]0,1] And M = 100.

80). The errors, spatial OC, and CPU times are shown in Table 12. The solution on a finer grid, that is, M = N =
2000 and numerical solution (M = N = 200) is presented in Figure 9.

The CuTBS approach to TFDE with the Caputo-Fabrizio fractional derivative is new to the literature. Employing a
finite difference method for the fractional derivative made the whole process simpler and faster. Across all benchmark
tests, the CuTBS collocation scheme consistently delivers second-order convergence in time while exhibiting a markedly
lower temporal error and reduced computational cost compared to established Caputo—Fabrizio solvers. By retaining
the non-singular exponential kernel in its discrete convolution and employing a fully implicit # = 1 time discretization,
CuTBS eliminates mixed-time truncation errors and achieves a sharper prefactor in the O(k?) error bound. Moreover,
the C? spatial continuity of the trigonometric B-splines mitigates high-frequency error amplification through the
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FIGURE 7. 2D and 3D error profiles respectively for Example 5.2 with £ =0.01, v =03, t=1, x €
[0,1] and M = 100.

y= 0.1‘
v=0.3 i
y=05 )
v=0.7
v=0.9

1]

FIGURE 8. A comparison of the exact and approximate solutions at various v values for Example 5.2,
where k = 0.01, ¢t =1 and M = 100.

TABLE 11. Errors, Temporal OC and CPU times for Example 5.3 where M = 200

N Lo Order CPU Time (s)
25 5.241x10°% .. 0.359
50 1.636 x 107% 1.68 0.688
100 4.094 x 10=7  1.999 1.031
200 1.024 x 10~7  1.999 1.813

convolution memory, strengthening temporal stability across a broad range of fractional orders. These combined
features enable CuTBS to achieve the target accuracy with coarser time grids or significantly shorter run times than
other methods, confirming its superior accuracy-cost balance in time.

an
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TABLE 12. Errors, Spatial OC and CPU times for Example 5.3 where N = 1000

M Loo Order CPU Time (s)
10 0.001 0.875
20 2452 x10~*  2.03 0.907
40 6.072x107° 2.01 0.938
80 1.512x107° 2.01 1.719
0.1 01

(a) (b)

FIGURE 9. Solution on finer grid and Numerical solution with ¢, € [0,1] and M = N = 200
respectively for Example 5.3.

6. CONCLUSIONS

This study introduced a numerical approach that uses CuTBS functions to solve TFDEs that involve the Caputo-
Fabrizio fractional-time derivative. The CuTBS-based scheme effectively combines accurate spatial interpolation with a
robust finite-difference discretization for the fractional derivative, ensuring high precision in both temporal and spatial
domains. The stability and convergence of the scheme were analyzed to confirm that the method is unconditionally
stable, the numerical error remains bounded, and it is validated with the numerical order of convergence. Numerical
experiments confirm its reliability and efficiency in handling TFDE, demonstrating its potential as a powerful tool
to solve mathematical models with fractional derivatives of Caputo-Fabrizio in various scientific and engineering
applications.
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