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Abstract

In the article, the method of solving Roesser-type equations with Laplace transformation for modeling and anal-
ysis of oil extraction processes is analyzed. Roesser-type equations are widely used to describe the dynamics of

multidimensional systems, and their solution is important in improving the efficiency of oil extraction processes.

First, the structure and properties of Roesser-type equations are presented. Later, the process of solving these
equations is presented step by step by applying the Laplace transform method. By converting the special differen-

tial equations given by this method to simpler algebraic equations, both analytical and computer calculations can
be significantly simplified. Based on the calculations and examples, it is shown that the proposed method provides

high accuracy and efficiency. The research results enable the application of new approaches in the optimization

and management of oil extraction processes.
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1. Introduction

The oil industry is one of the most important sectors of the world economy, and the technologies and methods used
in this sector are constantly updated and developed. Various mathematical methods and models are applied in order
to increase efficiency and accuracy in oil extraction processes [3–5]. At the end of the 19th century and the beginning
of the 20th century, the compressor-less gas-lift method began to be applied in oil wells using the ability of natural gas
to create pressure [9, 10]. The use of naturally available gas in oil fields has shown that it can ensure the extraction
of oil without spending additional energy [6, 9, 17].

Gas-lift processes are one of the widely used methods for bringing oil to the surface in oil wells. In this process, oil
is brought to the surface by injecting gas into the bottom of the well. In this method, various mathematical models
describing the movement have been developed [10, 13, 17], and with their help, various problems have been addressed,
such as obtaining maximum oil with minimum gas [12, 13, 15], increasing the oil yield coefficient, etc.[5, 6]. In this
study, a mixed problem for a system of Roesser-type differential equations was considered [7, 8, 14].

The system of special differential equations, which is a mathematical description of the given problem, was solved
with the help of integral Laplace transform and inverse Laplace transform [11, 16]. Such linear notation allows for the
replacement of systems of differential equations with algebraic equations.

The Laplace transform is a widely used method in mathematical analysis and engineering, used to analyze and
control the dynamic behavior of systems. This transformation simplifies the solution of differential equations, allowing
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for more efficient and accurate analysis [16]. On the other hand, Roesser-type equations play an important role in
the modeling of multidimensional systems, and the solution of these equations is important for the management of
complex industrial processes.

Solving the Roesser-type equations in the gas-lift process by means of the Laplace transform mainly involves two
steps: first, transforming these equations by means of the Laplace transform, and then solving the resulting algebraic
equations. This method allows more accurate and effective analysis of the dynamic system of the gas-lift process.

This problem is described mathematically by a system of special derivative differential equations as follows.

2. Problem statement

It is known that [9, 13, 17], the system of special derivative hyperbolic type differential equations characterizing
the movement in the gas-lift process is as follows.

{
−Fi

∂P (x,t)
∂x = ∂Q(x,t)

∂t + 2aiQ (x, t) ,

−Fi
∂P (x,t)

∂t = ci
∂Q(x,t)

∂x , x ∈ (0, l) , t ∈ (−∞; +∞) .
(2.1)

2ai =
g

ωi
+

σiωi

2δi
= const.

Here P (x; t)−, the pressure Q (x; t) is the volume of the liquid in the tube. Here Fi− is the cross-sectional area of the
pipe and is constant; ωi- is average speed of flow; ci- is the speed of sound in a suitable medium (for example, i = 1 in
an annular space consisting of a gas, i = 2 if present, in a liquid-gas mixture in a lift); δi−is the internal and effective
diameter of the annular space and lifter depending on the direction of movement; g is the urgency of gravity; σi is the
coefficient of hydraulic resistance [2, 7].

Each equation of the given system Eq. (2.1) includes derivatives of different functions P (x; t) and Q (x; t) with
respect to different x and t variables, in order to obtain a compact model, the application of different discretization
methods does not result successfully. For this reason, it is possible to get a suitable Roesser model [2, 8] by introducing
a new unknown function into the system Eq. (2.1) in the following way.

