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ABSTRACT: 

This study investigates the potential effects of the Isar Dam on the water resources of a specific basin, 
considering the growing concern of climate change. This research comprehensively assesses the impacts 
of climate change on the Keshan Chai basin by integrating advanced methods such as the WEAP model, 
the SSP5.85 scenario of the IPCC Sixth Assessment Report, and Landsat satellite imagery an analysis of 
historical data reveals significant fluctuations in water flow within the Ravasjan River, likely caused by 
repeated occurrences of floods and droughts. To address these variations and ensure a more stable water 
supply, the Isar Dam is projected to deliver regulated water for various purposes: 14 million cubic meters 
annually for drinking water, 35 million cubic meters annually for agriculture, and 4 million cubic meters 
annually for environmental needs. Climate change simulations project a 5% increase in annual 
precipitation for the forecast period (2025-2065) compared to the observation period (1990-2020), 
raising concerns about increased flooding in the region. The study also identifies three distinct climatic 
types based on monthly precipitation distribution. The minimum environmental flow requirement is 
estimated at 5.0 cubic meters per second monthly. Scenario-based water demand modeling shows that in 
Scenario 1, 92% of Ozghan’s demand and 47% of the development networks are met in 70% of cases, 
with full satisfaction in 30%. Scenario 2 achieves 90% and 45% in 70% of cases, fully met in 25%. Scenario 
3 meets 77% and 38% in 70% of cases, with 23% full satisfaction. Precipitation variability between 2011 
and 2020 has created challenges for water management. Principal component analysis indicates 62.19% 
and 15.98% of precipitation variance are explained. 
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1. Introduction 

Scientific evidence demonstrates that human 
activities have played a major role in warming the 
Earth and altering precipitation patterns, leading 
to increased occurrences of extreme weather 
events such as storms, floods, droughts, and 
heatwaves (Feng, 2021; Fu et al., 2007). The 
Intergovernmental Panel on Climate Change 

(IPCC), established in 1995, has reported a rise in 
global average temperature of approximately 0.6°C 
during the 20th century, with projections 
suggesting a further increase of 1 to 3.5°C in the 
current century if greenhouse gas emissions 
continue unchecked. These climatic shifts have 
introduced major challenges to the sustainable 
management of water resources. In response to 
these challenges, this research employs the WEAP 
(Water Evaluation and Planning) model to assess 
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the impacts of climate change on the Keshan Chai 
basin. The model enables simulation of complex 
hydrological systems, evaluation of water 
infrastructure such as dams, assessment of sectoral 
water demands, and analysis of flood risks. By 
applying the SSP5.85 scenario from the IPCC Sixth 
Assessment Report which reflects a future with 
high emissions and rapid economic growth this 
study examines a worst-case climate trajectory. 
Furthermore, the integration of high-resolution 
Landsat satellite imagery enhances the precision of 
water resource monitoring and model calibration. 
While previous studies have often relied on 
localized or single-model approaches, this research 
hypothesizes that combining advanced climate 
scenarios, satellite data, and the WEAP model can 
offer a more accurate and comprehensive 
understanding of quantitative and qualitative 
changes in water resources, thereby supporting 
more effective climate adaptation policies.  

Malmir et al. (2018) investigated the impact of 
climate change on agricultural water allocation in 
the Qarasu watershed using the WEAP model. 
Their findings indicate that under future climate 
scenarios, with the current cultivated area 
remaining unchanged, agricultural water demand 
in the study area will increase. Moradian et al. 
(2019) conducted a multi-criteria evaluation of 
water allocation scenarios in water-scarce basins 
using the TOPSIS method and the WEAP model. 
The results showed that in the fully cooperative 
scenario, with water allocation to stakeholders and 
the use of the Shapley value method, the benefits of 
all stakeholders increase. This scenario can be 
proposed as an alternative to the water transfer 
scenario to this basin. In another study, Agha 
karami et al. (2012) utilized the WEAP model to 
conduct a quantitative assessment of different 
water allocation scenarios in the Tehran-Karaj 
plain. The aim of this study was to investigate the 
impacts of implementing a wastewater treatment 
and water transfer scheme from neighboring 
basins to Tehran on the groundwater and surface 
water resources of the Tehran-Karaj plain. Wang et 
al. (2019) investigated integrated water resource 
management and modeling in the Bo River Basin, 
Canada. Their study highlights that increasing the 
use of cooling towers in thermal power plants is the 
most effective strategy for managing water 
demand in the industrial sector. Sabbaghi et al. 
(2020) conducted a separate study examining the 
economic impacts of climate change on water 
resources and agriculture in the Zayandeh Rud 
Basin, Iran. Their findings indicate that by mid-
century, precipitation in the Zayandeh Rud Basin 
will decrease significantly while temperatures will 
rise. Martinsen et al. (2019) addressed the joint 
optimization of water allocation and water quality 
management in the Haihe River Basin. They 
employed a linear optimization model to tackle this 
complex issue. This multi-reservoir, multi-period, 

and multi-objective model incorporated water 
quality considerations at various locations within 
the basin. Feng et al. (2021) explored optimal 
regional water resource allocation using a dynamic 
multi-objective balancing strategy. Water resource 
allocation faces several challenges, including 
uncertainty in water supply due to climate change, 
overlooking the dynamic allocation of water 
resources, and inappropriate allocation that can 
lead to tensions among water-consuming sectors. 
To address these challenges, an optimal water 
resource allocation model was developed using 
dynamic multi-objective programming and 
considering uncertainty in water supply. Yaghoubi 
et al. (2020) proposed an optimization model to 
develop operational rules for water reservoirs, 
considering water quality and climate change. The 
model was used to simulate various future climate 
and water demand scenarios. The results of this 
research, which will be carried out considering the 
various dimensions of this challenge, including 
temperature changes, precipitation, water 
distribution patterns and associated risks, can be 
the basis for adopting systematic policies and 
strategic planning in various sectors, including 
agriculture, water resource management, industry, 
etc. Dlamini et al. (2023) assessed the impact of 
climate change on surface water availability (SWA) 
in the Buffalo River watershed. It showed that 
climate change will increase rainfall, but also lead 
to more evapotranspiration and water demand. 
While SWA will increase slightly, it will not be 
enough to meet the growing demand. This study 
shows that the water-energy-food nexus approach 
can contribute to the development of sustainable 
water management strategies. Mejía et al. (2023) 
investigated current conditions and future changes 
in short-term events, low river discharge, and 
associated uncertainties in the San Pedro 
catchment. Peng et al. (2024) evaluated water 
resource safety in Guiyang from 2013 to 2022 
using the DPESFR model and combined weighting 
methods. The results showed a declining trend in 
water resource safety. Key limiting factors were 
identified in the "status," "response," and "drive" 
subsystems. Predictions indicate a continued 
decline in water resource safety in the future. Kng 
et al. (2023) assessed changes in bivariate flood 
risks (peak and duration) and their socioeconomic 
impacts in 204 Chinese catchments using climate 
and hydrological models. Results project a 
significant increase in extreme flood risks in China, 
even under low emission scenarios, with 
substantial increases in the exposure of population 
and regional gross domestic product. Snizhko et al. 
(2024) used the WaterGAP2 hydrological model 
and SSP1-2.6 and SSP5-8.5 scenarios to assess 
changes in the flow of the Southern Bug River in 
Mykolaiv, Ukraine, under climate change. Results 
show that under the SSP1-2.6 scenario, the impact 
of climate change on river flow is insignificant, 
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while under the SSP5-8.5 scenario, a significant 
decrease in river flow is projected from May to 
October. 

Daily precipitation and temperature 
projections from 19 advanced global climate 
models (CMIP6) and four future scenarios (SSP1-
2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were 
reduced by adjusting the delta and using a more 
advanced quantile. Among these, three CMIP6 
models were selected MIROC6, CanESM5, and 
IPSL-CM6A-LR based on their suitability for the 
region under study, considering past performance 
in representing historical precipitation and 
temperature trends. The selection was guided by 
regional relevance and alignment with literature 
that emphasizes the importance of model accuracy 
in localized climate impact studies. For example, 
while models such as MIROC-ES2L and IITM-ESM 
have shown strong performance in certain regions, 
their application in this study's geographical and 
climatic context was deemed less optimal due to 
discrepancies in precipitation simulations noted in 
regional evaluations. To further justify the 
selection, variance analysis was conducted to 
assess the uncertainty contribution of climate 
models, hydrological models, and extreme value 
distributions (EVDs) in the results. This approach 
ensures that the selected models are robust for 
simulating future climatic scenarios. Future work 
will explore ensemble approaches, as 
recommended in "Identification of Best CMIP6 
Global Climate Model for Rainfall by Ensemble 
Implementation of MCDM Methods and Statistical 
Inference" and "Accuracy of historical precipitation 
from CMIP6 global climate models under 
diversified climatic features over India". These 
recommendations will be integrated to enhance 
the model selection process in subsequent studies. 
The study concludes that the Dhidhessa river basin 
is vulnerable to climate change and requires 
careful management to ensure water security. 
Chawanda et al. (2024) investigated the impact of 
climate change and land use land cover change 
(LULCC) on water resources in Africa. The study 
found that the Zambezi and Congo river basins are 
likely to experience reduced river flows due to 
climate change. While the Limpopo River is likely 
to have more river flow. The Niger River Basin is 
likely to experience the greatest decline in river 
flow. The Congo River Basin is particularly 
sensitive to LULCC and has a significant impact on 
river flow. These changes have implications for 
agriculture, energy and livelihoods in Africa. This 
research highlights the need to address climate 
change and deforestation to reduce the impact on 
water resources.  