P (x; t) = R (x; t) + αQ (x; t) . (2.2)

Here R (x; t) is a new unknown function replacing, P (x; t) and the unit of α quantity should be chosen so that the units
of the variables R (x; t) and αQ (x; t) are the same. It should be noted that the hyperbolic-type partial differential
equations corresponding to the Roesser model applied to the gas-lift method are constructed using the new variable
introduced in Eq. (2.2), and the model is formulated based on the following two systems of equations [10].

{
∂Q(x,t)

∂x = W (x, t),
∂R(x,t)

∂t = χ(x, t)
t > 0, x > 0, (2.3)

{
∂R(x,t)

∂x =
(

ci
αF 2

i
− α

)
W (x, t) + 1

αFi
χ(x, t)− 2ai

Fi
Q(x, t),

∂Q(x,t)
∂t = − 1

αχ(x, t)−
ci
αFi

W (x, t),
t > 0, x > 0. (2.4)

Let us accept the initial and boundary conditions of Equations (2.3) and (2.4) as follows.{
Q(0, t) = Q̄(t),

R(0, t) = Q̄(t), t > 0,
(2.5)

{
Q(x, 0) = ¯̄Q(x),

R(x, 0) = ¯̄Q(x), x ∈ (0, l).
(2.6)
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let’s determine the mixed derivative ∂
∂x

(
∂Q(x,t)

∂t

)
= ∂W (x,t)

∂t of the first equation of the system (2.3) corresponding to

the parameter t and consider it in the second equation of the system (2.4).

1

α

∂χ(x, t)

∂x
+

ci
αFi

∂W (x, t)

∂x
+

∂W (x, t)

∂t
= 0.

Later we will differentiate the second equation of system (2.3) with respect to the parameter.

∂2R(x, t)

∂t∂x
=

∂χ(x, t)

∂x
,

or

∂

∂t

(
∂R(x, t)

∂x

)
=

∂χ(x, t)

∂x
.

If we consider the first equation of the system Eq. (2.4) in accordance with the above-mentioned analogy in this
expression, we get the following expression.

(
ci

αF 2
i

− α

)
∂W (x, t)

∂t
+

1

αFi

∂χ(x, t)

∂t
− 2ai

Fi

∂Q(x, t)

∂t
=

∂χ(x, t)

∂x
,

∂χ(x, t)

∂x
− 1

αFi

∂χ(x, t)

∂t
+

2ai
Fi

∂Q(x, t)

∂t
−
(

ci
αF 2

i

− α

)
∂W (x, t)

∂t
= 0. (2.7)

Consider the obtained expression Eq. (2.7) as the second equation of the system Eq. (2.4):

∂χ(x, t)

∂x
− 1

αFi

∂χ(x, t)

∂t
+

2ai
Fi

(
− 1

α
χ(x, t)− ci

αFi
W (x, t)

)
−
(

ci
αF 2

i

− α

)
∂W (x, t)

∂t
= 0,

∂χ(x, t)

∂x
− 1

αFi

∂χ(x, t)

∂t
−
(

ci
αF 2

i

− α

)
∂W (x, t)

∂t
− 2ai

αFi
χ(x, t)− 2aici

αF 2
i

W (x, t) = 0.

Simplifying:

∂W (x, t)

∂t
+

1

α2Fi

∂χ(x, t)

∂t
+

(
ci

α2F 2
i

− 1

)
∂W (x, t)

∂t
+

2ai
α2Fi

χ(x, t) +
2aici
α2Fi

W (x, t) +
ci
αFi

∂W (x, t)

∂x
= 0.

In the end, it will be like this:

1

α

∂χ(x, t)

∂t
+

ci
αFi

∂W (x, t)

∂t
+

2ai
α

χ(x, t) +
2aici
α

W (x, t) + ci
∂W (x, t)

∂x
= 0. (2.8)

Some notation has been done for simplicity.