Ciampittiello et al. (2024) reviewed 320 articles 
on climate change and water resources. This 
research showed that climate change affects water 
resources by decreasing rainfall, increasing 
temperature and increasing water consumption by 

humans. The study suggests integrated water 
resources management, political action, increased 
knowledge and new technologies as solutions. It 
also emphasizes the importance of protecting and 
restoring ecosystems. The Italian political situation 
and potential measures for water resource 
management are also discussed. Zhou et al. (2024) 
have conducted a comprehensive study to assess 
the impact of climate change on hydropower 
generation. They employed a three-step 
framework involving hydrological and climate 
models to predict future reservoir inflows under 
various climate scenarios. By analyzing the 
uncertainties arising from different model 
structures, climate emission scenarios, and their 
interactions, they quantified the impact of these 
factors on hydropower generation at various time 
scales. The findings highlight the significant 
influence of these uncertainties, particularly 
during flood and non-flood seasons, and 
underscore the need for proactive measures to 
mitigate the negative consequences of climate 
change on hydropower energy development. 
Garnier et al. (2024) aimed to assess recent climate 
changes in the Chilean Altiplano by studying the 
fluctuations in water levels of three endorheic 
lakes: Chungará, Miscanti, and Miniques. They 
utilized a novel approach, leveraging the Google 
Earth Engine platform to analyze satellite imagery 
data from Landsat and MODIS. By extracting the 
shapes and calculating the surface areas of these 
lakes over a 31-year period, they were able to 
correlate these changes with precipitation data 
from meteorological stations and TRMM. The 
results consistently indicate a decline in both lake 
area and rainfall volume, suggesting a drying trend 
in the region. This study provides valuable insights 
into the impact of climate change on water 
resources in the Chilean Altiplano and highlights 
the potential of remote sensing techniques for 
monitoring hydrological changes in remote and 
data-scarce regions. Bañares et al. (2024) aimed to 
assess the impact of climate change and 
urbanization on water resources in the Philippines. 
They utilized the Water Evaluation and Planning 
(WEAP) software and climate forecasts from 
multiple Global Circulation Models (GCMs) to 
model the water balance in two sensitive 
watersheds: Libmanan-Pulantuna and Quinali. By 
creating various climate-urbanization scenarios, 
the study projected future water availability in 
these regions. This research provides valuable 
insights into the hydrological processes in these 
traditionally under-observed areas, contributing to 
future environmental planning and sustainable 
water management strategies in the Philippines 
and other similar regions. Hamlat et al. (2024) 
investigated the impact of climate change, policy 
options, technological development, and human 
behavior on water availability and demand in El 
Bayadh province, Algeria. They utilized the Water 
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Evaluation and Planning System (WEAP) model to 
assess multiple future scenarios and identified a 
significant water supply-demand gap, particularly 
impacting agricultural areas. The study highlights 
the need for long-term strategies to address water 
scarcity and proposes adaptive solutions to help 
water managers cope with complex water 
challenges in this arid region. Climate change and 
its associated impacts on precipitation and 
temperature patterns have been widely studied in 
recent years, with particular focus on 
understanding long-term trends and extreme 
weather events. Previous studies have extensively 
analyzed rainfall and temperature trends to 
identify the implications of climate variability and 
climate change on water resources, agriculture, 
and ecosystems.  

For instance, Karmakar et al. (2021), in their 
study "Determine the best method for analysing 
long-term (120 years) annual and seasonal rainfall 
trends in four east India river basins," evaluated 
the performance of various statistical methods for 
detecting rainfall trends in the context of long-term 
climate variability. The authors demonstrated that 
Mann-Kendall and Sen's slope estimator provide 
robust results in identifying both annual and 
seasonal rainfall trends, highlighting the 
significance of method selection in climate change 
studies. Furthermore, studies have also focused on 
temperature extremes and their evolving trends 
over the decades.  

Singh and Kumar (2022), in their research "Is 
the extreme temperature trend changed in the last 
two decades compared to the last seven decades?" 
provided insights into the intensification of 
extreme temperature events in recent decades. 
Their findings underscore a pronounced increase 
in the frequency and intensity of extreme 
temperature events in the past 20 years, indicating 
a shift in the baseline climate conditions due to 
anthropogenic influences. This study is particularly 
relevant for understanding the broader 
implications of changing temperature extremes on 
human health, energy demand, and agricultural 
productivity. In light of these findings, the current 
study builds upon these established methodologies 
and insights to analyze climate change impacts on 
the Keshan Chai Basin. By integrating both long-
term trend analysis and extreme value assessment, 
this research aims to provide a comprehensive 
understanding of the ongoing changes in 
precipitation and temperature patterns under 
future climate scenarios. In this research, a 
comprehensive and multi-faceted approach was 
employed to investigate the interactive effects of 
climate change and dam construction on the water 
resources of the Keshan Chai Basin. Researchers 
combined hydrological modeling (using the WEAP 
model) with advanced statistical analyses to 
accurately simulate and assess the complex 
changes in climate and their impacts on the basin's 

water resources. To account for differences in the 
spatial and temporal resolution of the selected 
CMIP6 models (MIROC6, CanESM5, and IPSL-
CM6A-LR), the climate data were downscaled to 
ensure consistency and comparability. Bias 
correction and statistical downscaling techniques 
were applied to adjust model outputs to a uniform 
resolution compatible with the study area’s scale. 
These processes ensured that the discrepancies in 
resolution across models did not introduce bias 
into the hydrological simulations or the derived 
insights. Additionally, the NDWI index was utilized 
to monitor changes in soil moisture and vegetation 
as indicators of the basin's water status. By 
analyzing rainfall anomalies and their probability 
distributions, patterns of rainfall changes and the 
occurrence of droughts and floods in the region 
were identified. Furthermore, principal component 
analysis (PCA) was used to extract key features and 
identify hidden patterns in rainfall data. To 
enhance the credibility of the results, the 
developed models were compared and validated 
against data from the IPCC Sixth Assessment 
Report. Statistical methods such as ANOVA and 
linear regression were also employed to evaluate 
differences and relationships between various 
variables. Two databases were utilized to model 
the water resources of the Keshan Chai River 
catchment using the WEAP model.  

The first database comprised comprehensive 
and detailed information regarding the 
physiographic, hydrologic, and land use 
characteristics of the catchment area. These data 
served as input for the WEAP model. Within the 
model, the various components of the basin, 
including rivers, reservoirs, and water demand, are 
schematically represented, and the relationships 
between them are defined. The second database 
contained climate data for the SSP5-8.5 scenario 
retrieved from the Sixth Climate Change 
Assessment Report (CMIP6). This data was freely 
available through the Global Climate Model 
Database (https://esgf-
node.llnl.gov/search/cmip6). Following the 
calibration and validation of the WEAP model, 
various scenarios were implemented to simulate 
the development of water resources with the 
inclusion of the Isar Dam and the effects of climate 
change. These scenarios investigated the impact of 
dam construction on reservoir storage volume, 
river flow, and the provision of water needs for 
different sectors (agriculture, industry, drinking). 
This research introduces a novel approach to 
comprehensively assess the impacts of climate 
change on the Keshan Chai basin by integrating 
multiple advanced methods and tools. The Water 
Evaluation and Planning System (WEAP) model is 
employed as a robust tool for simulating water 
resource allocation, enabling the evaluation of both 
water quantity and quality under changing climatic 
conditions. The model's ability to simulate complex 

https://doi.org/10.22034/CEEJ.2025.66162.2420
mailto:farahnaz.khoramabadi@yahoo.com
mailto:bfatehinobarian@iau.ac.ir
mailto:fardmoradinia@iau.ac.ir


Farahnaz Khoramabadi et al. / J. Civ. Env. Eng. 55 (2025)   80 
 

 

 

hydrological systems and optimize water resource 
management makes it particularly suitable for this 
study. By utilizing the IPCC's Sixth Assessment 
Report and specifically focusing on the SSP5.85 
scenario, which represents a high greenhouse gas 
emissions and rapid economic growth pathway, 
the research allows for an examination of a worst-
case climate change scenario. This approach is 
crucial for water resources planning and 
management, as it provides valuable insights into 
potential risks and the need for adaptive strategies. 
Furthermore, the integration of Landsat satellite 
imagery offers a high spatial and temporal 
resolution for monitoring and analyzing the basin's 
water status. This innovative technique facilitates 
continuous and accurate assessment of changes in 
water levels and quality under the influence of 
climate change, providing up-to-date and reliable 
data for calibrating and validating the WEAP 
model. Based on previous studies that used less 
comprehensive model comparisons, the 
hypothesis of this research is that integrating the 
WEAP model with advanced climate scenarios and 
high-resolution satellite data will produce more 
accurate and holistic predictions of climate change 
impacts on water resources than single-model 
approaches. In summary, the novelty of this 
research lies in the combination of these tools and 
data to achieve a precise assessment and 
prediction of the impacts of climate change on 
water resources. The study offers data-driven and 
effective management strategies to address the 
challenges posed by a changing climate. 
 

2. Materials and Methods 

The Isar Dam is located in the Horand section of 
Ahar County, East Azerbaijan Province, Iran, on the 
Ravasjan River. The project's objectives are to 
expand the river's surface water resources and 
establish irrigation networks to supply the region 
with agricultural and drinking water. The study 
area encompasses the Kashafchai River Basin in 
northeastern Ahar, with a maximum elevation of 
2814 meters above sea level at the Qabakh Tepeh 
heights and a minimum elevation of 1447 meters at 
the Rvasjan hydrometry station. The Keshan chai 
watershed is bordered by the Kalibar chai 
watershed to the north, the Ahar River to the south, 
the Baramis watershed to the west, and the 
channels leading to the Ahar River to the east. The 
general location of the project and the study area 
are shown in Fig. 1. 

 
Fig. 1. General Location of the Project and 

Surrounding Areas (Technical Studies of Isar Dam, 
Ahar-Iran) 

 
The data utilized in this research encompassed 

a wide range of climatic, physiographic, 
hydrological, and operational information, all of 
which were gathered from credible and diverse 
sources. Meteorological data (including 
precipitation, temperature, and evaporation) and 
river discharge records were collected from 
selected stations of the Iran Meteorological 
Organization and the East Azerbaijan Regional 
Water Company for the period 1990 to 2020. To 
ensure temporal continuity and data quality, the 
time series were thoroughly examined. In cases 
where gaps were identified, missing data were 
completed using linear interpolation and 
correlation with nearby stations. Physiographic 
data were obtained using maps, previous studies, 
and ArcGIS software. Future climate data were 
extracted from CMIP6 model outputs under the 
SSP5-8.5 scenario. Water demand data were 
derived from current consumption statistics and 
regional development plans.  

GIS data were acquired from satellite imagery 
and spatial analysis tools, while operational data 
related to the dam were gathered through the 
Regional Water Company and processed using 
WEAP software. Furthermore, statistical analyses, 
including PCA and ANOVA, were conducted using 
XLStat, Minitab, and Excel. All data were 
completed, quality-checked, and pre-processed 
prior to being used in the modeling and final 
analysis phases.  

In this research, necessary data were initially 
collected. To identify and analyze changes in 
surface water extent, the JRC Global Surface Water 
Mapping Layers (version 1.4) were utilized. These 
layers provide comprehensive information on the 
spatial distribution and temporal variations of 
surface water bodies. Subsequently, satellite 
imagery was employed to calculate the Normalized 
Difference Water Index (NDWI). This index 
effectively distinguishes water bodies from other 
surface covers. Moreover, data pertaining to the 
geometric characteristics of dams, including 
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height, reservoir volume, and surface water area, 
were gathered and integrated into the WEAP 
software for simulation purposes. 

Rainfall data was extracted from the SSP5-8.5 
scenario, a high socioeconomic pathway of 
greenhouse gas emissions, and associated climate 
models to forecast the potential impacts of climate 
change on rainfall patterns and water resources. 
Furthermore, historical and projected rainfall data 
obtained from climate models were analyzed to 
investigate the relationship between rainfall 
variations and changes in water area. In the phase 
dedicated to analyzing surface water changes, the 
NDWI was instrumental in differentiating surface 
water from other land covers. This index was 
computed using infrared and green bands from 
satellite imagery. Spatial and temporal variations 
in surface water extent were subsequently 
analyzed using the JRC Global Surface Water 
Mapping Layers dataset. To predict future rainfall 
patterns and examine their relationship with water 
changes, climate models and the SSP5-8.5 scenario 
were utilized. Rainfall projections were generated 
for future periods, and the relationship between 
rainfall and surface water variations was analyzed 
using Principal Component Analysis (PCA) and 
Analysis of Variance (ANOVA). Subsequently, the 
predicted rainfall data was incorporated into the 
WEAP model. In the section dedicated to water 
resources simulation and modeling, the WEAP 
software was employed to simulate the regional 
water resources system. This software facilitates 
the modeling of water flow, water resources 
management, and the evaluation of various 
management scenarios. In this simulation, the 
geometric characteristics of dams, such as height 
and reservoir volume, were incorporated to 
analyze their influence on water resources 
management. Furthermore, the SSP5-8.5 scenario 
and associated climate models were applied to 
predict the impact of climate change on water 
resources within the WEAP model. Finally, the 
results obtained from the analysis of surface water 
area changes, rainfall predictions, and WEAP 
simulations were compared and analyzed. In this 
research, xlstat, Excel, Minitab, ArcGIS, and WEAP 

software were utilized for data analysis and 
modeling. The research steps have been clearly 
presented in Table 1. 

JRC Global Surface Water Mapping Layers, v1.4. 
This dataset, developed by the Joint Research 
Centre (JRC) of the European Commission, served 
as a comprehensive resource for analyzing the 
changes in water levels of Lake Urmia. Leveraging 
satellite data, these layers provide global-scale 
mapping of surface water distribution and 
dynamics, as detailed in Tables 2 and 3 (Jin et al., 
2023). 

SSP245, SSP370, Table 4 summarizes the 
specifications of the climate models and the SSP 
scenarios employed in this study. While the study 
initially focused on the SSP5-8.5 scenario, a high-
emissions pathway, additional analyses were 
conducted to compare the effects of SSP2-4.5 (a 
medium stabilization scenario) and SSP3-7.0 (a 
medium-high emission scenario). These 
comparisons are critical for understanding the 
potential range of climate impacts under varying 
socioeconomic and emissions trajectories. The 
inclusion of SSP2-4.5 and SSP3-7.0 allows for a 
more comprehensive assessment of the 
uncertainties and variabilities associated with 
future projections. For SSP2-4.5, moderate 
mitigation efforts result in lower radiative forcing 
by 2100 compared to SSP5-8.5, leading to less 
severe climate impacts. SSP3-7.0, on the other 
hand, reflects a fragmented world with regional 
rivalries and slower mitigation efforts, resulting in 
intermediate radiative forcing levels.  

These additional scenarios provide valuable 
insights into how the Keshan Chai Basin's water 
resources might respond under different future 
pathways. By incorporating multiple scenarios, the 
study better captures the range of possible 
outcomes and enhances its utility for regional 
planning and decision-making.  
     The incorporation of multiple SSP scenarios 
ensures that the study provides a robust and 
nuanced understanding of the potential impacts of 
climate change, offering insights that are more 
aligned with real-world decision-making 
requirements. 
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Table 1. Research Steps 
1. Data Collection 

Water Demand 
Data (Current 

usage, 
Development 

plans) 

Future 
Climate 

Scenarios 
(CMIP6-

SSP5-8.5) 

Operational 
Data 

(Reservoir 
operations, 

Demand 
sectors) 

Physiographic 
Data (DEM, 

Land Use, Soil 
Maps) 

Hydrological Data 
(Streamflow/Discharge) 

Meteorological 
Data 

(Precipitation, 
Temperature, 
Evaporation) 

2. Data Pre-processing 

Statistical analysis (PCA, 
ANOVA-XLStat, Minitab, 

Excel) 
Spatial processing using GIS (ArcGIS) 

Quality control and gap 
filling (Interpolation, 

correlation with nearby 
stations) 

3. Model Setup in WEAP 
→ Scenarios: 
 - Baseline (Historical, 1990–2020) 
 - Future (SSP5-8.5, 2020–2050) 

→ Parameters: 
 - Catchment runoff coefficients 
 - Reservoir capacity curves (A-V-H) 
 

→ Inputs: 
 - Climatic Data 
 - Streamflow Data 
 - Demand Nodes 
    - Reservoir 
Characteristics 

4. Model Simulation (Using WEAP) 

Reservoir performance Supply-Demand balance Water allocation simulation 
under climate change 

5. Output Analysis 
Scenario 

comparison 
Spatial and temporal changes in 

water availability 
Deficit analysis in supply Streamflow variations 

6. Results and Conclusions 
Implications for water resources planning Key findings with numerical outputs 

 
Table 2. Landsat time series and GEE datasets (Jin et al. 2023) 

Resolution Datasets Data Years Landsat Time Series 
Satellite Sensor Years 

30m 
JRC Globat Surface 

Water Mapping 
Layers, v1.4 NASA 
SRTM DEM GLCF: 

Landsat Global 
Inland Water 

SinoLC-1 

1984-2021   
2000 Landsat5TM `1990-1995 
2000 Landsat7 ETM+ 2000-2010 

1m 2021 Landsat8 OLI 2015-2022 

 
Table 3. Definition and range of changes of JRC satellite bands for monitoring water level changes 

(https://earthengine.google.com /) 
Bands 

Description Max Min Units Name Row 
Number of months water is present 12 0  Seasonality٤ 4 

Categorical classification of change between first and 
last year 10 0  --- Transition 6 

 
Table 4. Characteristics of CMIP6 Climate Models (https://esgf-node.llnl.gov/status) 

Model Name 
 

Modeling nstitution 
 

Spatial 
Resolution 

 

Emission Scenario 
 

CanESM5 
Commonwealth Scientific and 

Industrial Research Organization 
(CSIR), Canadian 

2.8×2.8m 
(Canada) SSP2-4.5, SSP3-7.0, SSP5-8.5 

CNRM-CM6 
Centre National de Recherches 

Météorologiques- Climate Model 
version 6 (CNRM and Cerfacs) 

0.5×0.5m 
(France) SSP2-4.5, SSP3-7.0, SSP5-8.5 

CMCC-ESM2 
Centro Euro-Mediterraneo sui 
Cambiamenti Climatici-Earth 

System Model Version 2 

1×1m 
(Italy) SSP2-4.5, SSP3-7.0, SSP5-8.5 
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2.1. Model selection criteria 

CNRM-CM6 Model: This model is used to 
simulate the Earth's past, present, and future 
climate (Figure 2). It is applied to study a wide 
range of climate phenomena, including climate 
change, global warming, extreme weather events, 
and climate cycles (Oki & Sud, 1998; Voldoire et al., 
2019). 

 

Fig. 2. Components of the CNRM-CM6-1 model, 
Source: (Voldoire et al., 2019) 

CMCC-ESM2 Model: This model is capable of 
simulating historical climate change and predicting 
future climate under different greenhouse gas 
emission scenarios. This information is essential 
for understanding how climate is changing and its 
impacts on Earth systems (Lovato et al., 2022). 
CanESM5 Model: This model excels in simulating 
one of the essential climate features: precipitation. 
It is employed to forecast century-scale climate 
patterns as well as generate seasonal and decadal 
predictions. As a forecasting tool, CanESM5 aids in 
developing optimal strategies for water resource 
management and decision-making related to 
watersheds (Swart et al., 2019: 4855; Khoramabadi 
& Fard Moradinia, 2024).  

The choice of the SSP5-8.5 scenario aligns with 
the model selection criteria discussed earlier. The 
CNRM-CM6 model's ability to simulate extreme 
weather events under various climate conditions 
makes it suitable for exploring the severe 
precipitation changes projected under SSP5-8.5. 
Additionally, the CMCC-ESM2 model's capability in 
predicting future climate under different emission 
scenarios complements the analysis by providing 
insights into the potential range of precipitation 
changes under alternative scenarios. This 
combination of model capabilities and scenario 
selection enables a comprehensive assessment of 
the study area's vulnerability to climate change 
impacts. 