(
W (x, t)
χ(x, t)

)
= Z(x, t). (2.9)

Then expression Eq. (2.8) can be written as follows.

 ci
αFi

1
α

0 1

 ∂Z(x, t)

∂x
+

 1 0

α− ci
αF 2

i

1
αFi

 ∂Z(x, t)

∂t
+

 1 0

− 2aici
αF 2

i
− 2ai

αFi

Z(x, t) = 0. (2.10)

Let’s solve the obtained equation Eq. (2.10) with the help of Laplace transform.
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A =

 ci
αFi

1
α

0 1

 , B =

 1 0

α− ci
αF 2

i

1
αFi

 , C =

 1 0

− 2aici
αF 2

i
− 2ai

αFi

 ,

A

∞∫
0

e−λt ∂Z(x, t)

∂x
dt+B

∞∫
0

e−λt ∂Z(x, t)

∂t
dt+ C

∞∫
0

e−λtZ(x, t)dt = 0,

A
dZ̃(x, λ)

dx
+Be−λt Z(x, t)|∞t=0 +Bλ

∞∫
0

e−λtZ(x, t)dt+ CZ̃(x, λ) = 0,

AZ̃ ′(x, λ) + (Bλ+ C) Z̃(x, λ) = BZ(x, 0). (2.11)

Let’s determine the expression Z(x, 0) in Eq. (2.11) from Eq. (2.3):

Z(x, 0) =

(
W (x, 0)
χ(x, 0)

)
=

(
∂Q(x,0)

∂x

2aiαQ(x, 0) +
(
α2Fi − ci

Fi

)
∂Q(x,0)

∂x + αFi
∂R(x,0)

∂x

)

=

( ¯̄Q′(x)

2aiα
¯̄Q(x) +

(
α2Fi − ci

Fi

)
¯̄Q′(x) + αFi

∂R(x,0)
∂x

)
,

Z(x, 0) =

( ¯̄Q′(x)

2aiα
¯̄Q(x) +

(
α2Fi − ci

Fi

)
¯̄Q′(x) + αFi

¯̄R′(x)

)
. (2.12)

Consider Eq. (2.12) in Eq. (2.11):

AZ̃ ′(x, λ) + (Bλ+ C) Z̃(x, λ) = B

( ¯̄Q′(x)

2aiα
¯̄Q(x) +

(
α2Fi − ci

Fi

)
¯̄Q′(x) + αFi

¯̄R′(x)

)
,

if we multiply the lass expression by the inverse of matrix B; we obtain:

B−1AZ̃ ′(x, λ) +
(
λI +B−1C

)
Z̃(x, λ) =

( ¯̄Q′(x)

2aiα
¯̄Q(x) +

(
α2Fi − ci

Fi

)
¯̄Q′(x) + αFi

¯̄R′(x)

)
≡ M(x). (2.13)

For simplicity, let’s notate as follows.

B−1A =

(
1 0

α2Fi − ci
Fi

−αFi

)( ci
αFi

1
α

0 1

)
=

(
ci
αFi

1
α

ciα− c2i
αF 2

i
αFi − ci

αFi
− αFi

)
(2.14)

=

(
ci
αFi

1
α

ciα− c2i
αF 2

i
− ci

αFi
,

)
= D, (2.15)

I =

(
1 0
0 1

)
, B−1C =

(
1 0

α2Fi − ci
Fi

−αFi

)(
0 0

− 2aici
αF 2

i
− 2ai

αFi

)
=

(
0 0

2aici
Fi

2ai

)
= E. (2.16)

Consider Eq. (2.14) and Eq. (2.16) expressions in Eq. (2.13):

DZ̃ ′(x, λ) + (λI + E) Z̃(x, λ) = M(x), x ∈ (0, l),
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Z̃(x, λ) =
∞∑
k=1

λ−kZ̃k(x),

D
∞∑
k=1

λ−kZ̃ ′
k(x) + λ

∞∑
k=1

λ−kZ̃k(x) + E
∞∑
k=1

λ−kZ̃k(x) = M(x). (2.17)

Now let’s look at the coefficients of λ0

Z̃1(x) = M(x).