2.2. WEAP (Water evaluation and planning 
system) 

WEAP, developed by the Stockholm 
Environment Institute (SEI) in 1990, has emerged 
as a powerful tool for comprehensive watershed 
management and water resource planning (Li et al., 
2015). By integrating and simulating various 
components of a watershed, WEAP empowers 
users to effectively manage and plan water 
resources. A key advantage of WEAP lies in its 
ability to simulate diverse development scenarios 
within a watershed. Utilizing WEAP, one can 
examine and simulate the impacts of factors such 
as population growth, changes in reservoir 
operation policies, groundwater withdrawals, 
artificial recharge schemes, water conservation 
measures, water allocation for ecosystem needs, 
conjunctive use of surface and groundwater, 
wastewater reuse, high-efficiency irrigation 
practices, changes in cropping patterns, climate 
change, pollutant effects, and land use changes on 
water resources (RaziSadath et al., 2023). In the 
hydrological modeling component, WEAP 
simulates all necessary processes for quantifying 
surface water balance and the interaction of 
groundwater aquifers with river flow (Huang, 
2023). 

2.3. Required data 
Data can be provided in one of three formats: 

monthly time series, monthly averages, or constant 
parameters. The required data are listed in Table 5. 

2.4. Streamflow 
Statistical Period Used for Streamflow 

Estimation: 10-Year Period (2011-2021) 
Estimated Average Annual Streamflow at the 
Proposed Site of Isar Dam Reservoir: 9.2 Cubic 
Meters per Second (m³/s). 

2.5. Geometric characteristics of the dam 
The geometric characteristics of the reservoir 

at the proposed axis have been prepared using a 
combination of 1:2000 and 1:10000 scale 
topographic maps. These characteristics include 
the elevation-area curve and the elevation-volume 
curve of the lake at different elevations. In the 
considered option, the riverbed elevation is 152 
meters, and the lake area and volume at an 
elevation of 200 meters are 188.31 hectares and 
29.05 million cubic meters, respectively. The 
elevation-area and elevation-volume curves are 
estimated in the WEAP model using two 
components: elevation and volume, and the 
cylinder equation for surface area. Figure 3 shows 
the variation of reservoir volume with respect to 
elevation. 
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Table 5. Required Data for Water Resource Planning Modeling of the Study Area 

Resources and 
Uses Sub group 1 

Sub group 2 Sub group 3 Data Type 

Climate Data 

Discharge 
Temperature 
Evaporation 
Wind Speed 

Latitude 

Monthly Time Series 
Monthly Time Series 
Monthly Time Series 

Monthly Average 
Monthly Average 

Parameter 
Parameter 
Parameter 
Parameter 

Demand Sites 

Sub basin Nodes Allocation Priority 

Agricultural 
Demand Site Water Use 

Agricultural Land Area 
Annual Water Use Rate 

Consumption Rate 

Resources River Allocation Priority  Parameter 
Reservoir  Parameter 

 

  Storage Volume 
Inactive Volume 

Parameter 
Parameter 

Hydrometric station 

Streamflow Data 
Percentage of Return 

Flow from Each Site to 
Each Source 

DataTime Series 

Parameter 

 

2.4. Streamflow 
Statistical Period Used for Streamflow 

Estimation: 10-Year Period (2011-2021) 
Estimated Average Annual Streamflow at the 
Proposed Site of Isar Dam Reservoir: 9.2 Cubic 
Meters per Second (m³/s). 

2.5. Geometric characteristics of the dam 
The geometric characteristics of the reservoir 

at the proposed axis have been prepared using a 
combination of 1:2000 and 1:10000 scale 
topographic maps. These characteristics include 
the elevation-area curve and the elevation-volume 
curve of the lake at different elevations. In the 
considered option, the riverbed elevation is 152 
meters, and the lake area and volume at an 
elevation of 200 meters are 188.31 hectares and 
29.05 million cubic meters, respectively. The 
elevation-area and elevation-volume curves are 
estimated in the WEAP model using two 
components: elevation and volume, and the 
cylinder equation for surface area. Figure 3 shows 
the variation of reservoir volume with respect to 
elevation. 
 

 
Fig. 3. A-V-H (Area-Volume-High) diagram 

2.6. Evaporation 
The evaporation rate from the free water 

surface at the proposed site has been estimated in 
the first phase of the meteorological studies of the 
design plan and will be used in the calculations. As 
shown in Fig. 4, and table 6 the annual evaporation 
from the free water surface is 1739.4 millimeters. 
In these studies, the direct rainfall volume on the 
lake surface has been neglected as a safety factor in 
the water supply potential of the reservoir. 
 

 
Fig. 4. Monthly Evaporation Values at Isar Dam 

Site 

 
Table 6. Monthly Evaporation Values (mm) 

Month EV (mm) 
October 149.054 

November 101.872 
December 56.1238 

January 46.1269 
February 61.8703 

March 87.6243 
April 121.957 
May 174.883 
June 220.658 
July 259.288 

August 250.722 
September 209.263 
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2.7. NDWI (Normalized Difference Water 
Index) 

The NDWI stands as the first-ever proposed 
index for extracting water information from 
remote sensing imagery and data. Introduced by 
McFeeters in 1996, this index utilizes the near-
infrared (NIR) and green bands to effectively detect 
and delineate water bodies. Water exhibits high 
reflectance in the green band and low reflectance 
in the near-infrared band. Capitalizing on this 
distinct spectral behavior, the NDWI is defined 
using the following formula (McFeeters, 1996): 

 

ܫܹܦܰ = (ீ௥௘௘௡ିேூோ) 
(ீ௥௘௘௡ାேூோ)

                                                         (1) 

 
Leveraging water's distinct spectral 

characteristic of higher reflectance in the green 
wavelength compared to the near-infrared 
wavelength, the NDWI effectively minimizes the 
influence of non-water features such as soil and 
vegetation. (McFeeters et al., 1996) proposed a 
threshold value of zero for NDWI, where positive 
values indicate the presence of water and negative 
values represent non-water features like soil and 
vegetation cover. 

The Normalized Difference Water Index 
(NDWI) is a spectral index used to identify and 
assess water content within vegetation and water 
bodies. NDWI values can be positive or negative, 
each carrying distinct interpretations. Negative 
NDWI values typically indicate areas with very low 
or no water content, such as arid soils, bare rocks, 
urban areas, or other non-water surfaces. 
Conversely, low NDWI values, particularly those 
below 0.1, are often indicative of dry soils or 
regions with extremely low moisture content. In 
essence, negative NDWI values signify a dearth of 
water content, while low NDWI values below 0.1 
are more specifically associated with arid soils or 
extremely dry regions. These interpretations are 
generally based on the spectral behavior of 
different materials in the green and near-infrared 
bands. 

2.8. Principal component analysis 
To examine the primary climate factors 

affecting rainfall events in the study area, this 
research employs the Principal Component 
Analysis (PCA) technique. PCA aims to explain the 
maximum possible variance observed in a set of 
variables using the minimum number of 
components. PCA transforms a set of initially 
correlated variables into a new set of uncorrelated 
variables, termed principal components or factors. 
These principal components are linearly related to 
the original variables and are ranked based on their 

percentage of explained total variance. Among 
these principal components, those that explain the 
most cumulative variance are selected, leading to a 
reduction in the overall data set size (Avila-Vera et 
al., 2020: 12). These principal components are 
uncorrelated and retain a substantial portion of the 
original information. Consequently, a reduced 
model of principal components (PCA) can be 
reliably employed to detect and identify anomalies 
in the original system (Penha et al., 2001: 1). 
Ultimately, PCA aims to minimize the mean square 
error. All PCA calculations in this study were 
performed using XLSTAT and MINITAB software. 

2.9. Model Validation Using ANOVA 

Following the trend analysis of precipitation at 
the Aji Chai station for the future period, one-way 
ANOVA (Analysis of Variance) was applied to 
examine the presence of significant differences in 
mean precipitation between distinct time periods. 
It is important to note that ANOVA is not a novel 
method but a well-established statistical tool 
designed to test differences in group means. To 
ensure its applicability, the Levene test for equality 
of variances was conducted, as the condition for 
using ANOVA requires homogeneous group 
variances. Additionally, the comparison of means 
between two time periods with unknown variances 
was performed using a two-sample t-test approach, 
acknowledging that this test has broader 
applicability when analyzing datasets with unequal 
variances. ANOVA’s purpose in this study was to 
validate whether differences in mean precipitation 
between time periods were statistically significant. 
However, it does not directly validate the accuracy 
of predictive models. Instead, it aids in assessing 
variability in the data across groups. This 
distinction was critical in contextualizing the use of 
ANOVA within the broader scope of rainfall 
analysis and ensuring alignment with its intended 
statistical applications (Javan Bakht Amini & 
Khatami, 2005: 13). 

2.10. Required parameters for agricultural 
water demand assessment 

To comprehensively evaluate agricultural 
water demand for a specific site, the following 
parameters are essential: 
1. Annual Activity Level: This refers to the total 

area of cultivated land within the region. It 
represents the extent of agricultural activities 
that contribute to water consumption. 

2. Per Capita Water Use: This parameter indicates 
the average annual water usage per hectare of 
agricultural land. It reflects the water efficiency 
of agricultural practices in the area. 

3. Monthly Distribution of Agricultural Water 
Consumption: This information provides a 
detailed breakdown of water usage throughout 
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the year, accounting for seasonal variations in 
crop water requirements and irrigation 
practices. 

4. Consumption Coefficient: This coefficient 
represents the proportion of withdrawn water 
that is actually consumed, while the remaining 
portion is converted into wastewater. It 
accounts for water losses due to evaporation, 
seepage, and other factors. 

5. New Cropping Patterns: The text mentions 
three new cropping patterns for the region. 
These patterns likely represent alternative crop 

combinations or cultivation strategies with 
varying water requirements. 

6. Monthly Water Requirement per Cropping 
Pattern: Table 7 presumably provides a detailed 
breakdown of the monthly water requirements 
for each of the three new cropping patterns. 
This information is crucial for assessing the 
water demand associated with each pattern. 

 

 
Table 7. Monthly Distribution of Agricultural Water Demand under Different Cropping Patterns 

Month Existing cultivation pattern  
(1000m3) 

Cropping Pattern 1 
(1000m3) 

Cropping Pattern 2 
(1000m3) 

Cropping Pattern 3 
(1000m3) 

September 728.5 1316.6 1433.1 1886.1 

October 366.3 376.7 497.5 573.6 

November 84.6 31.1 48.7 59.1 

December 35.8 0 0 0 

January 238.1 112.2 124.9 107.6 

February 595.5 1222.6 1273.5 1295.1 

March 904.3 2683 2760.3 2775.7 

April 701.1 3723.6 3853.8 3837.8 

May 712.2 1679.6 1921.5 2004.5 

June 879.6 1697.9 1838 2604.5 

July 996.2 1824.1 1941.8 2758.7 

August 995.9 1842.2 1953.6 2727.3 

Yearly 7238.1 16509.6 17646.7 20630 

2.11. Regional component modeling in WEAP 
WEAP is a comprehensive software tool for 

modeling and analyzing water resources 
management at various scales, including regional 
and basin levels. To effectively model regional 
components in WEAP, a systematic approach is 
essential, encompassing the identification of key 
components, their interactions, and the 
representation of their characteristics within the 
modeling framework. Key Components for 
Regional Modeling are: 
1. Rivers: Rivers represent the primary flow paths 

for water within the region, transporting water 
from upstream sources to downstream users. In 
WEAP, rivers are modeled as links that connect 
different nodes in the system. 

2. Upstream Water Rights: Upstream water rights 
define the allocation of water resources from 
upstream regions or users. These rights can be 
incorporated into WEAP through the use of 
priority rules and allocation mechanisms. 

3. Dams and Diversions: Dams and diversions play 
a crucial role in regulating water flow and 
diverting water for various purposes. WEAP 
allows for the modeling of dams with reservoir 
operations, including storage, release, and 
hydropower generation. Diversions can be 
modeled to represent water abstraction for 
irrigation, municipal, or industrial uses. 

4. Agricultural Demand Sites: Agricultural 
demand sites represent the locations where 
water is consumed for crop production. WEAP 
enables the modeling of agricultural water 
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demand based on crop types, irrigation 
methods, and seasonal water requirements. 

5. Environmental Flow Requirements: 
Environmental flow requirements represent 
the minimum amount of water needed to 
maintain the ecological health of rivers and 
aquatic ecosystems. WEAP allows for the 
incorporation of environmental flow 
requirements into the modeling framework, 
ensuring that water allocations consider both 
human and environmental needs. 
As illustrated in Figure 5, the modeled water 

demands, including agricultural and 
environmental needs, are met by the available 
water resources from reservoirs and rivers. 
WEAP's optimization capabilities can be employed 
to determine the optimal allocation of water 
resources to meet these demands while 
considering constraints such as reservoir storage 
capacity, river flow rates, and water quality 
requirements. Hydrological systems are inherently 
complex and dynamic, influenced by various 
factors such as precipitation, evapotranspiration, 
groundwater interactions, and human activities. 
Modeling these systems can be challenging due to 
the need to accurately represent these complex 
interactions and account for uncertainties in data 
and parameters. 

 

Fig. 5. Schematic Diagram of Regional Component 
Modeling in WEAP 

 
According to Figure 6, the Kashtanrud River 

Basin in East Azerbaijan Province, Iran, is formed 
by two main tributaries. 

Northern Tributary: This tributary originates 
from the southern slopes of Mount Sahand and 
flows northward. 

Southern Tributary: This tributary originates 
from the northern slopes of Mount Mishu Dagh and 
flows southward. 

Confluence of Tributaries: These two 
tributaries eventually converge near the city of 
Tabriz, forming the Kashtanrud River. 

 

 

Fig. 6. Stream Modeling in the Study Area 
 

The schematic diagram should clearly indicate that 
upstream water rights are being diverted from the 
river. This could be represented by a separate 
arrow or label indicag the abstraction of water for 
upstream users. The diagram should also illustrate 
that the downstream agricultural water rights are 
met from the reservoir storage. This could be 
shown by an arrow connecting the reservoir to the 
downstream irrigation network. The return flow 
from this irrigation network should be depicted as 
rejoining the main river at the confluence with 
Ahar Chai. The diversion weir constructed at Abriq 
to utilize the flow of the Ravasjan River should be 
represented in the diagram. This could be shown 
by a symbol or label at the location of the weir. The 
existing Abriq irrigation network, covering 
approximately 1,700 hectares of land, should be 
clearly marked. However, it should be noted that 
only 1,200 hectares of this area are currently under 
irrigated cultivation from the Ravasjan River. The 
schematic diagram should indicate that a total of 
4,800 hectares of land will be covered by the Ithar 
Dam project. This could be represented by a label 
or annotation summarizing the total coverage area. 
The simulation should prioritize water allocation 
for the existing Ozghan irrigation network, 
ensuring that their water rights are met under 
post-dam conditions. This could be represented by 
a separate label or annotation indicating the 
priority allocation. The surplus flow regulated and 
stored in the reservoir should be utilized for the 
expansion of the Ravasjan irrigation network. This 
expansion includes: 

 Improvement of 500 hectares of existing 
rainfed lands within the Ravasjan network: This 
could be shown by a separate label or annotation 
indicating the improvement of rainfed lands. 
 Irrigation of 800 hectares of fallow lands within 
the network: This could be represented by a 
separate label or annotation indicating the 
irrigation of fallow lands. 

https://doi.org/10.22034/CEEJ.2025.66162.2420
mailto:farahnaz.khoramabadi@yahoo.com
mailto:bfatehinobarian@iau.ac.ir
mailto:fardmoradinia@iau.ac.ir


Farahnaz Khoramabadi et al. / J. Civ. Env. Eng. 55 (2025)   88 
 

 

 

 Irrigation of 2,300 hectares of land 
downstream of the Ozghan-Abriq road: This could 
be shown by a separate label or annotation 
indicating the irrigation of downstream lands. 
 Total expansion area of 3,600 hectares: The 
total expansion area should be clearly labeled as 
3,600 hectares and assigned a priority level of 2 in 
the simulation. 

3. Results and Discussion 

3.1. River water level variability 

The Fig. 7 illustrates significant fluctuations in 
the water surface area of the river over the 
examined period. These fluctuations may stem 
from various factors, including climate change, 
intermittent droughts, excessive water extraction 
for agricultural and industrial purposes, and 
changes in rainfall patterns. It appears that the 
river exhibits distinct patterns of high-water and 
low-water seasons. During certain months of the 
year, particularly in spring, the water surface area 
of the river increases significantly, indicating 
higher rainfall and runoff. Conversely, in summer 
and autumn, the water surface area decreases 
sharply, reflecting reduced rainfall and increased 
evaporation. A general overview of the chart 
reveals a downward trend in the river's water 
surface area over time. This decline could indicate 
a reduction in regional water resources or a rise in 
water demand. In some years, extreme 
hydrological events such as floods and prolonged 
droughts have had a considerable impact on the 
river's water surface area. These events can lead to 
sudden and dramatic changes in the river's water 
volume. 
 

 
 

Fig. 7. The time series of the total water 
surface area of the Kashan River 

 
There are complex interactions among 

variables such as streamflow, precipitation, 
evaporation, and temperature. These interactions 
were addressed in the modeling and analysis 
through several approaches: 

In the WEAP model, interactions are 
incorporated by: 

The relationship between precipitation and 
surface runoff generation 

The interaction between river flow and 
groundwater levels 

The effect of temperature on 
evapotranspiration 

Analysis (PCA) were employed to identify and 
analyze the relationships and dependencies among 
variables. 

According to Table 8 and Figure 8, the total area 
of the Kashan River watershed is estimated at 
approximately 274,937 square kilometers, 
indicating the vast expanse of this basin. The 
monthly bars display significant variations in the 
water surface area of the watershed. Overall, the 
water surface area is larger during the cold months 
of the year (winter) compared to the warm months 
(summer). This highlights the direct impact of 
rainfall on increasing the water volume in rivers 
and reservoirs. The largest water surface area is 
observed in December (568 square kilometers), 
while the smallest is recorded in November (22 
square kilometers), demonstrating a significant 
difference and emphasizing the sharp fluctuations 
in the water volume within the watershed. The 
percentage change column also shows that the 
monthly variations in water surface area relative to 
the total watershed area are relatively minor. This 
is due to the large size of the basin and the minimal 
impact of local changes on its total area. The 
Kashan River watershed experiences pronounced 
seasonal fluctuations in its water levels, primarily 
influenced by rainfall patterns. Rainfall is the main 
factor driving changes in the water surface area in 
this basin, as increased precipitation in winter 
leads to higher water volumes in rivers and 
reservoirs. Given the sharp fluctuations in water 
levels, proper and sustainable management of 
water resources in this watershed is of great 
importance. 
 

 
 

Fig. 8. Temporal and spatial changes in water 
surface area based on JRC satellite data 
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Table 8. The area of temporal and spatial water surface 
changes (square meters) based on JRC satellite data 

Percentage 
Water Area (in 

square 
kilometers) 

Monthly Code 

99.599 274937 No Change 0 
0.015 41 Jan 1 
0.020 56 Feb 2 
0.022 60 Mar 3 
0.025 70 Apr 4 
0.020 54 May 5 
0.018 49 Jun 6 
0.016 44 Jul 7 
0.018 50 Aug 8 
0.019 53 Sep 9 
0.015 41 Oct 10 
0.008 22 Nov 11 
0.206 568 Dec 12 

Fig. 9 illustrates the changes in the water 
surface area of the Kashan River watershed over a 
specified time period. These changes are identified 
using JRC satellite data with defined temporal and 
spatial resolution. In this figure, areas with 
permanent and seasonal surface water are 
displayed in different colors. Each color in the 
figure represents a category of water surface area. 
Dark blue may indicate permanent waters with 
greater depth, while lighter colors represent 
seasonal waters or areas with less water coverage. 