The coefficients of λ−1 are as follows.

DZ̃ ′
1(x) + Z̃2(x) + EZ̃1(x) = 0, Z̃2(x) = −DM ′(x)− EM(x) x ∈ (0; l) .

Similarly the coefficients of λ−2 can be determined as follows:

DZ̃ ′
2(x) + Z̃3(x) + EZ̃2(x) = 0, Z̃3(x) = D2M ′′(x) + (DE + ED)M ′ (x) + E2M(x).

D2 =

(
ci 0
0 ci

)
= C · I,DE + ED =

(
2aici
αFi

2ai

α

− 2aic
2
i

αF 2
i

− 2aiαci − 2aici
αFi

)
, E2 =

(
0 0

4a2
i ci
Fi

4a2i

)
.

Continuing this process, all Z̃ ′
K(x) limits given by formula Eq. (2.17) can be found in a single-valued way. Using

the found Z̃ ′
K(x) values, the function Z (x; t) is determined through the inverse Laplace transformation.

Z(x, t) =
1

2πi

σ+i∑
σ−i

eλtZ̃(x, λ)dλ, σ > 0,

or

Z(x, t) =
1

2πi

∫
L

eλt
∞∑
k=1

λ−kZ̃k(x)dλ =
1

2πi

∞∑
k=1

Z̃k(x)

∫
L

eλt

λk
dλ

=
1

2πi
2πi

∞∑
k=1

Z̃k(x)
tk−1

(k − 1)!
=

∞∑
k=1

Z̃k(x)
tk−1

(k − 1)!
. (2.18)

Considering the function Z (x; t) determined from Eq. (2.18) in expression Eq. (2.9) , W (x; t) and χ (x; t) the unknown
functions can be determined as follows.

W (x, t) =
∞∑
k=1

W̃k(x)
tk−1

(k − 1)!
x ∈ [0, l] , (2.19)

χ(x, t) =
∞∑
k=1

χ̃k(x)
tk−1

(k − 1)!
, (2.20)

and functions W (x; t) and χ (x; t) determined from expressions Eq. (2.19) and Eq. (2.20) in the first and second
equations of the system Eq. (2.3), respectively, for the functions Q (x; t) and R (x; t) we get the following expressions:
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Q(x, t) = Q(0, t) +

x∫
0

W (ξ, t)dξ = Q̄(t) +

∫ x

0

W (ξ, t)dξ = ¯̄Q(t) +
∞∑
k=1

tk−1

(k − 1)!

x∫
0

W̃k(ξ)dξ,

R(x, t) = R(x, 0) +

t∫
0

χ(x, τ)dτ = ¯̄R(x) +
∞∑
k=1

χ̃k(x)
tk

k!
.

In this, it is possible to determine the functions R (x; t) Q (x; t) W (x; t) χ (x; t) in the segment x ∈ [0; l] , t ≥ .0
It should be noted that these relationships allow us to find a solution to the gas-lift problem in general, but the

system of differential equations (2.1) given by conditions Eq. (2.5) and Eq. (2.6) at the beginning and the end of
annular part of the lift, lift, as in [2], should be taken into account.

Now let’s look at the solution of the problem the lifting in the x ∈ [l; 2 l] , t ≥ 0. Let’s assume that the movement
of the liquid-gas mixture in the bottom zone is described by the following impulse system.{

Q(l + 0, t) = F
′

δQ(l − 0, t) + F
′

ϕR(l − 0, t),

R(l + 0, t) = F
′′

δ Q(l − 0, t) + F
′′

ϕQ(l − 0, t).
(2.21)

It is known that i = 1 when the equations Eq. (2.1) describe the movement of the gas and with the help of the
Eq. (2.21) momentum system the values R (l − 0, t) , Q (l − 0, t) are brought to, R (l + 0, t) , Q (l + 0, t).

Using the analogy mentioned above, in x ∈ [l; 2 l] , t ≥ 0 the joint solution of equations Eq. (2.3) and Eq. (2.4) can
be written as follows according to the riser pipe.

1
α

∂χ(x,t)
∂x + ci

αFi

∂W (x,t)
∂x + ∂W (x,t)

∂t = 0,
∂χ(x,t)

∂x − 1
αFi

∂χ(x,t)
∂t −

(
ci

αF 2
i
− α

)
∂W (x,t)

∂t −
− 2ai

αFi
χ(x, t)− 2aici

αF 2
i
W (x, t) = 0,

t ≥ 0, x ∈ [l, 2l] .

Applying the Laplace transform to the last expression, we get:

1
α

∞∫
0

e−λt ∂χ(x,t)
∂x dt+ ci

αFi

∞∫
0

e−λt ∂W (x,t)
∂x dt+

∞∫
0

e−λt ∂W (x,t)
∂t dt = 0

∞∫
0

e−λt ∂χ(x,t)
∂x dt− 1

αFi

∞∫
0

e−λt ∂χ(x,t)
∂t dt−

(
ci

αF 2
i
− α

) ∞∫
0

e−λt ∂W (x,t)
∂t dt−

− 2ai

αFi

∞∫
0

e−λtχ(x, t)dt− 2aici
αF 2

i

∞∫
0

e−λtW (x, t)dt = 0, t ≥ 0, x ∈ [l, 2l] .

(2.22)

Then for the functions W (x, t) and χ (x, t) can be written.
∞∫
0

e−λtW (x, t)dt = W̃ (x, ξ),

∞∫
0

e−λtχ(x, t)dt = χ̃(x, ξ),
(2.23)

or 
∞∫
0

e−λt ∂W (x,t)
∂x dt = W̃ ′(x, ξ),

∞∫
0

e−λt ∂χ(x,t)
∂x dt = χ̃′(x, ξ),

(2.24)
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
∞∫
0

e−λt ∂W (x,t)
∂t dt = e−λt W (x, t)|∞t=0 + λ

∞∫
0

e−λtW (x, t)dt = −W (x, 0) + λW̃ (x, ξ),

∞∫
0

e−λt ∂χ(x,t)
∂t dt = e−λt χ(x, t)|∞t=0 + λ

∞∫
0

e−λtχ(x, t)dt = −χ(x, 0) + λχ̃(x, ξ).
(2.25)

Consider Eq. (2.23), Eq. (2.24), Eq. (2.25) in Eq. (2.22):
−W (x, 0) + λW̃ (x, ξ) + 1

α χ̃
′(x, ξ) + ci

αFi
W̃ ′(x, ξ) = 0,

χ̃′(x, ξ)− 1
αFi

[−χ(x, 0) + λχ̃(x, ξ)]−
(

ci
αF 2

i
− α

) [
−W (x, 0) + W̃ (x, ξ)

]
,

− 2ai

αFi
χ̃(x, ξ)− 2aici

αF 2
i
W̃ (x, ξ) = 0 x ∈ [l; 2l] .

(2.26)

From the system Eq. (2.23), it can be seen that if t = 0, for the function W (x, t) we get:

W (x, 0) =
∂Q(x, t)

∂x

∣∣∣∣
t=0

=
∂Q(x, 0)

∂x
= ¯̄Q′(x), (2.27)

in the first equation of system Eq. (2.4) if t = 0, for the function χ(x, t) we get:

χ(x, 0) = αFi

[
∂R(x, t)

∂x

∣∣∣∣
t=0

−
(

ci
αF 2

i

− α

)
W (x, 0) +

2ai
Fi

Q(x, 0)

]
,

or

χ(x, 0) = αFi
¯̄R′(x)−

(
ci
Fi

− α2Fi

)
¯̄Q′(x) + 2aiα

¯̄Q(x). (2.28)