 

Fig. 9. The trend of the water surface area of the 
Kashan River using JRC satellite data 

Table 9 illustrates the changes in the surface 
area of different water classes in the Kashan River 
Lake during the study period. The data are 
presented as percentages and areas (in square 
kilometers). The interpretation of these data is as 
follows: 

The unchanged area (code 0) accounts for 
99.559% of the lake's surface area (274,828 square 
kilometers), indicating the stability of the majority 
of the lake's regions throughout the study period. 
In other words, most areas of the lake remained 
constant. The new permanent water area (code 2) 
constitutes only 0.237% of the lake's surface (653 
square kilometers). These areas likely emerged 
due to changes in water resources or 
environmental conditions. Additionally, 0.154% of 
the lake's surface area (426 square kilometers) has 
been identified as new seasonal water areas (code 
5). These regions may only contain water during 
certain seasons. On the other hand, 0.001% of the 
surface area (2 square kilometers) is classified as 
lost seasonal water area (code 6). This change 
could be attributed to shifts in rainfall patterns or 
alterations in water resource usage. The transient 
permanent water area (code 9) also represents 
0.001% of the lake's surface (2 square kilometers). 
These areas may have temporarily appeared as 
permanent water zones. Finally, 0.049% of the 
lake's surface area (134 square kilometers) has 
been identified as transient seasonal water areas 
(code 10), which likely hold water during specific 
seasons. Overall, these data indicate that the 
Kashan River Lake has been relatively stable over 
the study period, with observed changes primarily 
limited to permanent and seasonal water areas. 

 
Table 9. Changes in the surface area of different water 

classes in the Kashan River Lake during the study 
period  

Transition 

Percentage 
Area  

(in square 
kilometers) 

Classification Code 

99.559 274828 Unchanged 
Area 0 

0.237 653 
New 

Permanent 
Water Area 

2 

0.154 426 New Seasonal 
Water Area 5 

0.001 2 Lost Seasonal 
Water Area 6 

0.001 2 
Transient 

Permanent 
Area 

9 

0.049 134 Transient 
Seasonal Area 10 

 

3.2. NDWI map and water distribution in Ahar 
County 

The NDWI (Normalized Difference Water Index) 
map presented in Figure 10 illustrates the spatial 
distribution of water resources in Ahar County, 
Iran, from 1990 to 2020. The NDWI is a satellite-
based index that effectively differentiates water 
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bodies from other land cover types, such as soil, 
vegetation, and rocks. 
 

 
 

Figure 10. Changes in Water Dynamics in the 
Keshan chai Basin over 29 Years (1990-2020) 

 
3.3. Water distribution in 1990-1991 
During this period, water resources were primarily 
concentrated in the northern and central parts of 
Ahar County, exhibiting the highest NDWI values 
(greater than 0.5). This indicates the presence of 
high-quality water sources in these regions. In 
contrast, dry soils dominated the southern and 
western parts of the county, characterized by the 
lowest NDWI values (less than 0.1). This reflects 
water scarcity in these areas (Fig. 11). 

 
 

Fig. 11. Spatial distribution of water resources in 
1990-1991 

 

3.4. Water Distribution in 2023 
Compared to 1990-1991, the spatial 

distribution of water resources in 2020 reveals 
noticeable changes. The concentration of water 
bodies has intensified in the northern and western 
parts of the county, while it has decreased in some 
central and southern regions. These changes could 
be attributed to various factors, including climate 

variability, human activities, and agricultural 
expansion (Figure 12). 

 
 
Fig. 12. Spatial distribution of water resources in 

2022-2023 
 

The NDWI map presented in this study serves 
as a valuable tool for understanding the 
spatiotemporal distribution of water resources in 
Ahar County. This information can be utilized for 
effective water resource planning, drought 
management, and environmental protection 
strategies. The NDWI difference map presented in 
the figure illustrates the spatiotemporal changes in 
water distribution across Ahar County, Iran, over a 
30-year period from 1990 to 2023. This map is 
generated by subtracting the NDWI values in 1990 
from the NDWI values in 2023. 

Table 10 presents a comparison of the 
Normalized Difference Water Index (NDWI) for the 
Keshan chai watershed between the periods 1990-
1991 and 2022-2023. The NDWI is employed to 
assess soil moisture and surface water levels 
within the region. Color-coded ranges of the NDWI 
index are utilized to visualize changes in moisture 
content and water extent over these two periods. 
In the 2022-2023 period, areas with a severe water 
deficit (indicated by red) exhibited NDWI values 
ranging from -0.504 to -0.219, covering an area of 
6.25 square kilometers. This signifies a substantial 
decline in water and moisture content in these 
regions. Conversely, areas with a milder water 
deficit (represented by green) had NDWI values 
between -0.219 and -0.122, encompassing 28.31 
square kilometers. These values suggest a less 
pronounced decrease in moisture compared to the 
severely affected areas. Additionally, regions with 
abundant water (dark blue) exhibited NDWI values 
between -0.122 and 0.200, covering 65.43 square 
kilometers, indicating a higher presence of water 
and moisture. In contrast, during the 1990-1991 
period, areas with an NDWI between -0.280 and -
0.091, spanning 27.15 square kilometers, indicated 
a severe water deficit. This area was larger than the 
corresponding area in 2022-2023. Furthermore, 
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regions with a milder water deficit (green) had 
NDWI values between -0.091 and 0.039, covering 
40.12 square kilometers. Areas with abundant 
water (dark blue) exhibited NDWI values between 
0.039 and 0.460, covering 32.71 square kilometers, 
which is smaller than the corresponding area in 
2022-2023. In conclusion, recent years (2022-
2023) have witnessed an increase in areas with 
abundant water (dark blue), suggesting an 
improvement in moisture conditions or increased 

water availability within the Keshan chai 
watershed. Moreover, the extent of areas with a 
severe water deficit (red) has decreased compared 
to the 1990-1991 period, indicating a reduction in 
water scarcity in recent years. The area of regions 
with a milder water deficit (green) has also 
decreased, signifying a relative improvement in 
water conditions within the region. 
 
 

 
Table 10. Comparison of the Normalized Difference Water Index (NDWI) for the Keshan chai watershed between the 

periods 1990-1991 and 2022-2023. 
The humidity of the area Range of NDWI index Map color Area(m2) 

Year 2022-2023 
Areas with severe water depletion -0.504 to -0.219 Red 6.25 
Areas with milder water reduction -0.219 to -0.122 Green 28.31 
Areas with high amount of water -0.122 to 0.2  Dark blue 65.43 

Year 1990-1991 
Areas with severe water depletion -0.28 to -0.091 Red 27.15 
Areas with milder water reduction -0.091 to 0.039 Green 40.12 
Areas with high amount of water 0.039 to 0.460 Dark blue 32.71 

 
 
3.5. Distribution of Water in Ahar County from 
1990 to 1991 

Fig. 13 presents a comparison of the probability 
distribution of the Standardized Precipitation 
Index (SPI) for various time periods. The SPI is an 
index used to assess drought and wet conditions, 
with its values indicating the deviation of 
precipitation from the long-term normal. In this 
figure, the SPI distribution for the baseline period 
of 1990-2020 is compared with the SPI distribution 
in the future period (2025-2065) based on three 
different climate models. The horizontal axis 
represents the SPI values, where positive values 
indicate above-normal precipitation (wet 
conditions) and negative values indicate below-
normal precipitation (drought). The vertical axis 
represents the probability density of each SPI 
value, meaning that the higher the curve, the higher 
the probability of that particular SPI value 
occurring. Each curve in the graph represents the 
SPI distribution for a specific time period or climate 
model. Furthermore, an analysis of the curves 
corresponding to the future climate models 
(CNRM-CM6, CanESM5, and CMCC-ESM2) reveals a 
greater spread compared to the baseline curve 
(1990-2020). This indicates an increased 
likelihood of both extremely dry and extremely wet 
years in the future. Additionally, some models, such 
as CMCC-ESM2, suggest a potential shift in the 
mean SPI towards positive values, signifying an 
overall increase in precipitation. Conversely, 
models like CNRM-CM6 may indicate a shift 
towards negative values, suggesting an overall 
decrease in precipitation. The disparity in the 
projections provided by different climate models 
underscores the uncertainty inherent in climate 

predictions. Based on this figure, it can be 
anticipated that the precipitation regime of the 
Keshan chai watershed will undergo significant 
changes in the future, with an increased likelihood 
of both extreme drought and wet events. Moreover, 
the annual average precipitation is projected to 
either increase or decrease depending on the 
climate model. These changes may have substantial 
implications for the lake ecosystem, agriculture, 
and other water-dependent activities in the region. 

 

Fig. 13. Probability distribution of Standard 
Precipitation Index (SPI) for different periods 

 
In Fig. 14, the value of t is 2.045 and the value of 

p is 0.025. Since the value of p is less than the 
significance level of 0.05, there is sufficient 
evidence to reject the null hypothesis. In other 
words, it can be concluded with 95% confidence 
that the equality of the average precipitation on the 
two sides of the figure at the 0.05 significance level 
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indicates that there will be a trend towards 
extreme (limit) or a significant decrease in 
precipitation in the future in the study watershed. 

 

 
Fig. 14. Probability distribution of precipitation 

anomalies in the Keshan chai Basin 

After entering the data into the MINITAB 
environment and forming the correlation matrix, 
the data were analyzed. The precipitation variable 
was reduced to seven components using the 
principal component analysis method (with R) and 
the data were rotated using Varimax rotation. 
Table (11) shows the percentage of explained 
variance of the components. The results show that 
the general factor matrix and the general score 
matrix are identified, indicating that the monthly 
precipitation of the watershed in the study area is 
the result of the interaction of 12 different factors. 
These factors justify 100% of the total variance 
with eigenvalues. The highest precipitation in 
January has provided the highest factor load under 
severe precipitation conditions, and among the 
stations studied, January has the highest 
eigenvalue. The shape diagram test (12) shows the 
slope or continuous scree plot of the total variance 
explained by each variable in relation to other 
variables. As can be seen, the large factors are 
shown at the top and the other factors are shown 
with a gradual slope. As can be seen, the first and 
second components have a steep slope. While the 
slope of the components becomes gentler from the 
eighth component onwards and finally turns into a 
straight line. This study employed a two-sample t-
test and a scree plot to provide additional insights 
into the statistical analysis of the models. The two-
sample t-test was utilized to compare the mean 
values of precipitation between the baseline and 
future periods under different climate scenarios. 
This test serves as a complementary analysis to 
ANOVA by specifically identifying whether the 
differences between two distinct groups (e.g., 
baseline vs. future periods) are statistically 
significant. Unlike ANOVA, which tests differences 
among multiple groups, the t-test focuses on 

pairwise comparisons, thereby providing a more 
detailed understanding of the relationships 
between specific time periods or models. The scree 
plot was employed as part of the principal 
component analysis (PCA) to determine the 
number of components to retain for subsequent 
analysis. This graphical tool helps visualize the 
variance explained by each principal component, 
enabling researchers to identify the point of 
inflection (the "elbow") where additional 
components contribute minimal variance. By 
focusing on the most significant components, the 
study effectively reduced dimensionality and 
highlighted key variables driving changes in 
precipitation patterns. Additionally, related 
variables such as precipitation anomalies, 
temperature changes, and hydrological model 
outputs were presented in Figure 15. However, to 
ensure clarity, these variables are now explicitly 
defined in the text. Precipitation anomalies refer to 
deviations from the long-term mean precipitation, 
while temperature changes represent the 
differences in average temperature between the 
baseline and future periods. These variables are 
essential for capturing the impacts of climate 
change on the hydrological and environmental 
systems under study. By incorporating both the t-
test and scree plot, this research achieves a more 
nuanced analysis, combining hypothesis testing 
with dimensionality reduction techniques to 
comprehensively evaluate climate model 
performance and projections. 