Considering expressions Eq. (2.27) and Eq. (2.28) in system Eq. (2.26), we can write
λW̃ (x, ξ) + 1

α χ̃
′(x, ξ) + ci

αFi
W̃ ′(x, ξ) = ¯̄Q′(x),

χ̃′(x, ξ)−
(

λ
αFi

+ 2ai

αFi

)
χ̃(x, ξ)−

[(
ci

αF 2
i
− α

)
λ+ 2aici

αF 2
i

]
W̃ (x, ξ) =

= − ¯̄R′(x) +
(

ci
αF 2

i
− α

)
¯̄Q′(x)− 2ai

Fi

¯̄Q(x)−
(

ci
αF 2

i
− α

)
¯̄Q′(x), x ∈ [l; 2l] .

To put it simply,

{
W̃ ′(x, ξ) + λ+2ai

αFi
W̃ (x, ξ) + λ+2ai

αici
χ̃(x, ξ) = αFi

ci
¯̄Q′(x) + Fi

ci
¯̄R′(x) + 2ai

ci
¯̄Q(x),

χ̃′(x, ξ)− λ+2ai

αFi
χ̃(x, ξ)− (ci−α2F 2

i )λ+2ac

αFi
W̃ (x, ξ) = ¯̄R′(x)− 2ai

Fi

¯̄Q(x).
(2.29)

Let’s adopt some notation for simplicity.

η̃(x, λ) =

(
W̃ (x, ξ)
χ̃(x, ξ)

)
.

Then system Eq. (2.29) can be written in the following form.

η̃(x, λ) +


λ+2ai

αFi

λ+2ai

αci

− (ci−α2F 2
i )λ+2aici

αF 2
i

−λ+2ai

αFi

 η̃(x, λ) =

(
αFi

ci
¯̄Q′(x) + Fi

ci
¯̄R′(x) + 2ai

ci
¯̄Q(x)

− ¯̄R′(x)− 2ai

Fi

¯̄Q(x)

)
.

(2.30)

The expressions on the left and right sides of the equality can be written as follows.
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( λ+2ai

αFi

λ+2ai

αci

− (ci−α2F 2
i )λ+2aici

αF 2
i

−λ+2ai

αFi

)
=

(
1

αFi

1
αici

ci−α2F 2
i

αF 2
i

− 1
αFi

)
λ+

(
2ai

αFi

2ai

αci
2aici
αF 2

i
− 2ai

αFi

)
≡ S1λ+ S0,

(
αFi

ci
Q′ (x) + Fi

ci
R′ (x) + 2ai

ci
Q (x)

−R′ (x)− 2ai

Fi
Q (x)

)
= S (x) .

Then for Eq. (2.30) we get,

η̃′(x, λ) + (S1λ+ S0) η̃(x, λ) = S (x) . (2.31)

Let’s look for the expression Eq. (2.31) in series form.

∞∑
k=1

λ−kη′k(x) + (S1λ+ S0)
∞∑
k=1

λ−kηk(x) = S(x).

It is clear that λ0for the case that is S1η1 (x) = S (x) or η1 (x) = S−1
1 · S (x) is received.

In the same order, λ−1 while η
′

1(x) + S1η2(x) + S0η1(x) = S(x) or η2(x) = S−1
1

(
η

′

1(x)− S0η1(x)
)
is taken. Thus, by

continuing the process, ηn the function can be determined with very small errors.
Summarizing the above, we can propose the following calculation algorithm for solving the gas-lift issue.
Algoritm 1
Step 1. According to the given equations characterizing pressure and gas volume, the boundary conditions are

provided as P (0, t) = P̄ (t) and Q(0, t) = Q̄(t). The initial conditions will be in the form P (x, 0) = ¯̄P (x) and

Q(x, 0) = ¯̄Q(x).

Step 2. The function Z̃ ′
K(x) is uniquely determined using formula Eq. (2.17).

Step 3. Using the terms Z̃ ′
K(x), the function Z (x; t) is determined by the following formula via the inverse Laplace

transform :

Z(x, t) =
1

2πi

∫
L

eλt
∞∑
k=1

λ−kZ̃k(x)dλ =
1

2πi

∞∑
k=1

Z̃k(x)

∫
L

eλt

λk
dλ =

∞∑
k=1

Z̃k(x)
tk−1

(k − 1)!

Step 4. Considering the function Z (x; t) in the annular space as expressed in Eq. (2.9), the unknown functions
W (x; t) and χ (x; t) are calculated using the formulas Eq. (2.19) and Eq. (2.20), respectively.
Step 5. In the region x ∈ [l; 2 l] , t ≥ 0 the motion of the liquid-gas mixture is described by the impulse system:{

Q(l + 0, t) = F
′

δQ(l − 0, t) + F
′

ϕR(l − 0, t),

R(l + 0, t) = F
′′

δ Q(l − 0, t) + F
′′

ϕQ(l − 0, t)

Step 6. The functions W (x, t) and χ (x, t) corresponding to the lift pipe are determined using the following equations:{
W̃ ′(x, ξ) + λ+2ai

αFi
W̃ (x, ξ) + λ+2ai

αici
χ̃(x, ξ) = αFi

ci
¯̄Q′(x) + Fi

ci
¯̄R′(x) + 2ai

ci
¯̄Q(x),

χ̃′(x, ξ)− λ+2ai

αFi
χ̃(x, ξ)− (ci−α2F 2

i )λ+2ac

αFi
W̃ (x, ξ) = ¯̄R′(x)− 2ai

Fi

¯̄Q(x),

Step 7. Finally, considering the functions W (x; t) and χ (x; t) determined according to the system Eq. (2.3), and
taking into account the first and second equations, we obtain the following expressions for the functions Q (x; t) and
R (x; t):

Q(x, t) = Q(0, t) +

∫ x

0

W (ξ, t)dξ = Q̄(t) +

∫ x

0

W (ξ, t)dξ = ¯̄Q(t) +
∞∑
k=1

tk−1

(k − 1)!

∫ x

0

W̃k(ξ)dξ
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Figure 1. R(2l, t).

Figure 2. Q(2l, t).

R(x, t) = R(x, 0) +

∫ t

0

χ(x, τ)dτ = ¯̄R(x) +
∞∑
k=1

χ̃k(x)
tk

k!

Thus, in the entire segment x ∈ [l; 2l] , t ≥ 0 the sought functions R (x; t), Q (x; t), W (x; t) and χ (x; t) are uniquely
determined.

Using the proposed algorithm, calculations have been performed, and graphs representing the process for R (x, t)
andQ (x, t) are provided (Figure 1, Figure 2).

The parameters have been adopted as follows, suitable for practical applications:

(1) In the annular space (i.e, when 0 < x < l): c1 = 331 m/s, ñ1 = 0.717 kg/m3, d1 = 1.05 · 10−3 m,λ1 = 0.01.
(2) In the lift pipe (i.e, when l < x < 2l ): c2 = 850 m/s, ñ2 = 700 kg/m3, d2 = 0.073m,λ2 = 0.23.

From both graphs (Figures 1 and 2) it can be seen that the received and values correspond to the results obtained
from the practice [2], [3].
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3. Conclusions

It should be noted that the solution of the Roesser-type equation with the help of the Laplace transform was inves-
tigated for the first time for the system of differential equations describing the movement in the gas-lift process using
this method. The results of the study showed that the solution of Roesser-type equations with Laplace transformation
provides high accuracy and efficiency in modeling and controlling oil extraction processes. In particular, the solution
of Roesser-type equations in oil extraction processes provides new approaches for the optimization and control of
technological processes. This method can be considered useful in terms of increasing production and efficient use of
resources.
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