Table 11. Percentage of explained variance of the 
components 

Description Eigenvalue Variability 
(%) 

Cumulative 
% 

Jan 2.354 19.616 19.616 

Feb 1.917 15.977 35.593 

Mar 1.400 11.666 47.259 

Apr 1.283 10.692 57.952 

May 1.113 9.279 67.231 

Jun 1.005 8.376 75.606 

Jul 0.851 7.091 82.697 

Aug 0.735 6.123 88.819 

Sep 0.555 4.629 93.449 

Oct 0.329 2.741 96.189 

Nov 0.248 2.070 98.259 

Dec 0.209 1.741 100.000 
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Fig. 15. Scree plot or cumulative variance 
explained by each principal component 

Fig. 16 presents a spatial distribution of 
monthly precipitation within the study area, 
allowing for a detailed interpretation. Months 
positioned closely together exhibit similar 
precipitation patterns. Conversely, months located 
further apart demonstrate a negative correlation 
and significant differences in their precipitation 
patterns. 
Overall, three distinct monthly precipitation 
patterns are observed in this region: 
1. Climate Type 1: This category includes 

January, February, March, April, June, 
September, and July. Characterized by high 
precipitation distribution and density, these 
months experience heavy rainfall. Their 
proximity in the 2D plot indicates shared 
precipitation patterns, likely influenced by 
dominant seasonal patterns (such as winter or 
monsoon rains). 

2. Climate Type 2: Comprising November, 
October, and August, this group exhibits 
moderate precipitation distribution and 
density. While rainfall intensity is lower 
compared to Climate Type 1, precipitation is 
more evenly distributed, potentially associated 
with transitional seasons. 

3. Climate Type 3: December falls under this 
category, characterized by uniform 
distribution and low precipitation density. 
This climate type likely represents a stable 
precipitation pattern with minimal variations 
within the month. 

The principal components (F1, F2) etc. were 
extracted from the principal component analysis 
(PCA) and indicate the directions of maximum 
changes in the monthly rainfall data in the study 
area. (first principal component F1) represents 
19.62% of the total variance and plays an 

important role in explaining the general patterns of 
precipitation changes. It probably represents the 
main seasonal pattern of precipitation changes and 
shows the difference in precipitation between 
months with heavy precipitation and drier months.  

(The second principal component F2) 
represents 15.98% of the variance and is a 
complement to F1, so that it shows the 
precipitation changes that F1 could not cover. This 
component may indicate regional differences or 
secondary seasonal effects in precipitation 
patterns. 

Considering that F1 and F2 components explain 
a total of 35.59% of the total variance, these two 
components can be considered as the main 
patterns of monthly precipitation changes in 
catchment area to be used. Subsequent principal 
components (such as F3, F4, etc.) explain a smaller 
share of the variance and are likely to indicate more 
detailed or localized patterns in the data. 
 

 
 

 
Fig. 16. PCA behavior of monthly precipitation 

change dispersion in the Karoon River Basin 
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3.6. Scenario validation 
Analysis of Variance (ANOVA), a robust 

statistical method for comparing means across 
multiple groups, was employed in this study to 
identify statistically significant differences in 
projected precipitation among various climate 
models. The results of this analysis, presented in 
Table 12, indicate that the models CMCC-ESM2, 
CNRM-CM6, and CanESM5 exhibit a significant 
increase in projected mean precipitation for future 
periods compared to the baseline scenario. The 
CNRM-CM6 model estimated a mean precipitation 
of 614.7 mm with a standard deviation of 107.3 
mm, and a 95% confidence interval ranging from 
580.9 to 648.4 mm. Similarly, the CMCC-ESM2 
model reported a mean precipitation of 504.9 mm 
with a standard deviation of 137.0 mm and a 95% 
confidence interval between 471.2 and 538.7 mm. 
Additionally, for the CanESM5 model, a mean 
precipitation of 397.3 mm was estimated with a 
standard deviation of 95.2 mm and a 95% 
confidence interval ranging from 363.6 to 431.0 
mm. Finally, during the observational period 
(1990-2020), the mean precipitation was recorded 
as 253.9mm with a standard deviation of 85.4 mm 
and a 95% confidence interval between 215.1 and 
292.7mm. In the "Grouping" column, the letters A, 

B, C, and D have been assigned to each model to 
represent groups with significantly different mean 
precipitation. According to Tukey's method, if two 
models do not share a common letter, their mean 
precipitation is significantly different. The CNRM-
CM6 model belongs to group A and exhibits the 
highest mean precipitation, while the CMCC-ESM2 
model falls into group B, indicating a lower mean 
precipitation than CNRM-CM6 but higher than the 
other models. Furthermore, the CanESM5 model is 
categorized in group C, exhibiting a significantly 
lower mean precipitation compared to the CNRM-
CM6 and CMCC-ESM2 models. The baseline data 
(1990-2020) is classified in group D and displays 
the lowest mean precipitation among all models. 
Overall, the CNRM-CM6 and CMCC-ESM2 models 
project a significantly higher mean precipitation 
for the future period (2025-2065) compared to the 
baseline. The CanESM5 model also indicates an 
increase in precipitation relative to the baseline, 
although the magnitude is significantly lower than 
the CNRM-CM6 and CMCC-ESM2 models. These 
results suggest that the baseline data represents 
the lowest precipitation levels, which are 
significantly different from the future period, 
indicating a potential increase in precipitation in 
the coming years. 

 
 

Table 12. Grouping Information Using the Tukey Method and 95% Confidence 

Factor Time N Mean(mm) StDev 
(mm) 

Lower bound 
(95%) 

Upper bound 
(95%) Grouping 

CNRM-CM6 2025-2065 41 614.7 107.3 580.9 648.4 A    
CMCC-ESM2 2025-2065 41 504.9 137.0 471.2 538.7  B   

CanESM5 2025-2065 41 397.3 95.2 363.6 431.0   C  
Base 1990-2020 31 253.9 85.4 215.1 292.7    D 

Analysis of Variance (ANOVA), a robust 
statistical method for comparing means across 
multiple groups, was employed in this study to 
identify statistically significant differences in 
projected precipitation among various climate 
models. The results of this analysis, presented in 
Table 7, indicate that the models CMCC-ESM2, 
CNRM-CM6, and CanESM5 exhibit a significant 
increase in projected mean precipitation for future 
periods compared to the baseline scenario. It is 
important to note that the earlier reference to RCP 
scenarios in the text was incorrect, as this study 
explicitly utilizes SSP scenarios from CMIP6. 
Specifically, SSP5-8.5 was selected for its 
representation of a high-emission scenario to 
evaluate the potential impacts of climate change on 
precipitation. This correction ensures consistency 
between the earlier analysis and the results 
presented in Table 7. Future studies may benefit 
from exploring additional SSP pathways to provide 
a broader understanding of the projected impacts. 
The CNRM-CM6 model estimated a mean 
precipitation of 614.7 mm with a standard 

deviation of 107.3 mm and a 95% confidence 
interval ranging from 580.9 to 648.4 mm. Similarly, 
the CMCC-ESM2 model reported a mean 
precipitation of 504.9 mm with a standard 
deviation of 137.0 mm and a 95% confidence 
interval between 471.2 and 538.7 mm. 
Additionally, for the CanESM5 model, a mean 
precipitation of 397.3 mm was estimated with a 
standard deviation of 95.2 mm and a 95% 
confidence interval ranging from 363.6 to 431.0 
mm. Finally, during the observational period 
(1990-2020), the mean precipitation was recorded 
as 253.9 mm with a standard deviation of 85.4 mm 
and a 95% confidence interval between 215.1 and 
292.7 mm. In the "Grouping" column, the letters A, 
B, C, and D have been assigned to each model to 
represent groups with significantly different mean 
precipitation. According to Tukey's method, if two 
models do not share a common letter, their mean 
precipitation is significantly different. The CNRM-
CM6 model belongs to group A and exhibits the 
highest mean precipitation, while the CMCC-ESM2 
model falls into group B, indicating a lower mean 
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precipitation than CNRM-CM6 but higher than the 
other models. Furthermore, the CanESM5 model is 
categorized in group C, exhibiting a significantly 
lower mean precipitation compared to the CNRM-
CM6 and CMCC-ESM2 models. The baseline data 
(1990-2020) is classified in group D and displays 
the lowest mean precipitation among all models. 
Overall, the results suggest that the baseline data 
represents the lowest precipitation levels, which 
are significantly different from the future period, 
indicating a potential increase in precipitation in 
the coming years under the SSP5-8.5 scenario. 

Table 13 presents the predicted precipitation 
values from four different climate models. Each 
model provides the predicted precipitation 
amount, standard error, t-statistic, and p-value. 
The intercept value is 396.266 mm, indicating that, 
in the absence of other influencing factors, an 
average of 396.266 mm of precipitation is expected 
in the Keshan chai basin. The CMCC-ESM2, CNRM-
CM6, and CanESM5 models provide varying 
precipitation predictions compared to the baseline 
model. The CMCC-ESM2 model predicts a 
significant increase in precipitation, while the 

CanESM5 model does not predict any change. The 
CNRM-CM6 model also forecasts a substantial 
increase in precipitation, although to a lesser 
extent than the CMCC-ESM2 model. In other words, 
if no other variables are considered for 
precipitation prediction, the expected precipitation 
in the Keshan chai basin is 283.4 mm. The CMCC-
ESM2 model predicts the highest precipitation 
amount across all years. The extremely low p-
values, all less than 0.0001, indicate that the 
observed differences between the models are 
statistically significant. In other words, these 
differences are highly unlikely to be due to chance, 
and the different models provide distinct 
precipitation predictions. The baseline model 
underpredicts the reference precipitation by 
143.39 mm. The CMCC-ESM2 model, with a 129.04 
mm underprediction compared to the baseline, 
ranks second in terms of the lowest predicted 
precipitation. Conversely, the CNRM-CM6 model, 
with a 218.41 mm overprediction compared to the 
baseline, predicts the highest precipitation 
amount. 

 
Table 13. Summary of ANOVA for Baseline and SSP5.85 Scenarios 

Source Value(mm) Standard 
error(mm) T Pr > |t| Lower bound 

(95%) 
Upper bound 

(95%) 

Intercept 396.266 16.057 24.679 < 0.0001 364.537 427.995 
Base-Base -143.392 24.702 -5.805 < 0.0001 -192.204 -94.581 

Base-CMCC-ESM2 129.038 22.708 5.682 < 0.0001 84.166 173.909 
Base-CNRM-CM6 218.412 22.708 9.618 < 0.0001 173.541 263.284 

Base-CanESM5 0.000 0.000     

According to Figure (17) and Table (13), it is 
predicted that annual precipitation in the study 
area will increase by an average of 5% during the 
prediction period (2025-2065) compared to the 
observation period (1990-2020). This increase in 
precipitation is observed at above 95% confidence 
level with a value of 427.99 mm and at the lowest 
level with a value of 364.53 mm. In other words, it 
will vary between 427.99 and 364.53 in the future 
period. The CNRM-CM6 and CMCC-ESM2 models 
have a better fitting performance than the 
CanESM5 model. Figure (13) shows a boxplot of the 
changes in precipitation in the future period 
compared to the observation period. This chart 
shows the distribution of standardized coefficients 
for each model. The center line of the box shows the 
median of the coefficients. To better understand 
the importance of global warming, it is necessary to 
examine the annual changes in precipitation. The 
standard deviation of mean annual precipitation 
over several years indicates the amount of change 
in mean precipitation during that time period. 
However, these changes are not regular in the 
climate models studied. But ultimately, the 

Standardized coefficients indicators in the chart 
show that the CNRM-CM6 model has a better ability 
to simulate precipitation. The standardized 
coefficient only shows the intensity of precipitation 
and does not provide information about the 
frequency or duration of the study period. On the 
other hand, the closer the box of the chart is to the 
y-axis (at the 95% significance level), the more 
certain the results are in that model. 

 

Fig. 17. Distribution of Standardized Coefficients 
for Selected Models, Future and Observation 

Periods 
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In this study, uncertainties related to flow 
forecasting particularly those arising from 
differences among various climate models in 
predicting precipitation (a key driver of 
streamflow)  were evaluated using statistical 
methods. Specifically, Analysis of Variance 
(ANOVA) and Tukey’s post-hoc test were applied to 
assess the significance of differences among the 
precipitation outputs from different climate 
models. ANOVA, as a robust tool for comparing 
group means, enabled us to identify statistically 
significant differences among outputs of the CNRM-
CM6, CMCC-ESM2, and CanESM5 models, 
compared to the baseline data (1990–2020). These 
results are presented in Table 12 of the manuscript. 
Tukey’s test was then employed to categorize the 
models into statistically distinct groups (A to D) at 
a 95% confidence level. For instance, the CNRM-
CM6 model, which predicted the highest mean 
precipitation, fell into group A, while the baseline 
data were classified in group D, indicating the 
lowest values. This grouping highlights the range of 
variability among model outputs and thus the level 
of uncertainty in precipitation projections. 
Furthermore, 95% confidence intervals were 
calculated for each model’s precipitation estimate, 
providing a quantitative measure of uncertainty 
and a range for possible future changes. These 
statistical assessments were considered in 
interpreting the final results and discussing the 
implications of climate model selection on water 
resource projections. In summary, the uncertainty 
stemming from the choice of climate model was 
explicitly evaluated and incorporated into the 
results through statistical analysis and 
interpretation. 

The findings of this study can be generalized to 
other watersheds with similar climatic and 
hydrological characteristics, such as mountainous 
basins in northwestern Iran. However, for regions 
with significantly different conditions (e.g., arid or 
flat plains), model recalibration and site-specific 
validation would be necessary. It is important to 
note that the study is based on real observed data 
and employs standard and widely accepted 
modeling tools, which lends a relatively high level 
of credibility and potential for broader 
applicability under similar environmental settings. 
 

4. General Conclusion 
This study aims to investigate the effects of the 

construction of the Isar Dam on various 
parameters of the basin's water resources, 
including stored water volume, river flow, and 
water quality, considering climatic conditions. The 
key innovation in this research lies in its integrated 
approach to assessing the impacts of both dam 
construction and climate change on water 
resources in the basin. While many studies have 

examined the effects of dams or climate change 
individually, this research combines these two 
factors to provide a more comprehensive 
understanding of their combined influence on 
water availability, quality, and distribution. The 
selection of model parameters should be based on 
the intended application and the specific regional 
conditions. 

The models used in this study particularly the 
WEAP model along with statistical methods such as 
Principal Component Analysis (PCA) and Analysis 
of Variance (ANOVA) are designed not only for 
academic research but also for practical and 
managerial applications. These models were 
calibrated using real and local data, including 
meteorological, hydrological, physiographic, and 
operational information, which enhances the 
accuracy and reliability of the results under real-
world conditions. Moreover, the scenarios 
analyzed in this research (such as changes in 
cropping patterns and the SSP5-8.5 climate 
scenario) directly address the challenges that 
organizations like the East Azerbaijan Regional 
Water Company face in water resources planning 
and management. Since WEAP is widely used by 
water management authorities around the world 
for integrated water resources planning and allows 
for scenario analysis, shortage evaluation, and 
adaptation planning, the findings of this study can 
effectively support operational decision-making, 
optimal water allocation, climate change 
adaptation strategies, and the optimization of 
agricultural practices. 

In this study, key parameters such as 
precipitation, temperature, evaporation, river 
discharge, and cropping patterns were given 
special attention because these factors directly 
affect water allocation and agricultural water 
demand. Additionally, physiographic data and 
reservoir operation information were included to 
simulate the water resources more accurately. For 
practical and managerial applications, it is 
recommended that, in addition to hydrological and 
climatic parameters, economic variables and water 
demand data be incorporated with high precision 
to enhance the usability and reliability of the model 
results in decision-making processes. This 
perspective is clearly presented in the manuscript 
to provide useful guidance for future researchers 
and water resource managers. The results are as 
follows: 
 
Key Findings: 
 The Ravasjan River has experienced 

significant fluctuations in water flow due to 
floods and droughts. 

 The environmental flow requirement of the 
river is a minimum monthly flow of 5.0 cubic 
meters per second, simulated on an annual 
basis. 
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 Water demand satisfaction rates under 
various scenarios were as follows: 

 Scenario 1: 92% of Ozghan’s water demand 
and 47% of the development network’s 
demand are met in 70% of cases, while both 
are fully satisfied in 30% of cases. 

 Scenario 2: 90% of Ozghan’s demand and 
45% of the development network’s demand 
are met in 70% of cases, with full 
satisfaction in 25% of cases. 

 Scenario 3: 77% of Ozghan’s demand and 
38% of the development network’s demand 
are met in 70% of cases, while full 
satisfaction occurs in 23% of cases. 

 The dam will provide 14 million cubic meters 
of regulated water annually for drinking 
purposes, 35 million cubic meters for 
agriculture, and 4 million cubic meters for 
environmental releases. 

 

Climate Change Impacts: 

 Simulations indicate a heightened risk of 
flooding in the study area due to increased 
precipitation and runoff under climate 
scenario SSP5.85. 

 Precipitation variability between 2011 and 
2020 poses challenges for agriculture, water 
resource management, and other water-
sensitive sectors. 

 Future precipitation in the watershed is 
predicted to reach extreme levels, with 
distinct climatic patterns emerging across 
different months. 

 Principal component analysis reveals that 
62.19% of precipitation variance is explained 
by the first component, while 15.98% is 
explained by the second. 

 

limitations of this research: 

 Focus on a Single Dam: The study primarily 
focuses on the potential impacts and 
benefits of the Isar Dam. It may not fully 
consider the potential impacts of other 
water infrastructure projects or 
interventions in the region. 

 Limited Scope of Climate Change Scenarios: 
While the study utilizes the SSP5.85 
scenario, it may not fully capture the range 
of potential climate change impacts. 
Exploring other scenarios, such as those 
with more severe or less severe climate 
change impacts, could provide a more 
robust assessment. 

 Data Limitations: The accuracy of the 
study's findings may be limited by the 
availability and quality of historical data, 

particularly regarding water flow, 
precipitation, and climate variables. 

 Model Limitations: The WEAP model, while 
a powerful tool, has inherent limitations and 
assumptions. The accuracy of the model's 
predictions depends on the quality of input 
data and the appropriateness of the model's 
parameters. 

 Lack of Socioeconomic Considerations: The 
study may not fully account for the 
socioeconomic impacts of the dam, such as 
potential displacement of communities, 
changes in land use patterns, and the socio-
economic implications of water allocation 
decisions. 

 Uncertainty in Climate Projections: Climate 
change projections inherently involve 
uncertainties. The study may not fully 
account for the potential range of 
uncertainty in future climate conditions, 
which could significantly impact the 
accuracy of the predictions. 
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